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Analysis of Family Resemblance. II. A Linear Model
for Familial Correlation

D. C. RAO,' N. E. MORTON, AND S. YEE

Wright [1] developed path analysis to describe familial correlation under a linear
model. This remains its principal use, despite extension to nonfamilial data and
interactive systems [2, 3]. His seminal paper on the intelligence quotient has been
surprisingly neglected by human geneticists, perhaps because values had to be
assumed for some unknown parameters [4]. Recently this indeterminacy was
resolved by combining path analysis with the concept of an index and a theory of
hypothesis testing [5]. In this form it appears to be a powerful tool to analyze
family resemblance and group differences in man. Since our work depends on path
analysis, which, like so much in population genetics, is the creation of Sewall
Wright, we take pleasure in dedicating this paper to him.

THEORY

In this section we describe the necessary theories of estimation and tests of
hypotheses (e.g., see [6]) which can be used for any model; these will be used
for the models we develop in later sections.
The traditional approach to familial correlation is to estimate heritability under

assumptions that are not tested. A more fruitful alternative emphasizes tests of
hypotheses. For a phenotype influenced by familial environment and/or subject
to assortative mating, in an organism where opportunities for critical experimenta-
tion are severely limited, it would be reckless to suppose that any particular model
is true, whereas it may be feasible to show that a particular model is false.
Our interest in familial correlation is to test hypotheses for which we require a

distribution theory. Let rN be an estimated intra- or interclass correlation based on
N pairs of observations, and let p be its expected value. Fisher [7] showed that
for an interclass correlation the bias-corrected z transform,

1 (1+rxN P

2 1 -1rN 2(N- 1)

is distributed almost normally with mean z in [ (1 + p)/(1- p) ] and vari-
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ance (T2 = 1/(N - 3). For an intraclass correlation, the bias-corrected z transform
is

1I Il+rN I
I

N
xilnQ1rN ±4InN

2 1 -rN 2 N -1

with mean Y and variance cr 2 = 1/(N - 3/2). If z1, Z2, .. .,yZ. are all indepen-
dent, each having an approximately normal distribution, the logarithm of the joint
likelihood may be written (ignoring terms that are independent of parameters) as
In L a:- X2/2, where

m

is a X2 based on m correlations, with degrees of freedom equal to m - K, where
K is the number of parameters estimated from the data. The x2 is a function of
the pt, which in turn are functions of a set of parameters. If Xr, X8 are two such
parameters, the maximum-likelihood scores, neglecting (Op/OXr)/[2 (Nj - 1)]
for interclass, are given by

alnL m ( A__
U~r i-E (Z, - ) )0 /0Z.2U
AOr i1ArX,

and

Kxrx= -E ( ) In)(( :: )/ .

The likelihood may be maximized, or the x2 minimized, by Newton-Raphson
iteration. If X is a vector of trial values for K of the m parameters and Xn is the
vector at the nth iteration, then Xn+1 = XA + UK-1jXn leads to the maximum-
likelihood values of X, subject to a null hypothesis about the m - K other
parameters.

In this way, one can estimate K (.< m) parameters. If X2m-K, and X2m-K-w are
two values of x2 (eq. 1), based on estimation of K and K + co parameters from
the data, where each of the K parameters is included in the K + co parameters,

XW = Xm-K Xm-K-W (2)

is ax2 on a null hypothesis about the Xo parameters.

THE GENERAL MODEL

Suppose that J is an estimate of a cause K for a phenotype Y. Then J is called
an index of K [5]. If there are n different estimates, say J1, . . JJI they may be
combined by the discriminant

I B ii= 1 i
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ANALYSIS OF FAMILY RESEMBLANCE

where Bi maximizes the multiple correlation of Ji with Y. We shall be concerned
with the index (I) of family environment and the index (M) of race. In both
cases the relations between estimates, causes, and effects are assumed linear, with
the index determined by a single cause and a random error, J = K + E. The con-
cept of an index makes it unnecessary (as it is undesirable) to assume that common
environment or race is known precisely. Environment common to siblings reared
together, usually including characteristics of the neighborhood, school, and social
class, is called home, family, or common, interchangeably.
The phenotype Y of a child is determined linearly by midparent genotype (G)

segregation from the midparent (S), family environment (C), race (N), and
random environment (E) (see [5, fig. 1]). Thus, race is separated from the
residual genotype, and errors of phenotype estimation are pooled with random
environment. The phenotype of an adult is determined by the same factors as
child's phenotype, but the effects of genotype and common environment may be
different where common environment refers to the conditions under which the
adult is rearing his family, not the home environment he experienced as a child
(see table 1).

TABLE 1

VARIABLES IN THE GENERAL MODEL

Directly
Variable Observed Description

Within race:
X .... ... Yes The phenotype of the first of a pair of individuals; parent's

phenotype in offspring-parent pairs; natural sib's phenotype
in natural-adopted sib pairs

Y .... ... Yes The phenotype of the other member of the pair
C ... .... No Common environment; for parents, the home environment pro-

vided to children they rear
I. ....... Yes The index of common environment (estimate of C)
G .... ... No Midparent genotype
E .... ... No Random environment

Among races:
N .. ... No The race of an individual
M ..... Yes The racial index of an individual (estimate of N)
W .. ... No Midparent race

NOTE.-The subscript T denotes a factor common to monozygous twins (GT = their genotype, NT = their
race, etc.); the subscript P denotes a factor acting on a parent but not directly on his child (Gp = parent's
genotype, etc.).

Most of the paths are between causes and effects, represented by single-headed
arrows and taking values between 0 and 1 (table 2). However, four pairs of factors
are assumed correlated in a more ambiguous way, and these paths, which are
between -1 and +1, are indicated by double-headed arrows. There may be a
marital correlation m between the parental genotypes and w between the parental
races; midparent genotype may be correlated to an extent r with common environ-
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TABLE 2

PATH COEFFICIENTS OF THE GENERAL MODEL

Source and Symbol Definition

Within races:
c. ........ Effect of common environment on child's phenotype

ck.................. Effect of common environment on parent's (adult) phenotype
h.................. Effect of genotype on child's phenotype (square root of "heritability")
hz.................. Effect of genotype on parent's (adult) phenotype
i......... Effect of common environment on index
m ........ Correlation between parental genotypes
r.................. Correlation between midparent genotype and common environment
b.................. Correlation between common environments of half-sibs reared apart

Among races:
t .................. Effect of race on racial index
q.................. Effect of race on phenotype
p.................. Correlation between midparent race and common environment
w.................. Correlation between parental races

NOTE.-The path from midparent genotype to child's phenotype is g = kvf(1 + m)/2. The path from mid-
parent race to index of midparent race = t/(1 + w) / ( + t2w). The path from midparent race to race of indi-
vidual is n = (1 + w)/2.

ment, and there may be a correlation p between midparent race and common
environment. For adopted children, r and p are assumed to be nullified. In the
special case of half-sibs reared apart by their own parents, the home environments
may be correlated to an extent b. Otherwise, the home environments of individuals
reared apart are assumed to be uncorrelated. As a special case of the assumption
that relations among estimates, causes, and effects are linear, all interactions are
considered negligible, including dominance, epistasis, and gene-environment inter-
actions. The effect of common environment is assumed to be the same for singletons
and twins, both dizygous and monozygous, for half-sibs and full sibs reared to-
gether, and even for adopted and true children. Failure of these assumptions can
in principle be detected but not always differentiated. Thus, epistasis and environ-
ment common to twins would both inflate the monozygous correlation, but could
be distinguished by comparison of monozygous twins reared together and apart.
However, common environment and gene-environment interaction could not be
differentiated.
With more than two ancestral races, they may be ordered by their phenotypic

means. Then the linearity assumption scores the race of hybrid individuals from
their admixture proportions, M = YXiPj, where M is the racial index, Xi is the

i
phenotypic mean of the ith ancestral race, and Pi is the admixture proportion.
In the more common case of only two ancestral races, the racial index reduces to
the admixture proportion.

Variance Components
Heritability (h2) is defined as the proportion of the phenotypic variance due

to additive genetic differences. It may be partitioned into a part due to variation
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among midparental genotypes (g2) and a remainder (s2) due to segregation from
the midparent, or h2 = g2 + S2. By using the midparent in this way, we are
implicitly accepting the polygenic model of an indefinitely large number of additive
genetic factors under which the progeny distribution is determined by the mid-
parent breeding value independently of the genotypic variance between parents.
Positive assortative mating inflates the midparent effect at the expense of segre-
gating factors, since g2 h2(1 + m)/2 and s2 = h2(1 - ")/2. Similarly, race
is taken as polygenic, which corresponds more closely to the Latin American
convention that full sibs may be of different phenotypic race than to the North
American superstition that race is completely determined by one or both parents.
The proportion of the phenotypic variance due to race is q2, which may be parti-
tioned into a part due to midparent race (q2n2) and a residual, q2(1 - n2), due
to segregation from the midparent race, with q2n2 q2 [(1 + w) /2] and
q2(1 - n2) = q2 [(1 - w) /2]. The null hypothesis that racial phenotypic
differences are entirely environmental corresponds to q = 0, which can be tested
if there is racial variation and the racial index is estimated.

Phenotypic standard deviations of children reared by their own parents and
adopted children are in the ratio

0= 1/ 1-2(grc+qnpc).

It would be hard in practice to distinguish this from truncated placement, whereby
children with extreme phenotypes are less likely to be put out for adoption.

Sometimes an estimate is made of the "attenuation" due to errors in measuring
the phenotype. If a is this proportion of the variance, a correction for attenuation
can be made by dividing all the systematic components of variation by 1 - a and
assigning to random environment the complement of the resulting sum (table 3).

TABLE 3
VARIANCE COMPONENTS AS FRACTIONS OF TOTAL PHENOTYPIC VARIANCE

OF CHILDREN REARED BY THEIR OWN PARENTS (ATTENUATION
CORRECTION FACTOR = PROPORTION OF PHENOTYPIC VARIANCE

ATTRIBUTED TO ERRORS OF MEASUREMENT = a)

Variances Corrected
Source Crude Variances for Attenuation

Within races:
Random environment ........... e2 (e2 )/(-)
Heritability .................... h2 h2/(1 - a)
Common environment c......... C2 C2/ (1- a)
Gene-environment covariance .... 2grc 2grc/ (I - at)

Among races:
Race ......................... q2 q2/(1 - )
Race-environment covariance ... 2qnpc 2qnpc/(1 - a)

Total ...................... 1
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Standard errors of the variance component estimates are obtained as follows: let

P =V (012 02 .. I* OK2 0K+11 .. I* OK+10)

be an estimated variance component as a function of K + co parameters, of which
only K are estimated. Then the standard error of P is estimated by

where

~~ v 2 a) i ( mas A@ = ft, i = 1, 2, ..* * K
I', /8, 8K :

and K is the information matrix of 0,2, . . , 6K* Tests of significance could in
principle be made from these standard errors. However, estimates of variance
components approach normality even more slowly than estimates of path coeffi-
cients, and so significance tests are better made from the likelihood equation.

SPECIFIC MODELS

Racial paths vanish for a study within racial groups. In presentation of the
specific models below, the racial terms are enclosed in braces. We consider
monozygous twins, full sibs, half-sibs, parent-offspring, and unrelated pairs, the
members of which are reared together or apart. In the latter event, both may
be reared by random parents, or one may be reared by his own parents and the
other adopted randomly. Some investigators fail to determine zygosity of like-
sexed twins, and so this case is treated separately. The various possibilities can
be identified by a three-letter code, in which the first two letters specify the relation
and the third letter indicates communality of the environment (figs. 1-16). We
shall denote the phenotypes of the two individuals involved by X and Y. If X and
Y are phenotypes in different generations, X is assigned to the older generation.
Factors back of Y not common to X are designated by primes: N', M', G', etc.
(figs. 1-16). Pairs of sibs or half-sibs reared together by unrelated foster parents
have not been considered because (except perhaps for dizygous twins) they are
likely to be of uncertain paternity or to show effects of the home provided by
their true parents before adoption.
A correlation coefficient will be denoted by a five-letter code, in which the first

three letters specify the relation and communality of the environment and the
last two letters specify the variables (MZTXY, SSPXI, etc.).

Monozygous Twins Reared Together by Their Parents (MZT) (Fig. 1)
The most critical assumptions are: (1) phenotypic similarity due to common

prenatal and postnatal environment is no greater or less than for ordinary siblings;
and (2) dominance, epistasis, and gene-environment interactions are negligible.
Failure of either assumption tends to give spuriously high estimates of heritability,
an error that may in principle be detected by a goodness-of-fit test against other
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FIG. 1.-MZT. Monozygous twins reared together by their parents. GT, NT, and MT denote

the genotype, race, and racial index of the twin pair.

pairs of relatives. From figure 1 the expected correlation of MZ twins reared
together is

PXy c2 +h2+ 2grc + {q2 + 2 qnpc}.
Monozygous Twins Reared Apart, One by True Parents, the Other by Random
Foster Parents (MZP) (Fig. 2)

It is assumed that none of the phenotypic similarity is due to prenatal or post-
natal environment shared before adoption, and that the adopted twin is placed in
a random foster home. From figure 2 their correlation is

pxY = (h2+grc+ {q2+qnpc}) 6.

El El
n | p ry g /h

t 1
ElEl E

FIG. 2.-MZP. Monozygous twins reared apart, X by true parents and Y by random foster
parents. Not shown are C' and F', the common environment and index of the foster home which
reared Y.
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Unless arteriovenous anastomosis is a relevant factor, failure of either assumption
probably tends to inflate the correlation, giving a spuriously high estimate of
heritability. An important test of random placement is the correlation between
indices, PI' = 0.
The principal limitation of this relationship is its rarity. It would be useful

in a society which regularly placed for adoption one member of each set of twins.

Monozygous Twins Reared Apart by Random Foster Parents (MZA) (Fig. 3)

The critical assumptions and their test are the same as for MZP. The correlation
between twins is

pxy (h2+ {q2J) 02.
Suitable data are extremely rare.

nl g/h

LJ

E EEl
FIG. 3.-MZA. Monozygous twins reared apart by random foster parents. Common environ-

ments and indices of the two foster homes, C and I for X and C' and 1' for Y, are not shown.

Monozygous Twins Reared Together by Random Foster Parents (MZF) (Fig. 4)
This is another rare type. Environment shared before adoption is neglected.

Random placement is tested by the correlation between indices of true and foster
parents, PII' = 0. The twin correlation is

Pxy = (C2 + h2 + {q2}) 02.

Full Sibs Reared Together by Their Parents (SST) (Fig. 5)

Under the model, dizygous twins are no more alike than ordinary siblings, which
should be tested. The correlation is

PXY c2 + g2 + 2grc + {q2n2 + 2qnpc}.
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FIG. 4.-MZF. Monozygous twins reared together by random foster parents. C and I refer to

the foster home.

Full Sibs Reared Apart, One by True Parents, the Other by Random Foster
Parents (SSP) (Fig. 6)

This is analogous to MZP, with a genetic covariance only half as great. It is
assumed that none of the phenotypic similarity is due to shared prenatal and
postnatal environment before adoption, and that the adopted sib is placed in a
random foster home. Such pairs may be frequent in societies which encourage
adoption (as in the hanai system of Polynesians and Micronesians), but the
assumptions would be violated if the child were adopted by close relatives or

El

EI7E El\/ IN
El)x

q c El C q
g g

FIG. 5.-SST. Full sibs reared together by their parents. Conventionally, N' and M' denote the
race and its index for Y., like N and M for X.
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E~ql C)L Elqg gc1/XX1
FIG. 6.-SSP. Full sibs reared apart, X by true parents and Y by random foster parents. For

Y, the common environment C' and index I' of the foster home are not shown.

continued to be influenced by his true parents. The expected phenotypic correla-
tion is

pxy = (g2 + grc + {q2n2 + qnpc}) 0.

Full Sibs Reared Apart by Random Foster Parents (SSA) (Fig. 7)
This is analogous to MZA, and the critical assumptions and their test are the

same as above. The correlation is

pXy (g2 + {q2n2}) 02.

n n

El E]

EM [D
g g

El L~~~~~~~~~~~~It
FIG. 7.-SSA. Full sibs reared apart by random foster parents. Common environments and

their indices of the two foster homes, C and I for X and C' and l' for Y, are not shown, as in
MZA.
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Elg

t g / c g

FIG. 8.-HST. Half-sibs reared together by their common parent. G and G' denote the mid-
parent genotypes, and W and W' denote the midparent races for X and Y, respectively.

Half-Sibs Reared Together by Their Common Parent (HST) (Fig. 8)

The correlation between midparents with one parent in common is d -
(1 + 3m)/[2 (1 + m) ] for genotypes and a-( 1 + 3w)/ [2 (1 + w) ] for race.
It is assumed that the relevant environments of half-sibs reared together are no
less alike than those of full sibs. Failure of this assumption (or appreciable domi-
nance or epistasis) would tend to underestimate heritability. The half-sib correla-
tion is

pxy = c2 + g2d + 2grc + {q2n2a + 2qnpc}.

This situation is best realized when two alleged sibs are shown by paternity tests
to be half-sibs.

Haif-Sibs Reared Apart, One by True Parents, the Other by Random Foster
Parents (HSP) (Fig. 9)

The critical assumptions are that the environments are uncorrelated (which is
tested by P'-= 0) and that the foster parents are not related to the true parents
(which may be determined from the pedigrees). The half-sib correlation is

p = (g2d + {q2n2a + qnpc}) 0.

This relationship occurs when an extramarital child is placed for adoption at birth
while a legitimate half-sib is retained.
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FIG. 9.-HSP. Half-sibs reared apart, X by true parents and Y by random foster parents. C'

and 1' for Y are not shown.

Half-Sibs Reared Apart by Random Foster Parents (HSA) (Fig. 10)

This relationship may be realized by an unmarried woman whose children by
different fathers are placed for adoption at birth. The half-sib correlation is

Pxy (g2d + {q2n2a}) 02

Half-Sibs Reared Apart by Their Own Parents (HSS) (Fig. 11)

This situation, which is common in some societies, is typified by concubinage
or sequential monogamy. Considering the American divorce rate, it is surprising
that this relationship has been neglected by human geneticists. It is most useful
when the correlation b between home environments is negligible and, hence,
pII' = 0. The half-sib correlation is

p =y g2d + c2b + {q2n2a}

Unrelated Foster Sibs (Adopted-Adopted) Reared Together by Random Foster
Parents (FST) (Fig. 12)

The critical assumption is that differences in prenatal and postnatal environ-
ment before adoption had no phenotypic effect, which is difficult to test except

Ewl El
n

EEl El

El lEL
FIG. 1O.-HSA. Half-sibs reared apart by random foster parents. C and I for X, as well as

C' and 1' for Y, are not shown.
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FIG. 11.-HSS. Half-sibs reared apart by their own parents

by overall goodness of fit. Violation of this assumption underestimates c and
therefore inflates h. The foster sib correlation is

Pxy= c202.

Unrelated Foster Sibs (Natural-Adopted) Reared Together by the Parents of
One of Them (FSP) (Fig. 13)

In this case the parents of a child subsequently decide to adopt an unrelated
child, or they have a child of their own after first adopting an unrelated child.
Differences in the prenatal and postnatal environments are assumed to have no
phenotypic effect. The foster sib correlation is

pxy= (c2 + grc + {qnpc}) 0.

Jhi
[i 4

P -.VI r~

w i
FIG. 12.-FST. Unrelated foster sibs (adopted-adopted) reared together by random foster

parents. The race and its index, N and M of X and N' and M' of Y, are not shown.
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[T1 El
FIG. 13.-FSP. Unrelated foster sibs (natural-adopted) reared together by the parents of one

of them (X). Race and index of Y, N' and M', are not shown.

Offspring-Parent, the Child Reared by His True Parent (OPT) (Fig. 14)
Familial correlations are more complicated between generations. We assume that

the path from genotype to adult phenotype is hz and that the selective or modify-
ing effect on the parent's adult phenotype of the home environment provided to
his child is ck. On the null hypothesis of equal effects for children and adults,
z - k = 1. The critical assumption is that parental phenotype influences the
index only through C and that, by phenotypic selection or modification, C is a
cause rather than an effect of X. Possibly these assumptions are too simple, but
Wright [4] showed that more complicated ones lead to indeterminacy. Since our
interest is in tests of hypotheses, the simplification does not seem objectionable;

Ewl

EdFi E El
q ~~~~~~~~~q

EHt l

g/h

hz g

FIG. 14.-OPT. Offspring-parent, the child (Y) reared by his true parent (X). Gp, Np, and
Mp denote the genotype, race, and the racial index of the parent.
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it may be avoided by considering only pairs in the same generation. The parent-
offspring correlation is

pXY c2k + g2z + grc(z + k) + {q2n2 + qnpc(1 + k)}.

Offspring-Parent, the Child Reared by Random Foster Parents (OPA) (Fig. 15)
Like SSA, FST, and OFP, this is an important relationship for separating com-

mon environment from heritability. It is assumed that differences in prenatal and

At

q

[

It

g/hG

\9

FIG. 15.-OPA. Offspring-parent, the child reared by random foster parents. C' and 1' for Y
are not shown.

postnatal environment before birth have no phenotypic effect and that the foster
parents are random. Failure of these assumptions tends to inflate h. The correlation
between offspring and true parent under these conditions is

pxy = (g2z + grck + {q2n2 + qnpck}) 0.

Offspring with Random Foster Parent (OFP) (Fig. 16)
The true parents are assumed to exercise no environmental effect on the child

who is reared by random foster parents. The foster parent-child correlation is

pXy (c2k + gzrc + {qnpc}) 0.

Like-sexed Twins (LS), Zygosity not Determined

We assume that the three types of twins have the following frequencies:
opposite-sexed DZ, P; like-sexed DZ, P; and (like-sexed) MZ, 1 - 2P. Among
like-sexed twins, the proportion of dizygous pairs is P/( 1 - P). We may therefore
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/ ~~~~~~~~~~~~P
ED

q gY /

hz

FIG. 16.-OFP. Offspring with random foster parent. N' and M' for Y are not shown.

write the expected correlation between two like-sexed twins (PLS) as a function
of expected correlations between monozygous twins (pNIz) and dizygous twins (pss),

Ppss + (1 - 2P) pmiz
PLS - -

adjoining a third letter T, P, or A to LS, SS, and MZ to specify communality of
the family environment. The estimate of P is taken to be without error. Since the
analysis is both approximate and of reduced power, the investigator who wants
to use twins would be well advised to determine their zygosity.

Other Equations

The enumeration of relationships may be extended, but only by introducing
additional assumptions about transmission of common environment. It therefore
seems reasonable to restrict attention to first- and second-degree biological or
adoptive relatives, with emphasis on contemporaneous pairs.

For the various types discussed above, expected correlations among phenotype,
index of common environment, and racial index may be easily derived (tables 4-6).
Together they test hypotheses of familial correlation with greater power than alter-
native designs. Perhaps an understanding of these methods will encourage investiga-
tors to collect the necessary observations. Meanwhile, some instructive applications
can be made to published data. Analysis of a given set of familial correlations is
carried out by converting the correlations, both observed and expected, into z
transforms and then applying the theory developed in the first section. All the
necessary computations have been incorporated in a computer program, COMVAR
(see Appendix).
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TABLE 4

CORRELATIONS BETWEEN PHENOTYPE AND INDEX OF COMMON ENVIRONMENT
I = INDEX OF X; I' = INDEX OF Y; 6 1//1-2-(grc + qnpc)

CORRELATION

General Racial
VARIABLE Term + Term RELATIONSHIPS FOR WHICH CORRELATION IS THE SAME

XI. ci + gri qnpi MZT, MZP, SST, SSP, HST, HSP, HSS, FSP
CiG 0 MZA, MZF, SSA, HSA, FST
cki + gzri qnpi OPT, OPA, OFP

XI'. ci + gri qnpi MZT, SST, HST, FSP
ci6 0 MZF, FST
cbi 0 HSS
0 0 MZP, MZA, SSP, SSA, HSA, HSP, OPA
cki + gzr' qnpi OPT, OFP

YI ...... ci + gri qnpi MZT, SST, HST, OPT
gri6 qnpi6 MZP, SSP, OPA
O qnpi6 HSP
0 0 MZA, SSA, HSA
cbi 0 HSS
ciB 0 MZF, FST, FSP, OFP

YI'. ci + gri qnpi MZT, SST, HST, HSS, OPT
Ci6 0 MZP, MZA, MZF, SSP, SSA, HSP, HSA, FST, FSP, OPA, OFP

APPLICATIONS

Birth Weight

Studies by Robson [8] and Morton [9] have shown that "the resemblance in
birth weight of sibs is largely attributable to the maternal constitution or environ-
ment, not to genetic similarity of sibs." Interracial crosses in Hawaii have birth
weight intermediate between the incrosses, suggesting effects of the mother's post-
marital environment [10].
The data of Morton [9] are summarized in table 7, where full sibs with one or

more intervening births are omitted, since their resemblance is less than for twins
or adjacent births. Table 8 shows that there is no significant difference between
unlike-sexed twins and adjacent sibs and that the data cannot be explained by
genetic heritability alone. However, a model of common maternal environment
gives a good fit, which is not improved by introducing heritability (X21 = 0.48).
Assuming h2 = 0, the estimate of c is .740 + .018, corresponding to 55%o of the
phenotypic variance. The joint estimates are h = .290 + .207 and c = .703 ±
.058, which account for 8% and 49%, respectively, of the phenotypic variance.
We see that the estimate of maternal effect and its significance do not depend
critically on whether heritability is assumed null or estimated simultaneously.
Conversely, there is little information about heritability when the effect of common
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TABLE 5

CORRELATIONS BETWEEN PHENOTYPE AND RACIAL INDEX
M= RACIAL INDEX FOR X; M' = RACIAL, INDEX FOR Y; = 1/v'1-2 (grc + qnpc)

Variable and Correlation.

XM:
qt + cpnt ..............................

qtO ....................................

qt + ckpnt ..............................

XM':
qt + cpnt ..............................

qt6 ....................................

qn2t + Cpnt .............................

qn2t6 ..................................

qn2at + cpnt ............................

qn2at9 .................................

qn2at ..................................

qn2t + ckpnt ...........................

0 ......................................

YM:
qt + cpnt ..............................

qtO ....................................

qn2t6 ...................................

qn2at + cpnt ............................

qn2ato .................................

qn2at ..................................

cpnt9 ..................................

qn2t + cpnt .............................

0 ......................................

YM':
qt + cpnt ..............................

qt6 ....................................

Relationships for Which Correlation is the Same

MZT, MZP, SST, SSP, HST, HSP, HSS, FSP
MZA, MZF, SSA, HSA, FST
OPT, OPA, OFP

MZT, MZP, SST
MZA, MZF
SSP
SSA
HST, HSP
HSA
HSS
OPT, OPA
FST, FSP, OFP

MZT
MZP, MZA, MZF
SSP, SSA, OPA
HST
HSP, HSA
HSS
FSP, OFP
SST, OPT
FST

MZT, SST, HST, HSS, OPT
MZP, MZA, MZF, SSP, SSA, HSA, HSP, FST,
FSP, OPA, OFP

environment is important. For the joint estimate, the element of the information
matrix for h is Khh 205, whereas the reciprocal of the corresponding element
of the inverse (covariance) matrix is only 1/Kh7 - 23. The loss of information
about h when c must be estimated simultaneously is 1 l/KhhKhh 89%. The
importance of a maternal effect is confirmed, but neither the role of the mother's
genotype nor the values of h, m, or r can be determined from these data.

Race, Social Class, and IQ

Scarr-Salapatek [11] reported aptitude tests on 992 twin pairs in Philadelphia
schools. An additional 124 pairs were omitted because one or both members were

enrolled in special classes. Selection must have been more severe for lower class
blacks (mean score 27.7) than for higher class whites (mean 50.9). Zygosity
was not determined, but the composition of like-sexed twins was estimated. Pairs
were classified as of black or white race and below or above the median social
class. Intraclass correlations were reported for each group separately for verbal,
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TABLE 6

CORRELATIONS BETWEEN RACIAL INDEX AND INDEX OF COMMON ENVIRONMENT
M, I = INDICES OF X; M' I' = INDICES OF Y

Variables and Correlation

MI:
tnpi ......................
0 ........................

MI':
tnpi ......................
0 ........................

M'I:
tnpi ......................
0 ........................

Relationships for Which Correlation Is the Same

MZT, MZP, SST, SSP, HST, HSP, HSS, FSP, OPT, OPA, OFP
MZA, MZF, SSA, HSA, FST

MZT, SST, HST, FSP, OPT, OFP
MZP, MZA, MZF, SSP, SSA, HSS, HSP, HSA, FST, OPA

MZT, MZP, SST, SSP, HST, HSP, OPT, OPA
MZA, MZF, SSA, HSS, HSA, FST, FSP, OFP

tnpi .. MZT, SST, HST, HSS, OPT
0 .. MZP, MZA, MZF, SSP, SSA, HSP, HSA, FST, FSP, OPA, OFP

II':
i2b .......................
1 ........................

O ........................

MM':
t2n2 ......................
t2n2a .....................
1 ........................

O ........................

HSS
MZT, MZF, SST, HST, FST, FSP, OPT, OFP
MZP, MZA, SSP, SSA, HSA, HSP, OPA

SST, SSP, SSA, OPT, OPA
HST, HSP, HSS, HSA
MZT, MZP, MZA, MZF
FST, FSP, OFP

TABLE 7

HUMAN BIRTH WEIGHT (MORTON [9])

No. Intraclass
Source Code Pairs Correlation

Like-sexed twins ............ LST 220 .557
Unlike-sexed twins ............ SST 40 .655
Adjacent sibs . SST 367 .523
Maternal half-sibs ............ HST 30 .581
Paternal half-sibs ............ HSA 168 .102

TABLE 8

ANALYSIS OF HUMAN BIRTH WEIGHT CORRELATIONS

Source df XF

Cetween unlike-sexed twins and adjacent sibs ..... .......... 1 1.61
m = c = r =O ............. ................. 3 33.75

A: m = h = r =. 0 ................................................ 3 2.09
4: m =.r = 0 ................................................. 2 1.61
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nonverbal, and total IQ scores. Heritability for the ith group was estimated by
h-2 2 (rimz - riDu) where riDZ was the observed intraclass correlation for
unlike-sexed twins and rear was an estimate of the corresponding value for
monozygous twins. Without reporting any significance tests, she concluded that
"population differences in heritability of IQ scores were found for racial and social
class groups."

Eaves and Jinks [12] examined her data and decided that "evidence previously
analyzed is insufficient to support the conclusions drawn." They based this con-
clusion on z transforms of the correlations for the eight groups defined by race,
class, and concordance for sex. Heterogeneity was not found among the eight
correlations for nonverbal scores (X27 = 5.63), but verbal scores were barely
heterogeneous (X27= 15.63). However, an unweighted factorial design showed
that none of the three main effects (race, class, and sex) or interactions was sig-
nificant. Therefore,

the only tenable conclusion to be drawn from the data is that there is a
highly significant correlation between twins of all kinds for verbal IQ....
We are in no position to decide the cause of such similarity. There is

no evidence that it has a genetical basis as far as this study goes, but as
we have shown above, the likelihood of detecting such an effect with this
experimental design and with these samples is very small. There is cer-
tainly no evidence in Scarr-Salapatek's studies that the proportion of
genetical variation in either verbal or non-verbal IQ depends on race or
social class. In view of this conclusion, and having regard to the general
absence of genotype-environmental interactions for IQ, there is little
justification for detailed consideration of the particular models suggested
by Dr. Scarr-Salapatek.

We reanalyzed the data by our methods (table 9). Bartlett's test for homogeneity
of variances gives no suggestion that the variance of individuals is heterogeneous
among groups. Evidently, sample sizes are too small to detect differential effects
of excluding special-class students. The hypothesis that a deprived environment
reduces aptitude variance is not supported.

Analysis of z scores is in agreement with Eaves and Jinks. The small discrepancy
between their x2s and ours is trivial: they may have omitted the bias correction
in z or the small-sample correction in 0oz2. Partition of the heterogeneity x2 shows
that there is significant variation between race-class groups for verbal and total
aptitude, with no significant heterogeneity between like-sexed and unlike-sexed
twins within race-class groups. By this method, race and class effects are not
separated: there may be racial or class variation, or both.
The data are elucidated by fitting a linear model. Since there are only two

equations, for like-sexed and unlike-sexed twins, only two parameters can be
considered. We took common environment (c) and genotype (h), assuming
r = m = 0. The special case h = 0 gives e = .792 for total aptitude (combining
all race-class groups), with a nonsignificant residual x2. When t is determined for
each group, conditional on either k = 0 or the overall estimate of h, the residual
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TABLE 9

VERBAL, NONVERBAL, AND TOTAL APTITUDE SCORES OF TWINS (SCARR-SALAPATEK [11])

x2

SOURCE df Verbal Nonverbal Total Aptitude

Homogeneity of total variances ..... ... 7 5.25 3.11 8.84

Analysis of correlation coefficients:
Among eight correlations ..... ...... 7 13.40 5.77 14.99
Within races .......... ............ 6 8.55 2.11 5.53
Between races .......... ........... 1 4.85 3.66 9.46
Within classes .......... ........... 6 5.76 4.08 8.08
Between classes ......... ........... 1 7.64 1.69 6.91
Within race-class groups ..... ....... 4 4.35 1.54 2.99
Between race-class groups ..... ..... 3 9.05 4.23 12.00

Fitting models:
t£: h =0 (overall) ....... .......... 1 3.22 0.18 0.16
A
: hi = 0 ........... .............. 4 4.35 1.54 2.99

i: hi=h ......................... 3 1.12 1.46 2.64
I: c=0 (overall) ....... .......... 1 3.29 10.51 16.78
c:c4=0 ........... .............. 4 4.39 12.91 18.37
=: c ......................... 3 0.75 1.68 1.75

X2 is nonsignificant. Thus, there is no evidence of heritability, and any variation
among groups may be limited to the cj. The results are quite different for models
which assume that c = 0. Overall, c - 0 gives a poor fit for total and nonverbal
aptitude and a marginal fit for verbal aptitude: common environment cannot be
neglected. There is,,significantly poor fit for nonverbal and total aptitude when ci
is assumed zero, but this disappears when the overall estimate of c is used for
each ci.
The conclusions from this analysis are simple. With zygosity undetermined and

twins reared together, the sample sizes are too small to determine heritability,
let alone to establish whether it varies among race or class groups. However, there
is some kind of heterogeneity in twin correlations, most economically attributed
to common environment, which could only be explained by a study of larger and
better design. Scarr-Salapatek was right in suspecting (without a significance test)
that the groups were heterogeneous. Eaves and Jinks were correct in concluding
that heritability differences are unproven; their failure to detect race or class
effects was due to use of a complete factorial design on samples too small to sep-
arate race from class or heritability from common environment. Their nonsignificant
results correspond to hi: hi = I and Ai: c, = c of table 9, but they missed the
significant effects revealed by a hierarchical analysis.

Tender-mindedness

Cattell et al. [13] analyzed small samples of monozygous and dizygous twins,
sibs, and foster children reared together, and sibs reared apart. Their table 1 gives
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intrapair variances, from which intraclass correlations may be obtained as the
complement of the ratio of intrapair variance to the variance for their large sample
of unrelated reared apart. Twelve "factors" of personality were considered, the
first of which is tender-mindedness, for which they concluded: "this pattern is
largely environmentally determined, and on more accurate analysis might prove
to be wholly an environmental mold trait. The larger ratio for between family
environment sugggests that this resides in some sort of family atmosphere-almost
certainly an over-protective, gentler tradition as opposed to spartan roughness.
The size of positive correlation suggests some selection of gentler temperaments
to the gentler environment."

This interpretation seems plausible if tender-mindedness is measured by factor 1,
but the data provide little support. Table 10, which incorporates the analysis of

TABLE 10

TENDER-MINDEDNESS (CATTELL ET AL. [13])

Hypothesis df X2

orrected variances:urct= m = r -0 ............... ................. 3 4.14
9: h=m=r=O ............... ................. 3 4.45
,a: m = r =O . ................................... 2 0.79

Corrected variances:
c:c=m=r=O ............... ................. 2 3.86

e: h=m=r=o ............... ................. 2 4.31
9,A: m = r = O ................................... 1 0.53

both "uncorrected" and "corrected" variances for factor 1, shows that neither
heritability nor common environment has a significant effect, with allowance for
the other, nor does gene-environment correlation approach significance; following
[13], we dropped full sibs reared apart from the analysis of corrected variances.
The suggestion of Cattell et al. of strictly environmental determination is at variance
with their unconfirmed claim of association between factor 1 and the A blood
group [14], which has been criticized on statistical grounds [15].
On the evidence, nothing much can be said about the roles of nature and nurture

for tender-mindedness and other personality traits.

IQ of True and Adopted Children

Since the classical study of Burks [16], many investigations of familial resem-
blance for IQ have been made [17]. Relevant American data are summarized in
table 11; they are from a restricted range of families and may not apply to a
particular social class. The phenotype is Binet IQ for children and MA (mental
age) for adults. The index of common environment is Burks's culture index.
The three studies of natural-adopted pairs (FSP) reported by Jencks [ 17,
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TABLE 1 1

IQ OF TRUE AND FOSTER CHILDREN (BURKS [16] AND JENCKS [17])

Relation Sample Size Correlation

Burks [ 16]:
FSTXY ...................................... 21 .23
SSTXI (culture index) ......... ............... 101 .44
SSAXI ....................................... 186 .25
OPTXI ...................................... 100 .67
OPTXI ...................................... 105 .71

Jencks [17]:
OPTXY (Jencks's table A-2) ....... ........... 200 .46

366 .51
441 .49
102 .58
141 .35

OFPXY (X father) (Jencks's table A-3) ...... 178 .07
180 .37
178 .19

OFPXY (X mother) ......... ............... 204 .19
255 .28
186 .24

FSPXY (Jencks's table A-9 [pooled]) .......... 94 .26
SSTXY ...................................... 1,951 .52
SSTXY (DZ) ................................ 50 .63
MZTXY ..................................... 50 .89
MZAXY (Jencks's tabl2 A-12 [U.S.; Binet]) .... 19 .69

table A-8] are homogeneous (X22 - 1.81), but the correlations for adopted-
adopted pairs (FST) are significantly heterogeneous (X24 - 9.79), because of the
large value of .65 reported by Skodak [18]. Jencks discusses the anomalous result
of pooling these studies, with the correlation for adopted-adopted pairs exceeding
natural-adopted pairs, and in effect decides to discount Skodak's result. We have
chosen instead to use only Burks's value for adopted-adopted pairs (.23), which
as expected is slightly less than the pooled value of .26 for natural-adopted pairs.
Both are in agreement with English studies which give .25 for all unrelated children
reared together [17, table A-9]. Other correlations are not significantly heteroge-
neous within any type of relationship (table 12, X21 = 17.88).
The data of table 11 are analyzed in table 12, assuming all correlations are

interclass; essentially the same results are obtained even if the phenotypic cor-
relations are treated as intraclass. The complete model with seven parameters
(I, m, c, r, k, z, i) gives a good fit; the estimate of m is -.054 ± .111, and the
hypothesis that m 0 cannot be rejected (X21 - 2.80 - 2.24 _ 0.56). Presum-
ably m is positive, but a large value can be excluded: for example, m - .2 gives
a significantly poor fit (X21 = 8.79 - 2.24 = 6.55). Apparently the observed cor-
relation between husbands' and wives' test scores, which is estimated in table A-1



354 RAO ET AL.

TABLE 12

ANALYSIS OF IQ DATA OF TABLE 11

Source df x2

Between OPTXY correlations ....... .............. 4 6.10
Between OFPXY correlations ....... .............. 5 10.32
Between SSTXY correlations ....... .............. 1 1.17
Between OPTXI correlations ....... .............. 1 0.29

Pooled ............. .......................... 11 17.88

Testing hypotheses:
h=m=r=0, k-z = 1 ................... ... 8 186.68

m=r=0O k=z=i=1. ...................... 8 41.40
m=r=0, k =i= 1 ....... ................... 7 36.90
m=r-0, z =i=1 ......... ................. 7 34.02
m-=O k=z=1 .............................. 6 22.55
m=r=0 .................................... 5 6.85
m=0 ........................................ 4 2.80
m= .2 .................. ........................... 4 8.79
r=0 ......................................... 4 6.02
fitting h, m, c, r, k, z, i ............ ... ......... 3 2.24
m=r=0, i= 1 ........... ................... 6 6.85
m=0, k = z =i= 1 .............. ............ 7 22.57
m-=0 i= 1 .................................. 5 3.50
r=0, i=-1 ................................... 5 6.03
i ...4 3.36

of Jencks [17] as .50, is not due to the genetic correlation m. The study of Higgins
et al. [19], which used school records, gave .33. This low value may be due to
diversity of records, but it suggests an effect of postmarital environment. Taking
m - 0, maximum-likelihood estimates of the other six parameters were obtained
(table 13). Table 14 presents analysis of z transformations at these parameter
values.
The correlation between Burks's culture index and common environment is

estimated for m = 0 as = .902 ± .119, which is not significantly less than 1
(X21 1.12). This justifies the assumption that i = 1 in the model of Wright [4].

TABLE 13

ESTIMATES OF PATH COEFFICIENTS FOR IQ DATA OF TABLE 11 (WITH m = 0)

Path Coefficient Estimate Standard Error

h .................................. 0.822 0.035
c .................................. 0.286 0.044
r .................................. 0.326 0.195
k .................................. 2.402 0.691
z .................................. 0.402 0.242
i .................................. 0.902 0.119
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TABLE 14

ANALYSIS OF Z TRANSFORMS FOR ESTIMATES OF TABLE 13

Z TRANSFORM INFORMATION

RELATION Observed Expected /(Fz2 %2

MZTXY .............. 1.413 1.318 47.2 0.42
MZAXY .............. 0.829 0.993 16.5 0.44
SSTXY .............. 0.580 0.587 1,996.4 0.11
FSTXY .............. 0.229 0.092 18.9 0.35
FSPXY .............. 0.265 0.145 91.9 1.32
OPTXY .............. 0.528 0.528 1,238.8 0
OFPXY .............. 0.232 0.235 1,168.6 0.01
SSTXI .............. 0.470 0.458 98.8 0.01
SSAXI .............. 0.255 0.280 183.9 0.12
OPTXI ............. 0.846 0.844 200.0 0.00

NOTE.-Total x2 (df - 10 - 6 = 4) = 2.80.

However, complete determination of I by C seems unlikely, so we have retained
the estimate of i.

Gene-environment correlation may be appreciable (r _ .326 + .195) but is
barely significant (X21 6.85 - 2.80 4.05). This provides modest support of
the hypothesis that class differences in mean IQ have a genetic component. Good
designs and enormous samples would be necessary (and might not be sufficient)
to establish with precision a genetic component in class (or race) differences.

There is a striking shift from childhood to maturity in the effects of nature and
nurture (k - 2.4, z 0.4). The hypothesis that k = z 1 is untenable
(X22 19.75). This was noticed by Wright [20], who remarked, "It turned out
to be mathematically impossible to assign the same values to the path coefficients
of the parental generation as in the offspring generation, but this is not surprising
since the parents were tested as adults instead of young children." In the parental
generation he reported coefficients to the nearest .05 because "the solution is not
strictly determinate, but is so within rather narrow limits." Table 15 shows that
Wright's estimates of variance components are in at least qualitative agreement
with ours. Assuming an attenuation factor of a .1, genotype is estimated to
account for most of the true variance of IQ in children but only a minor fraction
of adult variance. Conversely, the effect of common environment increases. This
is all the more remarkable because common environment refers to the conditions
under which the adult rears his child. As Wright noted, "Midparent IQ is a much
better index of home environment than of child's heredity." It is a mark of Wright's
insight that subsequent investigations which make the path diagram determinate
have not substantially altered his conclusions.

Jencks made a number of quantitative assumptions and failed to distinguish
juvenile and adult phenotypes in his path diagrams. Nevertheless, his estimates
(table 15) are not far from the means of the two generations, with some inflation
of gene-environment covariance at the expense of environment.
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TABLE 15

ESTIMATES OF VARIANCE COMPONENTS (AS FRACTIONS OF TOTAL VARIANCE) FOR
IQ DATA OF TABLE 11, ASSUMING a = .1 AND m = 0

(ESTIMATES OF TABLE 13 ARE USED HERE)

CHILDREN PARENTS GENERATIONS
POOLED
(JENCKS

SOURCE Our Analysis Wright [4] Our Analysis Wright [41 [17])

Genotype .................. .752 ± .058 .50 .121 ± .152 .30 .45
Genotype-environment

covariance .120 +- .054 .12 .117 ± .032 .14 .20
Common environment .091 ± .025 .07 .523 + .178 .36 A 35Random environment .037 ± .032 .31 .239 + .089 .20

Total .1 1 1 1 1

DISCUSSION

The above examples show that better designs and much larger samples are re-
quired to discriminate hypotheses than to estimate effects under a particular
hypothesis. Foster children or half-sibs are essential for separating nature and
nurture if common environment is important but are not sufficient if common
uterine environment is important (as may perhaps be true for monozygous twins).
In sufficiently large samples such discrepancies should be detected by significant
deviations from our model. This conclusion presumably holds for racial differences
as well.
We have assumed that placement of foster children is random, which is the most

favorable situation for genetic analysis. However, it is not difficult to extend our
models to assortative adoption, introducing a correlation between common envi-
ronments of the true and foster homes (similar to b for half-sibs reared by their
own parents). The correlation between indices, r11., is informative; a positive value
would suggest assortative adoption.
Our treatment of parent-offspring pairs has been simplified, since most studies

of familial correlation deal with children. If our scheme is not adequate, environ-
ment of the parent as a child may be introduced, connected to the environment he
provides his children by a direct path and a path through his adult phenotype.
Relations between adult siblings and between indices of common environments
in successive generations would be useful in determining the values of these paths.
However, the large standard errors for parents in table 15 suggest that enormous
samples would be required to benefit from this sophistication.

Complex segregation analysis of quantitative traits is a powerful method for
resolving major genes and polygenes but neglects environment common to parents
and children [21]. Recently we introduced dominance into path analysis to pro-
vide a test in the presence of common environment. We do not yet have experience
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with this extension, which will be reported in a later paper. In principle, path
analysis can discriminate dominance from common environment, whereas segrega-
tion analysis separates a major locus with dominance from additive polygenes.
Only by a combination of the two approaches can all the mechanisms (common
environment, dominance, polygenes) be resolved.

Significance tests in path analysis are like any new method: the limitations will
be minimized by some and exaggerated by others. We have favored correlations
because they provide excellent tests under z transformation. This makes our results
sensitive to selection biases, especially those which affect the phenotypic variance
and so can easily be detected. Path regressions are more robust but are still
sensitive to phenotypic selection, which in practice is more common than selection
on independent variables. It seems to us that there are enough problems in human
biometrical genetics without introducing biased selection, which is sufficiently
protean to invalidate any path analysis, for which we regard random sampling
as an essential condition.

Another limitation is to linear systems, which seems to us justified on several
grounds: (1) no practical method for analysis of nonlinear systems has been
developed; (2) unless interaction produces a significant discrepancy from a simple
linear model, we must conclude that it is negligible at the observed sample sizes;
(3) even intense epistasis typically produces little nonadditive variance [22 ];
(4) it would be important to separate gene-environment interaction from the
environmental effect only in the unlikely event that cloning becomes feasible and
widely practiced; and (5) we are much less interested in estimating a component
of variability (like h2) than in testing a null hypothesis. Since armchair examples
of significant interaction in the absence of an additive effect are pathological
and have never been demonstrated in real populations, we need not be unduly
concerned about interaction effects. The investigator with a different view should
publish any worthwhile results he may obtain.

SUMMARY

From Wright's path analysis, a theory of hypothesis testing for linear models
of familial correlation is developed and applied to several bodies of data, for some
of which the authors' conclusions are not supported. Much larger samples and
better designs are required to discriminate hypotheses than to estimate parameters
under a particular model. Possible extensions of the method are discussed.

APPENDIX

COMVAR, a computer program for the analysis of components of variation in families,
is written in FORTRAN iv for the CDC 3100 computer. Each data card gives information
about one correlation, indicating the relationship and the variates (MZTXY, SSTXI, etc.),
value of the correlation, number of pairs of observations on which it is based, and whether
it is interclass or intraclass. A preliminary analysis pools correlations for the same type of
relationship and the same variates and gives a x2 test of homogeneity.

For the main analysis, one control card gives initial values of the parameters, with a
zero default option. Another control card specifies which parameters are to be estimated
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by Newton-Raphson iteration. These two control cards may be repeated for a given set
of data. Iterations continue until all the correction factors become less than 5 X 10-6 in
absolute value, or the information matrix becomes singular, or 50 iterations are made.
Estimates are confined to the possible range of the parameters (between - 1 and + 1 for
correlations, between 0 and +1 for other paths). For the first and last iterations, a table
is printed giving observed and expected values of z, information, goodness-of-fit x2 (as
in table 14), and u'K-1u, the quadratic form testing convergence of the estimates. Upon
convergence, final estimates, standard errors, u scores, the information matrix, and the
covariance matrix are printed. An optional control card giving the value of a (attenuation
correction factor) prints components of variance with their large-sample standard errors.
for both children and parents.

All analyses presented in this paper were done with COMVAR, which is part of the pro-
gram library of the Population Genetics Laboratory and the World Health Organization
International Reference Center for Processing of Human Genetics Data, from which
copies of the program and a detailed description are available.
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