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Abstract
The availability of genome sequences from a variety of organisms presents an opportunity to apply
this sequence information to solving the key problems of molecular biology. One of the principal
roadblocks on this path is the lack of appropriate descriptors and metrics that could succinctly
represent the new knowledge stemming from the genomic data. Several new metrics have recently
been used in comparative genome analysis, yet challenges remain in finding an appropriate language
for the emerging discipline of systems biology.

Introduction
The genomic revolution, which started 11 years ago with the completion of the genome
sequence of the bacterium Haemophilus influenzae and culminated in 2004 with the sequencing
of the human genome, had an enormous impact on the very nature of life science research.
Genome-derived information is now paving the way to a consistent quantitative description of
all processes in a living cell, the systems biology of the cell. The influx of genomic data has
been most profound in prokaryotic genomics, which has experienced exponential growth with
the number of sequenced genomes doubling every 16 months [1]. The advantages of having a
complete genome sequence are well-known and have been repeatedly highlighted in the past
(e.g. [2]). However, these benefits are often limited by the inability of standard (automated)
methods of genome analysis to perform three tasks: to assign function to as much as one-third
of the genes; to reliably predict existing and missing metabolic pathways and environmental
sensing mechanisms; and to highlight unexpected discoveries and suggest practical uses for
the sequenced genome [3,4]. The overwhelming diversity of life, revealed by the genome and
metagenome sequencing projects, calls for new approaches to comparative genomics, which
will require the introduction of appropriate new descriptors. These new metrics — integral
parameters that could be used to describe newly sequenced genomes and put them into a proper
framework — will ultimately play a major role in defining the discipline of systems biology.
Here, we briefly outline recent trends in comparative genome analysis and discuss some new
metrics that have been used in the past few years. As most eukaryotic genomes remain only
partly finished, we primarily focus on the analysis of prokaryotic genomes.

Emerging standards in genome description
In the past 11 years, close to 400 complete bacterial, archaeal and eukaryotic genomes have
been sequenced, resulting in more than 200 published papers. After a brief initial period, there
emerged a clear pattern whereby nearly every paper describing a newly sequenced genome
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presented a standard list of genome parameters, followed by a brief discussion of the distinctive
features of the sequenced organism. These standard parameters typically include genome size,
GC content, the number of stable RNA- and protein-coding genes, the fraction of the genes
with a functional annotation, and several others (Box 1). Obviously, genome sequences allow
ample opportunities for more in-depth analyses. Recent examples of these include the use of
whole-genome data to assemble an improved tree of life [5,6,7•,8•], to reconstruct metabolic
pathways in terms of existing and ‘missing’ genes [9,10], to evaluate the number and
distribution of various protein folds [11,12] and to determine the fraction of laterally transferred
genes [13–15]. At the same time, some of the more ambitious goals of genome analysis remain
to be achieved. For example, despite intensive research efforts, the mechanisms of microbial
thermophily, psychrophily, halophily, alkalophily, and resistance to radiation and dessication
still remain obscure, which makes it impossible at this time to predict these traits from genomic
sequences. Likewise, there has been only limited success in using genomic information to
design synthetic growth media for fastidious pathogens, which would have helped in fighting
syphilis, Lyme disease, spotted fever and other bacterial infections. Up until now, all
completely sequenced genomes came from cultivated microorganisms, the growth conditions
of which, even if suboptimal, were known. This is not the case for sequences coming from
metagenomic projects, which will force us to describe properties of the source organisms solely
on the basis of sequence data.

Box 1 Standard parameters of genome description

General features of the genome: DNA: genome size, G+C content, GC skew

Insertion sequences: number, fraction of the genome

RNA: tRNA genes, rRNA genes, small nucleolar RNAs, riboswitches

Proteins: total number of proteins, percentage with known function, percentage
‘hypothetical’, phylogenetic distribution of the best hits, percentage transmembrane
proteins, percentage transporters

Deduced metabolic properties: Aerobic/anaerobic, obligate/facultative, Gram-positive or
Gram-negative, spore-forming or not

Energy source: autotrophic or heterotrophic, lithotrophic or phototrophic

Carbon source: CO, CO2, methylotrophy, saccharolysis, proteolytic

Sources of nitrogen, phosphorus, sulfur, iron and uptake mechanisms

Biosynthetic pathways: nucleotide, amino acid, cofactor, lipid Secondary metabolism,
xenobiotics

Organism-level adaptations: Signaling systems: number of histidine kinases, response
regulators

Intracellular organelles: thylakoids, heterocysts, spores, storage granules

Pathogenic and defense mechanisms

To measure how much is known about an organism with a completely sequenced genome,
Janssen and colleagues introduced a novel metric, termed the ‘species knowledge
index’ (SKI). It is calculated simply as the number of PubMed abstracts mentioning the
given species divided by the number of predicted protein-encoding genes [16•]. According
to the authors, the average number of abstracts per gene for the first 200 genomes is
somewhere between 0.9 and 5, with the obvious exception of human, mouse, well-studied
model organisms such as Escherichia coli, Bacillus subtilis and yeast, and some important
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pathogens. Naturally, some organisms are covered very poorly or not covered at all. For
example, Acidobacteria bacterium Ellin345, the first sequenced representative of the
phylum Acidobacteria, has been previously mentioned in a single publication [17] and never
described in any detail.

Genome-based phylogeny
Phylogeny is one of the areas that benefited most from genome sequencing. It can now rely on
whole-genome data to build a better tree of life than was afforded by 16S rRNA sequences.
Konstantinides and Tiedje introduced two simple integral parameters: ‘average nucleotide
identity’ (ANI), as a measure of genome relatedness at the species level, and ‘average amino
acid identity’ (AAI), as a measure of phylogenetic proximity for higher taxa [18•,19•]. The
phylogenetic tree built on the basis of AAI, as well as those based on the alignment of
universally conserved protein sequences (e.g. ribosomal proteins, RNA polymerase subunits
and such), proved to be remarkably similar to the 16S rRNA-based tree [5,6,7•,8•,19•],
suggesting that all these trees actually reflect the evolutionary history of the prokaryotic world.

However, genomic comparisons revealed a significant variance (up to tenfold in some phyla)
in genome sizes and the numbers of encoded proteins of supposedly closely related organisms,
illuminating the need for new measures of genome relatedness that would take into account
the differences in gene content. Even at the species level, several strains of Prochlorococcus
marinus, with 97–99% rRNA identity, were found to encode dramatically different protein sets
[20]. For pairwise comparisons, genome relatedness can be described with an ‘orthology
coefficient’, the fraction of genes that form orthologous pairs in the two genomes [21]. For
closely related genomes, the degree of synteny, the fraction of genes that are orthologous and
located in co-linear fragments of the genome, can be used as well [22,23]. Another recently
introduced metric is ‘genome conservation’, a measure of evolutionary distance between
species that takes into account both gene content and sequence similarity at the whole-genome
level and allows for apparently accurate phylogenetic reconstructions [7•]. In addition, a
measure of the degree of horizontal gene transfer (HGT) between different nodes of the
phylogenetic tree, ‘HGT vine width’ was introduced, and a three-dimensional plot (Figure 1)
suggested as a better representation of the tree of life than the traditional two-dimensional tree
[8•]. For comparing several related genomes, it proved very useful to divide all genes into two
categories, those shared by every organism in the given set (referred to as a ‘conserved gene
core’ or ‘genome signature’), and those found only in some genomes (referred to as a ‘variable
shell’) and to compare the number of the genes in each category [20,24–27].

Defining protein function on a genome scale
One of the intrinsic problems illuminated by comparative genome analysis is the paucity of
appropriate descriptors for protein function and the degree of confidence that the ascribed
function is correct. The Gene Ontology (GO) project [28] was extremely successful in
categorizing proteins with known — and relatively simple — functions (e.g. enzymes and
transcriptional regulators). At the same time, categorization of poorly characterized proteins
that fall into the ‘twilight zone’ or ‘grey area’ of sequence similarity [29,30] and are often
referred to as ‘hypothetical’ remains a difficult task. To differentiate between proteins that can
and cannot be assigned a general biochemical function, the terms ‘known unknowns’ and
‘unknown unknowns’ have been introduced [4]. Recent analysis of the Shewanella genome
introduced a seven-category scheme that ranks newly sequenced open reading frames by the
confidence and precision of their functional annotation all the way from ‘exact biochemical
function’ down to ‘general biological function’ and ‘certain functional insights’ [31•]. These
rankings are based on the degree of sequence similarity between the protein in question and
its experimentally characterized homologs, if any, and the availability of supplementary
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information [31•]. This approach provided descriptors to distinguish various shades of grey in
the grey area of functional annotation of new genomes.

A further advancement into the twilight zone came from comparing structurally related proteins
in terms of the structure of their loop regions. A new parameter, termed the ‘loop-based
Hausdorff measure’ (LHM), was used to quantify the structural (dis)similarities in the loop
regions, which are often responsible for substrate (or ligand) specificity [32,33•]. In a majority
of protein families, structural similarity of the loops, measured by LHM, correlated with
sequence similarity [33•,34•], suggesting that this parameter could serve as an indirect indicator
of the degree of functional divergence between homologous proteins. A related measure, ‘the
evolutionary plasticity of structure’, quantifies the relation between the changes in protein
structure and the sequence variation within a protein family in the course of evolution. This
parameter reflects the constraints in the sequence-structure relationships and is remarkably
uniform across different folds and families of proteins [34•]. These two metrics could be useful
in assessing the quality of protein structure-based functional assignments, discussed in detail
by Rigden in this issue [35].

Another important development in genome annotation has been the agreement between the
three international nucleotide sequence databases — the DNA Data Bank of Japan, the
European Molecular biology Laboratory (EMBL) nucleotide sequence database and GenBank
— to allow third-party annotation of the existing sequence records, including those derived
from genomes. The databases accept two types of third-party annotation: ‘experimental’ and
‘inferential’ [36•] (see http://www.insdc.org/TPA.html for details). However, the latter group
does not include functional annotations that are based on superfamily assignment or a solved
three-dimensional structure, which means that for the foreseeable future the most complete
annotation of the grey area will be available in curated databases, such as UniProt, COGs
(Clusters of Orthologous Groups of proteins), and others. In any case, moving protein
characterization on the genome-scale beyond the ‘70% hurdle’ [3] will require a concerted
community-wide effort at experimental characterization of ‘hypothetical’ proteins [37–39].

Comparative analysis of metabolic pathways
All (known) living organisms rely on the same core pathways of intermediate metabolism. If
similar biochemical reactions were always carried out by related proteins, finding appropriate
descriptors for metabolic pathways would be a relatively easy task. In reality, the same key
functional roles (‘essential functional niches’ [40]) are often carried out by unrelated proteins
[10,41,42], and different organisms have substantially different enzyme sets. These factors
limit the usefulness of the Enzyme Commission (EC) numbers, which have been routinely used
as identifiers for metabolic reactions. In addition, principles of assigning the EC numbers
(http://www.ebi.ac.uk/intenz/rules.html) are not entirely conducive to their use as metabolic
pathway markers. For example, two analogous phosphoglycerate mutases that differ, among
other traits, in their requirement for bisphosphoglycerate, have the same EC number 1.15.1.1.
By contrast, two analogous DNA ligases have two different EC numbers, 6.5.1.1 for the ATP-
dependent enzyme and 6.5.1.2 for the NAD-dependent one. Besides, unavoidable delays in
manual assignment of the EC numbers lead to the proliferation of incomplete EC numbers and,
hence, further confusion [43]. This heightens the need for alternative descriptors of biochemical
reactions. Kanehisa and colleagues recently came up with a new classification scheme for
enzymatic reactions, which is based on the reaction chemistry rather than just the nature of the
substrate and product [44••]. This method offers an entirely new — automated — approach to
assigning EC numbers, which are then referred to as the RC (reaction classification) numbers.
Given that computationally assigned RC numbers appear to be in general agreement with both
the manually assigned EC numbers and protein sequence data, as reflected by the KEGG
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(Kyoto Encyclopedia of Genes and Genomes) ortholog clusters [44••], these numbers could
serve as useful metabolic markers that would simplify and streamline pathway analysis.

Sometimes alternative forms of enzymes are not limited to variations of a single protein and
contain several proteins capable of catalysing the same reaction or even variations of a complete
pathway [10,42]. The recent discovery of the third pathway of pyrimidine catabolism [45], as
well as the very fact that it has remained hidden for so many years [46], show that the degree
of functional variance among metabolic pathways is much greater than previously recognized.
The redundancy of pathways for formaldehyde oxidation [47] and benzoate catabolism [48,
49] in Burkholderia xenovorans LB400 is just one example of metabolic diversity that is
relevant to biotechnology. There is a clear need for the appropriate language to describe
pathway diversity — and redundancy — among different organisms and even within a single
organism. The most promising approach appears to be subdivision of the metabolic network
into ‘subsystems’ [42,50•] or ‘phylogenetic network modules’ [51•], on the basis of a
combination of sequence-based clustering of enzymes and phylogenetic profiles of enzyme
distribution. This approach allows one to identify evolutionarily conserved metabolic building
blocks that can be acquired, lost, combined and/or exchanged in the course of biochemical
evolution in various lineages.

New approaches to the analysis of metabolic pathways include improved pathway visualization
and comparison tools, such as those provided by the KEGG and MetaCyc databases [52,53].
Combining such static ‘wiring diagrams’ with real-time dynamic representations of metabolic
fluxes will allow an entirely new level of comprehension of cell metabolism.

Functional profiling of genomes
Several recently sequenced microbial genomes were found to have lineage-specific gene
expansions that could be directly linked to the unique biochemistry of the corresponding
organisms. Thus, the two genomes of Dehalococcoides species encode numerous copies of
reductive dehalogenases, which allow these organisms to use chlorinated hydrocarbons,
including the common pollutant perchloroethylene, as terminal electron acceptors [54,55]. By
contrast, Desulfitobacterium hafniense, a dechlorinating bacterium from a different phylum,
had only two genes for reductive dehalogenases but encoded numerous terminal oxidases,
similar to the dimethyl sulfoxide reductase [56•]. Owing to the expansion of these and several
other protein families, the genome of D. hafniense revealed a significantly elevated fraction of
genes (COGs) related to energy production and conversion (functional category C in the COG
database [57]). This approach to analyzing lineage-specific expansions and losses of metabolic
enzymes and whole pathways offers a convenient way of highlighting peculiarities of a given
organism or clade. This can be reflected in a new genome-scale metric, which shows the
distribution of proteins assigned to each functional category in the COG database as compared
with distribution in related organisms [58]. By analogy with the phylogenetic profiles, this
distribution can be referred to as a COG profile or, more generally, a ‘functional category
profile’. Figure 2 shows the results of such an analysis for four organisms with similarly sized
genomes. The analysis illustrates the dramatic expansion of proteins involved in DNA
replication and recombination (mostly transposases) in Shigella dysenteriae, and reveals the
unusually high number of enzymes of lipid biosynthesis and secondary metabolism in
Mycobacterium avium and of signal transduction proteins in Dechloromonas aromatica. COG
functional category assignments for every sequenced prokaryotic genome are available in the
National Center for Biotechnology Information RefSeq database, making such comparisons
easy to perform. Furthermore, RefSeq provides tables that show fractions of genes belonging
to each functional category per genus, phylum and bacteria in general (see, e.g.
http://www.ncbi.nlm.nih.gov/sutils/coxik.cgi?gi=380). Although these are automated
assignments that could be prone to certain biases, they provide a convenient birds-eye view of
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the peculiarities of each given genome. Certainly, such functional profiling could use other
functional classifications, such as the one introduced by Riley [59].

Signal transduction
All organisms adapt to their environment by perceiving environmental signals and modifying
their behavior (and/or metabolism) accordingly. Recent attempts to compare microorganisms
in terms of their ability to adjust to environmental changes have led to the introduction of two
new metrics [60•]. The first, a signaling index, referred to as ‘bacterial IQ’, reflects the
abundance of signal transduction components encoded in a given organism as compared with
others of a similar genome size. The second parameter, the degree of ‘extrovertness’, reflects
the fraction of transmembrane receptors among all sensory proteins encoded in a given genome.
The viability of the second parameter was demonstrated by the finding that cyanobacteria,
which have a complex system of intracellular membranes, are the most ‘introverted’ bacteria
[60•]. The relevance of the first parameter was affirmed by the finding that bacteria with the
highest proportion of environmental sensors (‘highest IQ’) encode the most diverse sets of
response regulators [61]. Although these parameters still remain to be statistically validated,
they seem to offer new ways to describe the complexity of an organism’s signal transduction
machinery.

Conclusions: from reading to comprehension and utilisation of genomic
information

Genome-based functional profiling, the reconstruction of metabolic pathways and assessment
of an organism’s signaling capabilities are only the first, and simplest, ways to describe an
organism on the basis of its genome sequence. Better tools, better approaches and better metrics
are needed to fully comprehend the information stored in the genomic data and to eventually
utilize this information in biotechnology, pharmacology and genomic medicine. The
appearance of new descriptors is an important part of developing the new language of systems
biology, which will be used to communicate new ideas and the underlying datasets. However,
the examples listed in this paper clearly show that new metrics for genome comparisons cannot
simply be pulled out of a hat. Each emerges as a result of careful research and painstaking
efforts to understand molecular mechanisms of cell life and to find adequate parameters and
tools to describe them. Thus, the current lack of high-quality descriptors, for example for
microbial adaptations to extreme conditions, is hardly due to the lack of trying: rather it is
caused by a lack of understanding of what is and what is not important for the maintenance of
a thermophilic (or psychrophilic) lifestyle. Once underlying principles of adaptation to extreme
conditions are better understood, genomic determinants for these traits will become additional
metrics for genome description. As noted by Kerényi, “languages are not so much a means of
expressing truth that has already been established as a means of discovering truth that was
previously unknown” (http://www.wikipedia.org/wiki/Sapir-Whorf_Hypothesis), which will
remain the task of systems biology for years to come.
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Figure 1.
The tree of life in three dimensions. The plot, taken from [8•], reflects the ‘genome
conservation’ and ‘horizontal gene transfer vine width’ data. Individual taxonomic nodes are
shown as white spheres, the diameters of which reflect the number of node-specific gene
families. The bacterial phylogenetic tree is in cyan and the archaeal tree in light green. Red
lines indicate the horizontal gene transfer. The width of each line reflects the number of gene
families transferred along that line. Reprinted with permission from Genome Res 2005,
15:954–959.
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Figure 2.
Functional category profiles of four bacterial genomes. The plot shows the number of proteins
from Dechloromonas aromatica RCB (front row; cream), Rhodopseudomonas palustris HaA2
(second row; magenta), Shigella dysenteriae Sd197 (third row; blue) and Mycobacterium
avium subspecies paratuberculosis K-10 (back row; cyan), assigned to COGs in each
functional category. COG functional categories are grouped as follows: 1, information storage
and processing (J, translation, ribosomal structure and biogenesis; K, transcription; L, DNA
replication, recombination and repair); 2, metabolism (C, energy conversion; E, amino acid
transport and metabolism; F, nucleotide transport and metabolism; G, carbohydrate transport
and metabolism; H, coenzyme transport and metabolism; I, lipid metabolism; P, inorganic ion
transport and metabolism; Q, secondary metabolism; V, defense mechanisms); 3, cellular
processes (D, cell division; M, cell envelope; N, motility and secretion; O, post-translational
modification and protein turnover; T, signal transduction; U, intracellular trafficking); and 4,
poorly characterized (R, general function prediction only; S, unknown function). The data are
taken from the Entrez Genome database
(http://www.ncbi.nlm.nih.gov/sutils/coxik.cgi?gi=18621 and similar entries).
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