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Abstract

Despite remarkable advances in diagnosis and therapy, ischemic heart disease (IHD) remains a
leading cause of morbidity and mortality in industrialized countries. Recent efforts to estimate the
influence of genetic variation on IHD risk have focused on predicting individual plasma high-density
lipoprotein cholesterol (HDL-C) concentration. Plasma HDL-C concentration (mg/dl), a quantitative
risk factor for IHD, has a complex multifactorial etiology that involves the actions of many genes.
Single gene variations may be necessary but are not individually sufficient to predict a statistically
significant increase in risk of disease. The complexity of phenotype-genotype-environment
relationships involved in determining plasma HDL-C concentration has challenged commonly held
assumptions about genetic causation and has led to the question of which combination of variations,
in which subset of genes, in which environmental strata of a particular population significantly
improves our ability to predict high or low risk phenotypes. We document the limitations of
inferences from genetic research based on commonly accepted biological models, consider how
evidence for real-world dynamical interactions between HDL-C determinants challenges the
simplifying assumptions implicit in traditional linear statistical genetic models, and conclude by
considering research options for evaluating the utility of genetic information in predicting traits with
complex etiologies.

We are moving from an Age of Reductionism to an Age of Emergence, a time when
the search for ultimate causes of things shifts from the behavior of parts to the behavior
of the collective.

—R. B. Laughlin (2005)

A WIDELY ACCEPTED MODEL of living organisms, which has its roots in 19th-century
thought, emphasizes a deterministic and programmatic basis of biological structure and
function (Mayr 1982, Woese 2004). This model has led to a research strategy whose goals have
been to reduce the organism and its characteristic functional properties to presumed essential
component agents, to model the relationships between these components and biological
function by physical, chemical, or statistical methods, and to test the utility of models obtained
for predicting, controlling, and understanding the contributions of the individual components
to functional properties by comparing their impact on function in well-controlled experimental
situations with their influence in intact, free-living organisms. Significant progress has been
achieved in resolving the essential component agents to higher and higher resolution (e.g.,
metabolic pathways and products, enzymes, protein structures, encoding genes, polynucleotide
sequences, nucleotide sequence variations). Modeling approaches have extended the limits of
the mechanistic metaphor.
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On the other hand, living organisms are better understood as complex adaptive systems
characterized by multiple participating agents, hierarchical organization, extensive interactions
among genetic and environmental effects, nonlinear responses to perturbation, temporal
dynamics of structure and function, distributed control, redundancy, compensatory
mechanisms, and emergent properties (Anderson 1972; Cowan, Pines, and Meltzer 1994;
Kauffman 1995; Salthe 1993). It is increasingly clear from empirical evidence that our ability
to predict the function of complex adaptive systems from the properties of single components
is inversely related to the perceived “organized complexity” of the etiology of the emergent
phenotypes of the system of interest, and that the determination of such emergent phenotypes
involves properties of the whole system that cannot be understood simply in terms of the
properties of individual component agents (Weaver 1948). The inadequacies of considering
only the additive and independent contributions of single agents, exemplified by the enigma
of emergent property prediction, were anticipated as a consequence of evolutionary
interpretations of biological observations and analogies to ““simple” nonlinear physical systems
(Anderson 1972; Mayr 1982). Indeed, rigorous but controversial thought has posited that the
properties of organisms cannot be reduced to physicochemical causality beyond a certain scale
(Elsasser 1987), a reality that has faced the physical sciences and that has been a topic of great
interest from the origins of genetics. If true, expectations for prediction of disease risk warrant
qualification. The consequences for understanding causality are sobering.

The onus of medical genetics is to demonstrate whether genomic variation can supplement or
supplant other predictors of disease risk, especially given assertions that most of the risk is
environmentally determined (Reddy 2004). To what extent—if at all—can the prediction of
risk be reduced to genes? In the specific case of ischemic heart disease (IHD) discussed here,
this would entail evidence that genetic data can improve upon disease prediction that is afforded
by gender, obesity, hypertension, smoking, diabetes, or dyslipidemia.

One fundamental shortcoming of studies of the role of genes in prediction of disease risk is the
false proposition that knowing the genetic program is sufficient to describe both composition
and spatial form that are characteristics of function when, in fact, it informs only the former
(Goodwin 1994; Schrddinger 1945). This fact is pertinent to formulating biologically relevant
research questions and designing studies to address those questions. Simply stated, detailed
information about microscopic-scale molecular components has not provided an adequate basis
for understanding the etiology of larger macroscopic features in physics, and certainly, it
follows, not in biology (Laughlin and Pines 2000; Platt 1961). For biological systems, the
question of whether genome variation is or is not within the hypothetical Elsasser limit of
physicochemical causality that is beyond reduction has yet to be resolved. Many scholars query
if, and how, we may achieve a stage of critical insight that will provide a synthetic approach
to the prediction, control, and understanding of the emergence of biological form and function
that includes both genetic and environmental determinants. Observations from three different
perspectives suggest ways we might pursue this problem. The first couples evidence for the
ubiquity of interactions between agents within and between multiple levels of biological
organization with the contribution of those interactions to emergent phenotypic variations at
the organismal level. The second recognizes that life-course changes in the relationships
between causal agents, and between these agents and the emergent phenotype, are influenced
by interactions between genotypic and environmental effects that vary across time and space
(Sing, Stengard, and Kardia 2004). The third follows from theoretical studies of the architecture
of complex adaptive systems designed to identify and characterize those properties of the
interacting subsystems that define biologically meaningful functions. The confluence of these
perspectives forms the conceptual basis for biological research options (Beattie 2004; Simon
1996; Sing, Stengard, and Kardia 2004).
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Consistent with the goal of determining the value of genetic information in human health, the
importance of identifying genetic predictors of inter-individual variation in risk of disease has
become evident, and researchers have sought to determine how genetic variation may impact
the properties of particular complex adaptive systems that make up the living organism. One
such complex system of interacting agents is reverse cholesterol transport (RCT), in which
plasma high-density lipoprotein cholesterol (HDL-C) concentration is considered to be a
relevant biological property. Attention to the RCT system is motivated by a need to understand
and control HDL-C, which is a major risk factor for IHD, a leading cause of morbidity and
mortality in Western societies. Despite the widespread recognition that RCT has the properties
of a complex adaptive system, characterization of the contribution of genetic variation to inter-
individual variation in plasma HDL-C (or any other IHD risk factor) has proceeded consistently
with the deterministic paradigm by seeking single gene—single variant predictors of phenotypic
effects. Over 1,500 publications in the past 30 years document that the persistent devotion to
explaining the genetic component of plasma HDL-C variation by single gene effects has
resulted in inconsistent and irreproducible inferences. The biological reality that genes are only
one part of the interacting system that determines a particular phenotype, and that the effect of
a particular genetic variation depends on the effects of other genes and exposures to
environmental agents, has been largely ignored (Newman 2003). Given these considerations,
the question can no longer be which gene variation causes the phenotype of interest, but, rather,
which combination of variations in which subset of genes in individuals exposed to a particular
combination of environmental agents in a particular population contribute to the propensity
for developing the phenotype.

In this article we use RCT as a prototypic example to address issues that geneticists face in
demonstrating the value of genomic information in predicting human health, with the
realization that a complete understanding of causation is unattainable (Goldstein 2005; Popper
1990). First, we identify and characterize RCT as a complex adaptive system. Second, we
consider how evidence for real-world dynamical biological interactions between component
agents challenges assumptions underlying current statistical approaches to evaluating the role
of genomic information for predicting a phenotype that has a complex etiology. Finally, we
examine research options for addressing the challenge of connecting inter-individual variation
in HDL-C, an emergent property of RCT, to genetic variation.

RCT as a Complex Adaptive System

The world is made up of natural little bits and pieces that fit together in some natural
way and bring to whole objects their own properties. The properties of the bits and
pieces are properties they acquire in actually being parts of the wholes.

—R. Lewontin (1998)

Basic and clinical studies suggest that mechanisms mobilizing cholesterol from peripheral
tissues can reduce the burden of atherosclerosis plaque in the arterial wall, maintain lumen
patency, and reduce the risk of cardiovascular disease. The central role of plasma HDL-C
concentration in this process derives from the properties of the HDL particle and the inverse
correlation between HDL-C concentration and risk of IHD observed in many studies. In
addition to its RCT function as a carrier of cholesterol to the liver, HDL-C plays multiple roles
in other processes considered important in IHD pathogenesis, including platelet function, anti-
inflammatory mechanisms, and endothelial cell responses. Interest in predicting disease risk
using HDL-C and predicting inter-individual variation in HDL-C from genomic data derive
from these fundamental observations.

The RCT system is described as a network of reactions inferred from the characterization of
the key plasma lipid chemistries. The sequence of reactions, primary components of the system,
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expression and regulation of gene products, and some of the environmental agents that
influence functions of the system have been defined (Fielding and Fielding 1995; Tall 1992).
These observations have fostered the construction of various mathematical models of lipid
metabolism and have led to the genetic engineering of experimental animal models to better
characterize the relationships between component agents and their contributions to the
functional properties of the RCT system (Breslow 1996; Knoblauch et al. 2000). Data from all
of these approaches indicate that plasma HDL-C concentration is influenced by a great number
of factors.

Mammalian somatic cells require and synthesize, but are unable to catabolize, cholesterol. RCT
removes cholesterol from these cells and transports it to the liver for redistribution or secretion,
thereby providing a mechanism for cholesterol homeostasis. Close inspection of the RCT
process reveals several fundamental features of a complex adaptive system. It is composed of
many agents (apolipoproteins, receptor and membrane proteins, the genes that encode them,
and various lipid classes), each of which may have multiple forms. There are specific
organizational domains (protein-lipid interfaces, lipoprotein particle populations, and
membranes) and nonlinear responses to interventions such as drug therapy. The relationships
between the agents involved in RCT, and between these agents and the emergent plasma HDL-
C phenotype, are dynamic at multiple time scales (short-term postprandial responsiveness to
lipemia and age-dependent changes in the metabolism of lipids and lipoproteins). There are
nonspecific effects of environmental agents (dietary, pharmacological, and pathological
perturbations) that simultaneously affect many agents that influence the etiology of plasma
HDL-C concentration. Finally, redundancy and compensatory processes operate at multiple
steps in the RCT pathway (multiple lipases with overlapping activities and at least three hepatic
cholesterol uptake mechanisms). The collective, coordinated activity of these features of RCT
determines the emergence of the plasma HDL-C concentration, which in turn interacts with
other pathways of lipid metabolism to influence membrane composition, biliary secretion of
lipids, hormone production, and other cholesterol-dependent processes.

Characteristically, and similar to observations of other complex metabolic systems, analysis
and engineering of individual components do not produce invariant predictions of the emergent
functional properties of HDL-C. The ability of a particular agent to predict is dependent on
context. Ignoring the complex adaptive system properties of RCT results in the inability of any
particular component agent to accurately predict variation in plasma concentration of HDL-C
across strata defined by time, genotype, gender, and exposure to environmental factors.

The potential role of genes in contributing to HDL-C variation is supported by the participation
of an extensive number of gene products in regulating RCT (Ghazalpour et al. 2004). The
genetic contribution to inter-individual variation of RCT components in humans using linkage
and association studies has been quantified (reviewed in Sing and Boerwinkle 1987). Single
gene-based linear models have been used to test for evidence of association between inter-
individual variability in plasma HDL-C concentrations and variation in candidate genes. Such
models are inherently limited in their ability to predict inter-individual variation of a trait that
is a consequence of a complex etiology. The nature of these limitations is manifold. Single-
locus strategies to predict inter-individual variation in human populations do not address the
multifactorial interactions characteristic of complex biological traits, something that is
especially critical when estimating and testing the role of gene-gene interaction, when the
individual participating genes do not have separate, independent effects (Culverhouse et al.
2002). Furthermore, most studies ignore interactions of the particular gene of interest with
other genetic and environmental agents that act dynamically through the time course of the
development of the shape and function of the emergent phenotype. In summary, current models
and statistical methodologies for predicting plasma HDL-C concentration are fundamentally

Perspect Biol Med. Author manuscript; available in PMC 2007 January 5.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Rea et al.

Page 5

flawed because they do not consider extensive interactions between agents, and their dynamics
at scales inherent to biological systems, that influence RCT.

Interactions and Dynamics Among Agents in the RCT System

Interactions

“But wait,” the exasperated reader cries, “everyone nowadays knows that
development is a matter of interaction. You’re beating a dead horse.”

I reply, “I would like nothing better than to stop beating him, but every time | think
I am free of him he kicks me and does rude things to the intellectual and political
environment. He seems to be a phantom horse with a thousand incarnations, and he
gets more and more subtle each time around. ... What we need here, to switch
metaphors in midstream, is the stake-in-the-heart move, and the heart is the notion
that some influences are more equal than others.”

—S. Oyama (1985)

Most lexicons state that interaction consists of mutual or reciprocal action or influence.
However, this obvious definition does not imply or reveal the mechanisms, causative power
or meaning, range of effects, or specifications for measurement. Significantly, it also does not
specify whether or not the individual agents that allegedly interact have actions or influences
independent of their relationships with other agents. Despite these ambiguities, categories of
interactions can be defined and prove to be informative with respect to system functions. In
biological sciences, the languages of interaction have historically fallen into two general
categories, biophysical and statistical. Among many important distinctions between the two is
the realization that measurement of interaction by one does not necessarily imply measurability
by the other. Failure to recognize this possibility frequently leads to inappropriate and
misleading inferences about the interactive mechanisms of gene products from statistical
studies of the relationships between genetic and phenotypic variation.

in RCT

It is reasonable to expect to find biophysical interactions at multiple component levels of RCT.
Cholesterol flux through the RCT system is the result of an evolution-selected network of
complementary agents; variation in plasma HDL-C is influenced by variation in many of them.
Some of the genes involved (e.g., apolipoprotein genes) give rise to protein products that
function in multiple roles such as lipoprotein assembly, receptor-ligand specificity, and enzyme
activation, that are critical to RCT. Specific and dynamic biochemical interactions, commonly
at membrane interfaces, are components of the physical basis for RCT. These interactions are
dependent upon both the quality and quantity of many gene products and a broad spectrum of
specific lipid moieties, including many of environmental origin, that are critical to protein and
apolipoprotein conformation, orientation, and activity.

Biophysical and statistical studies of the relationships among and between the effects of genes,
proteins, lipids, and exposures to environments document the ubiquity of the role of interactions
in RCT. Sing, Stengard, and Kardia (2004) describe the types of interactions (genetic,
biochemical, and environmental) known to contribute to structural or functional properties of
RCT that are prototypical of the interactions among agents ubiquitous to lipid metabolism.
Statistical analyses of gene-gene interactions in studies of model organisms anticipate the RCT
situation: the majority of statistically significant contributions of genetic variations to
phenotypic variation appear to be attributable to genotypes defined by combinations of DNA
sequence variants that do not have separate and independent effects (Dolinski and Botstein
2005; Wolf et al. 2005). One practical consequence for statistical strategies is that failure to
test for interaction among gene loci that do not have significant individual genotypic effects
will likely result in false negative findings.
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Complexity of Interactions Imposed by Dynamics

We use the term dynamics here in reference to changes or modification of relationships between
component agents over time. Genetic variation influences these dynamical relationships at
multiple time scales. DNA and protein-sequence variations may affect protein-protein
interactions and transcription regulation on the microsecond to millisecond time scale, with
resulting changes in RNA synthesis occurring within minutes to hours. Genotypic variation
may change the dynamics of biochemical reactions and metabolic pathways that occur on the
order of seconds to days. For genotypic effects on developmental or life course changes, time
scales are on the order of years or decades. Finally, the impact of genotype changes on the
dynamics of agent relationships transpires over the evolutionary time course of generations.

Human lifespan data provide compelling evidence that there is complexity of interactions
imposed by dynamics on the RCT system. For example, in a study of 1,876 individuals from
Rochester, Minnesota, ranging in age from five to 90, Zerba, Ferrell, and Sing (1996, 2000)
demonstrated that relationships among a number of plasma RCT traits are dependent upon
genotypes of the apolipoprotein E gene (APOE), gender, and age. Correlations among plasma
concentrations of apolipoproteins B and E, TC, triglycerides, and HDL-C all varied in a
statistically significant manner across the human lifespan and, importantly, the time course of
the correlations differed according to gender and APOE genotype. This study suggests that
hormonal and other cumulative environmental exposures (such as diet) impact HDL-C
metabolism and RCT in a genotype-dependent manner. Consistent with this suggestion is the
observation that elevated estrogen levels in premenopausal women and hormone replacement
therapy in postmenopausal women are associated with increased plasma HDL-C concentration
(Erberich et al. 2002). These results reinforce the proposition that context-dependent effects
on relationships between components of RCT metabolism may account for a large fraction of
inter-individual variation in plasma HDL-C not explained by invariant gene and environmental
effects.

Given the documented role of the influence of dynamic interactions between participating
agents on RCT, it is not surprising that the literature confirms that simple linear models and
single agents poorly predict inter-individual variation in plasma HDL-C concentration.
Advances in research design and analysis that employ realistic biological models must
incorporate measures of network interactions and dynamics (Cork and Purugganan 2004).
Conversely, ignorance of these dynamical interactions will ensure failure to ascribe context
dependencies to specific disease-risk genotypes and disregard for Simpson’s paradox (the idea
that associations found in subpopulations may be different from the population considered as
a whole; Simpson 1951) in interpreting statistical relationships. The irreproducibility often
seen in association and linkage studies of phenotype-genotype relationships may well be
attributable, in large part, to failure of the analysis to deal with the complexity inherent in the
dynamics of interactions between participating agents.

Research Options

It is high time to back up assertion with argument.
—FP. Kitcher (2001)

As a surviving and dominant research strategy from a prolific age of biological reductionism,
studies that have sought to understand the genetic contribution to the etiology of plasma HDL-
C concentration have made fundamental contributions to our knowledge of RCT. However,

linear models, static hierarchical definitions of relationships between participating agents, and
cross-sectional population study designs serve a paradigm that has lost its logical foundation
with consequences analogous to the epidemiological “thought-tormented world” and reveals
a reductionist paradox (Beattie 2004; Susser 1989). Because the RCT pathway is influenced
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by a multitude of dynamic interactions, mathematical modeling cannot fully characterize the
etiological connection between variation in HDL-C and genome variation. The challenge is to
incorporate what can be understood and what can be measured into models for prediction of
inter-individual variation in plasma HDL-C, so as to take full advantage of variation in the
genetic substrate.

We begin this undertaking, perhaps unconventionally, by considering reactions to an
orthologous problem identified by observations and data specifically derived from quantum
mechanics experiments. The fundamental problem is well known as the quantum measurement
paradox, and it may be communicated generally as the impossibility of defining the causal
pathway from microscopic scale to macroscopic outcomes based upon quantum mechanical
analyses. Leggett (2005) divided reactions of physicists to this paradox into three viewpoints,
and we use his reaction-sorting schema as a starting point for the choice of research options
we shall propose. One may view the status of information from the genome sequence as: (1)
the necessary and complete basis (we intentionally choose not to use Leggett’s use of the word
truth here) of the biological world, at all levels, that sufficiently defines biological causation;
(2) a necessary and complete basis of the biological world for reliable prediction purposes, but
one that is insufficient for understanding causation; or (3) a necessary but incomplete basis of
the biological world, one in which—at one or more levels between genotype and phenotype
—unknown variables and processing rules mediate biological prediction and etiology.

The preceding sections of this paper are most plausible and consistent with the third of these
possibilities. Occasionally, highly penetrant alleles may be sufficient for prediction (scenario
2): genome-sequence information is sometimes “sufficient” to predict rare HDL-C phenotypes
to the extent that variations in phenotypes are statistically correlated with variations in the
encoded sequence. However, the frequency of these mutations and scale of their effects have
not been carefully analyzed in large populations. At population scales, such correlations are
inevitably inadequate for unraveling the causal pathways from genotype to phenotype that
involve a hierarchy of subsystems that are each open and dynamic and causally embedded in
a number of interactions. Two complementary research strategies to address these problems
may be considered: the first is designed to advance etiological understanding from detailed
measurement, description, and analysis within specific biological levels of organization and
the second is expected to enhance predictive utility across levels of biological organization that
take advantage of knowledge about the agents and their etiological relationships in each of the
participating subsystems. These two strategies may be used synergistically to advance our
knowledge of intra-subsystem etiology (first strategy) and inter-subsystem correlations
(second strategy) that measure the collective organization that takes form and effect across
levels in the hierarchy that connect the small world with the macro world (Holland 1999;
Morowitz 2002).

The first strategy, pursuing ever more detailed characterizations (physiology, metabolism,
structure definition, information encoding, and variation) of intra-level agents for each of the
multiple levels of biological organization, is a long-established experimental strategy that
operates with the assumption that causation can be determined. Although this descriptive
approach is essential, and compelling because of progress in characterizing intra-level behavior
under controlled experimental conditions, it is, nonetheless, demonstrably insufficient to
address the challenges of system-wide synthetic integration—in other words, it does not enable
us to use information about variation in properties of a lower-level system in order to predict
variation in higher—order, system-level properties. A suitable example arises from our nascent
understanding of human genetic and epigenetic variation based on knowledge about variation
in the nuclear genome sequence, DNA methylation, large-scale copy number polymorphisms,
insertions/deletions, inversions, relative allele frequency and linkage disequilibrium patterns
in diverse populations, and the contribution of the mitochondrial genome. The scale of possible
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interactions among these variables within and across levels, and their connections with
emergent phenotypic outcomes, is intractable (consistent with Elsasser 1987). The inferential
barrier for this research strategy is characteristic of the problem of traversing the boundary
between the statistical representation of the quantum mechanical world and the deterministic
rules of the gravitational world in physics research (Laughlin 2005).

The problem of identifying variables and their combinatorial statistical relationships in
prediction models that relate the outputs of one subsystem to the inputs of a second system is
precisely one that the second complementary research strategy might address. The goal of this
strategy is not to obtain etiological understanding within a hierarchical level per se, but rather
to use the information about etiology from the subsystems in the selection of inter-level
predictive measures. As such, this approach will entail identifying ways of reducing the high
dimensionality (very large number of variable agents at each level)—for example, by extracting
the variables from each level necessary for building predictive models and by testing
hypotheses about relationships of variables between subsystems that may reveal the higher-
order collective organizing principles. Current analytical strategies for accomplishing this goal
are woefully inadequate. It is probable that such an approach will require a type of global
genome metric that integrates multiple locus associations that are just beginning to emerge
(Schaid et al. 2005). It will rely on methods of dimension reduction, as suggested by the sum
stat test, the combinatorial partitioning method, and the tree scan method (Nelson et al. 2001;
Templeton et al. 2004; Wille, Hoh, and Ott 2003). This selective reduction process will require
the ability to identify context-dependent statistical effects in different subpopulations and must
be capable of identifying combinatorial effects of predictor variables with or without separate,
independent statistical effects. Concurrently, the theoretical basis for computational methods
appropriate for such approaches needs substantial research attention. To refine this statistical
strategy, it will be necessary to develop methods for selecting predictor variables within and
between levels of the hierarchy between genome and phenotype, and for testing their
contribution to predicting disease risk in a range of genetic and environmental backgrounds.

With respect to this strategy for prediction, very large human data sets representative of
carefully defined populations will be required—both training sets for model building, and test
sets for model validation. The case for these studies is well documented, and planning for
national or international projects based on large-scale longitudinal designs is well under way
(Check 2004; Collins 2004; Khoury 2004; Pembrey 2004). Such large population studies will
underscore the challenges of incorporating heterogeneity of genetic variation and phenotype-
genotype relationships within and between populations into statistical models and methods of
analysis (Clark et al. 2005). These studies will require resources for the creation of regulatory-
compliant infrastructures for recruitment and retention, sample handling, data acquisition, and
statistical analyses, resources that few research groups will be able to generate (Kruglyak
2005). If this effort is successful, we fully expect it will sort out a subset of genomic variations
that influence RCT and are candidates for predicting IHD risk, identify those variations that
have utility for predicting IHD beyond traditional risk factors in specific genetic and
environmental strata in particular populations, and reveal ever-increasing paradoxes and
challenges to developing personalized medicine, diagnostic methods, and therapeutic
interventions. Given the promises of the past three decades, investment in such large-scale
genetic studies is essential.

A variety of contextual factors will assist our understanding of the genetic components of
human diseases with complex multifactorial etiologies (Sing, Stengard, and Kardia 2004). We
propose four. First, we suggest a broader discussion of the meaning, utility, and role of
causation, prediction, and emergence in complex disease research and a reconnection to a
natural philosophy that cultivated relationships between science and humanity in a more
integrative era (Harpham 2006). Second, we propose a return to research intent on falsifying
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hypotheses as a means of rigorous testing, rather than research devoted to proving hypotheses,
which suppresses new ideas while perpetuating oversimplified or false predictive relationships.
Third, we urge the constant monitoring of how experimental conditions and designs for the
collection of population-based data we employ in our studies are representative of, and
consistent with, the synthetic biological realities they purport to sample. Last, we highlight the
need to encourage research communities that foster communication, inclusivity, and improved
resource utilization that are better equipped to address questions relevant to phenotype-
genotype relationships across numerous multifaceted contexts.

Summation

It is almost an intrinsic part of our concept of science that we never know enough. At
all times one could almost say: we can explain it all, but understand only very little.

—E. Chargaff (1971)

The study of plasma HDL-C concentrations exemplifies the challenges faced in biology and
medicine of utilizing the plethora of information that has become available as a consequence
of the genome revolution. Because of the lack of a theory connecting the small world to the
large world, recognized by generations of physicists but denied by the reductionist strategy
that dominates biology, we should redefine the goal of “understanding” emergent phenotypes
in medicine. Experimental reductionist science may be used to characterize the causal agents
and the etiological relationships between them within subsystems, solely for the objective of
generating hypothesized elements for consideration in building statistical models for predicting
“emergent” phenotypic outcomes in free-living populations. However, only a small fraction
of these many hypothesized agents (or relationships between agents) will prove to be useful in
building a predictive model. Progress will be measured in terms of the simplicity and large-
population applicability of these models for predicting complex phenotypes such as plasma
HDL-C for individuals with differing genetic and environmental contexts that vary across time
and space. Simultaneously sorting among large numbers of genetic variations and
environmental strata, to find which combination predicts emergent measures of health in which
subset of individuals at which time in the lifecycle, will be the challenge. Those with the
imagination and creativity equal to this challenge will have the greatest opportunities for
contributing to the prediction and understanding of human diseases that have a complex
multifactorial etiology.
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