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Previous studies have demonstrated high, concentration-dependent serum protein binding of cefonicid. To
determine the in vivo pharmacokinetic significance of these observations, the pharmacokinetics of both total
and unbound (non-protein-bound) cefonicid was studied in six volunteers after a single intravenous dose of 30
mg/kg. Saturable serum protein binding was observed in vivo; the mean + standard deviation free fraction of
cefonicid was 17.6 + 6.1% immediately after administration and declined to a constant value of approximately
2% as total serum concentrations fell below 100 ,ug/ml. This nonlinear binding was associated with a
pronounced decline in unbound serum cefonicid concentrations during the first 3 h after administration, with
low or undetectable unbound drug concentrations by 12 h. Renal clearance of total cefonicid averaged 21.1
ml/min per kg and did not vary with time; in contrast, the mean ± standard deviation unbound cefonicid renal
clearance increased from 5.7 ± 2.1 to 10.8 ± 1.6 ml/min per kg with time (P < 0.02). This study may partially
explain the poor results obtained with single daily dosing of cefonicid in endocarditis. Dosage regimens of
certain antimicrobial agents with high, saturable serum protein binding and extensive renal tubular secretion
may be most appropriately designed based on unbound drug pharmacokinetics.

Binding of drugs to plasma proteins is often a significant
determinant of the pharmacological properties of antimicro-
bial agents. The proportional reduction in the in vitro activ-
ity of antimicrobial agents highly bound to plasma proteins in
media supplemented with serum has been noted for several
beta-lactam and other compounds (4, 19). Protein binding
may influence the pharmacokinetics of non-protein-bound
(unbound) as well as total (bound and unbound) drug by
affecting the rate of excretion or altering the rate and extent
of drug distribution from blood to tissues (3, 7, 18).
The extent of binding of drugs to protein is determined by

drug and protein concentration, the affinity of drug for the
protein, and the number of binding sites on each molecule of
protein (9). For some drugs, clinically achievable concentra-
tions in vivo may saturate binding sites on plasma proteins,
resulting in a free fraction of drug larger than that observed
at lower drug concentrations (9). As drug concentrations
decline in vivo due to drug excretion, the free-fraction
declines and approaches a constant value. This nonlinearity
in in vivo plasma protein binding may affect the decline in
total and unbound drug concentrations because of the de-
pendence of the volume of distribution and clearance of total
and unbound drug on the extent of plasma protein binding (3,
7, 17).

Cefonicid is a cephalosporin antibiotic highly bound to
plasma proteins (approximately 96% at 100 ,ug/ml) (5). We
have previously demonstrated saturable serum protein bind-
ing in vitro, with the fraction bound to protein decreasing to
as low as 67% with drug concentrations exceeding 400 ,ug/ml
(W. C. Shyu, M. N. Dudley, C. H. Nightingale, and R.
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Quintiliani, 35th National Meeting of the Academy of Phar-
maceutical Sciences, 1983). Pharmacokinetic data obtained
in volunteers receiving a single intravenous dose of 0.5 to 1
g of cefonicid intravenously have demonstrated high serum
concentrations and slow renal elimination (serum elimina-
tion half-life, approximately 4 h) (5). In view of the high,
concentration-dependent plasma protein binding of cefonicid
in vitro, the in vivo serum protein binding and disposition of
total and unbound cefonicid after a single large dose was
studied in humans.

MATERIALS AND METHODS
Subjects. Six healthy volunteers (four men, two women)

ranging between 24 and 30 years of age participated in the
study. The mean + standard deviation (SD) weight and
creatinine clearance (based on a 24-h urine collection) were
68.8 ± 11.3 kg and 127 ± 10.2 ml/min, respectively. All of
the following prestudy laboratory tests were within normal
limits: complete blood count, total serum protein, albumin,
aspartate aminotransferase, alanine aminotransferase, total
and indirect bilirubin, creatinine, and blood urea nitrogen.
All subjects fasted for 12 h before and 4 h after drug infusion.
No medications or alcohol were ingested for 48 h before drug
administration. All volunteers gave their written informed
consent according to the guidelines of our institution.

Dosing and sample collection. Each subject received a
single 5-min intravenous bolus infusion of 30 mg of cefonicid
per kg in 50 ml of 5% glucose solution (Monocid; Smith
Kline & French Laboratories, Philadelphia, Pa.). Samples of
venous blood (7 to 10 ml) were collected at the following
times: 0, 5, 10, 15, 20, 30, 45, 60, 75, and 90 min and 2, 2.5,
3, 3.5, 4, 5, 6, 8, 12, and 24 h after the dose. Blood samples
were collected from an indwelling intravenous catheter
during the first 8 to 12 h and then by direct venipuncture.
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FIG. 1. Change in serum protein binding of cefonicid in vivo as a
function of time after a single intravenous dose of 30 mg/kg in six
volunteers. Vertical lines indicate means ± SDs.

Normal saline was used to flush intravenous catheters to
maintain patency. Urine was collected, the volume was
measured, and a sample was saved during the following
intervals: 0 to 30, 31 to 60, 61 to 90, and 91 to 120 min and 2
to 2.5, 2.5 to 3, 3 to 3.5, 3.5 to 4, 4 to 5, 5 to 6, 6 to 8, 8 to
10, 10 to 12, 12 to 24, 24 to 36, and 36 to 48 h after
administration of the dose. Urine was frozen at -80°C until
the assay.
Unbound drug. Blood samples from volunteers were al-

lowed to clot and centrifuged, and the serum was harvested.
Unbound drug was immediately separated by ultrafiltration
of a portion of each serum sample with an MPS-1 unit with
a YMT membrane (Amicon Corp., Danvers, Mass.) through
centrifugation at 1,700 x g for 15 min at 37°C. Analysis of
binding properties in preliminary experiments demonstrated
that binding of cefonicid to serum proteins was rapid and not
time dependent. Validation studies also showed no degrada-
tion of cefonicid after incubation at 37°C in serum (data not
shown). Binding to the YMT membrane was checked by
ultrafiltration of an aqueous standard; complete recovery of
drug was observed in the ultrafiltrate. Serum and ultrafiltrate
were stored at -80°C until the assay.

Assay. Cefonicid concentrations in serum, serum ultrafil-
trate, and urine were measured by microbiological assay
with Bacillus subtilis (Difco Laboratories, Detroit, Mich.)-
seeded agar plates and paper disks spotted with 15 ,ul of
sample or standard. Standards (12.5 to 400 pLg/ml) for assay
of total cefonicid concentrations in serum were prepared
from pooled serum collected from drug-free healthy volun-
teers. Standards for the assay (1.25 to 50 p.g/ml) of unbound
serum and urine cefonicid concentrations were prepared in
Sorenson phosphate buffer. The lower limit of assay sensi-
tivity was 12 pLg/ml in serum and 0.8 ,ug/ml in buffer.
Standard curves of the zone size versus the natural logarithm
of the drug concentration were linear in the ranges listed
above with correlation coefficient (r) values greater than 0.99
on all days. The within-day coefficient of variation for the
assay ranged between 6 and 15% for serum standards (n = 6)
and 10 to 17% for buffer standards (n = 15). Drug content in
the ultrafiltrate below the limit of sensitivity of the
microbiologial assay was assayed with high-pressure liquid
chromatography (15).
Data analysis. The number of binding sites per mole of

albumin and the affinity of cefonicid for binding sites was
determined by nonlinear regression (14) of binding data using
the equation

n x ka [DA]
r = k

1 + ka [DAf
(1)

where r is the number of moles of drug bound to moles of
protein, n is the number of binding sites of a given type per
mole of protein, ka is the association constant between drug
and protein, and Df is the molar concentration of free drug
(9).

Total and unbound serum concentration versus time data
were analyzed by noncompartmental pharmacokinetic meth-
ods (8). The time-averaged free fraction of cefonicid in the
body (fp) after the dose was determined by (13)

- AUCU
fP AUCT (2)

where AUCU and AUCT are the areas under the serum
concentration-versus-time curve from time 0 to infinity for
unbound and total drug, respectively. Areas were calculated
by the linear trapezoidal rule. The total body clearance of
total (CLT) and unbound (CLU) drug was determined by
dose/AUCT or dose/AUCU, respectively. The volume of
distribution of total drug at steady state (VTSs) was deter-
mined by

v
dose x AUMCT dose x t'

Ss AUCT 2 x AUCT (3)

where AUMCT is the area under the first moment of the
plasma concentration of total drug-versus-time curve from
time 0 to infinity (calculated using the linear trapezoidal rule)
and t' is the time of drug infusion. The volume of distribution
of unbound drug at steady state (VU,s) was calculated by (13)

vUss = VTssfp (4)
The terminal slope (Xz) was identified by visual inspection

and calculated by unweighted least-squares linear regres-
sion. The half-life (tl/2Xz) was calculated by division of this
value into ln 2.
The renal clearance of total (CLTR) or unbound (CLUR)

was calculated by

CLTR or CLR AUCTOr UF ) (5)

where Ae (t1 - t2) is the amount of drug excreted unchanged
in the urine during the interval tl to t2 and AUCT or U (t1 - t2)
is the area under the corresponding total or unbound serum
drug concentration curve during the same interval. The renal
clearance values and total or unbound drug during the
various collection intervals were compared by analysis of
variance with repeated measures.

RESULTS

Figure 1 depicts the serum protein binding of cefonicid as
a function of time in six volunteers. Saturable serum protein
binding was observed. The mean + SD percentage of free
cefonicid was 17.6 ± 6.1% immediately after administration
and declined to 4.2 ± 0.9% by 3 h postadministration. Serum
protein binding approached a constant value of 98% as total
concentrations declined below 100 ,ug/ml, approximately 8 h
postadministration. Kinetic analysis of binding data in all
subjects revealed only one class of binding sites for
cefonicid, with a mean ± SD of 0.96 ± 0.16 binding sites per
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FIG. 2. Mean + SD total and unbound serum cefonicid concentrations versus time plot for six volunteers after a single intravenous dose

of 30 mg/kg.

mol of albumin. The mean ± SD affinity constant (ka) of
cefonicid for these sites was 5.7 x 104 ± 2.0 x 104 per M.
The decline in mean total and unbound serum cefonicid

concentration is depicted in Fig. 2. Total serum drug con-

centrations were high, with a mean ± SD peak concentration
of 341 ± 44.3 ,ug/ml immediately after dose administration.
After a rapid distribution phase, total serum concentrations
declined slowly, with a mean ± SD serum elimination
half-life of 4.1 ± 0.8 h. In contrast, unbound serum concen-

trations declined rapidly and in a prolonged nonlinear man-

ner; the mean ± SD peak unbound serum cefonicid concen-

tration was 46.2 ± 22.9 after administration and declined to
12.8 + 2.1 ,ug/ml within 1 h after administration. At 12 h,
serum concentrations were less than 1 ,ug/ml in all sub-
jects.
The pharmacokinetic analysis of total and unbound serum

cefonicid concentrations is summarized in Table 1. Values of
total body and renal clearance and volume of distribution at
steady state were substantially greater for unbound drug
than for total drug.
The renal clearance of total and unbound cefonicid during

10 time intervals is shown in Fig. 3. The renal clearance of
unbound cefonicid increased with time, with mean ± SD
values increasing from 5.7 ± 2.1 ml/min per kg during the
first hour after dosing to 10.8 ± 1.6 ml/min per kg between 8
and 10 h postadministration. The change in the renal clear-
ance of unbound cefonicid with time was statistically signif-
icant (P < 0.02, analysis of variance). In contrast, the renal
clearance of total cefonicid during these intervals did not
vary with time (P > 0.05, analysis of variance; Fig. 3). The

mean ± SD percentage of the dose recovered unchanged in
urine was 94.2 ± 6.4%.

DISCUSSION

The clinical and pharmacological importance of the non-

protein-bound, pharmacologically active fraction of drug in
vivo has recently been reviewed (12). In antimicrobial che-
motherapy, the influence of plasma protein binding on

pharmacological issues such as tissue distribution and in
vitro activity have been well studied, but only a few studies
have compared the concentration-time profiles of unbound
and total drug in humans (16, 21). Moreover, data from the
present study as well as other in vivo studies (21) and
computer simulations (17) demonstrate the marked effects of
in vivo saturation of serum proteins on the disposition of
total and unbound drug.
The concentration-dependent serum protein binding of

cefonicid was marked, with binding characteristics similar to
those observed in a previous in vitro study (ka = 6.4 x 104
per M; Shyu et al., 35th National Meeting of the Academy of
Pharmaceutical Sciences, 1983). The affinity of cefonicid to
serum proteins in vitro and in vivo is higher than that
reported for ceforanide (20), methicillin, and nafcillin (10);
these drugs do not appear to have concentration-dependent
protein binding at serum concentrations observed in hu-
mans. However, the affinity of cefonicid for plasma proteins
was similar to that observed for ceftriaxone, a drug showing
concentration-dependent binding similar to that of cefonicid
(21).

TABLE 1. Pharmacokinetic parameters (mean + SD) of total and unbound cefonicid in six volunteersa

Peak concn Clearance, ml/min (ml/min per kg)
Cefonicid ea conc AUC>=(mg. h/liter) V,,, liters (liters/kg)

(i±Wml) ~~~~~~~~Totalbody Renal

Total 324.7 + 46.4 1,559.3 + 301.4 22.4 + 3.0 (0.33 + 0.07) 21.1 ± 3.2 (0.32 + 0.08) 7.0 + 1.1 (0.10 ± 0.01)
Unbound 46.2 + 22.9 67.2 ± 8.6 517b + 85 (7.6 ± 1.1) 486b + 77 (7.2 ± 1.3) 168b + 54 (2.41 + 0.7)

a See the text for explanation of abbreviations.
bTime-averaged values due to nonlinear protein binding.
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FIG. 3. Mean + SD renal clearance of total and unbound cefonicid as a function of time in six volunteers. The increase in renal clearance
of unbound cefonicid with time was statistically significant (P < 0.02, repeated measures analysis of variance).

The distribution and excretion rate of total cefonicid was
similar to that reported by others using smaller or similar
doses (5). In contrast to total serum concentrations, un-
bound serum cefonicid concentrations declined rapidly and
in parallel with changes in the free fraction of drug in vivo.
Although unbound drug concentrations could be measured
up to 12 h in only three subjects, the half-life of the terminal
slopes of unbound and total drug concentration-versus-time
curves 8 to 12 h postadministration (3.5 ± 0.2 h for unbound
drug versus 4.1 ± 0.8 h for total drug) appeared to become
parallel (Fig. 2). This is consistent with the simulations
performed by 0ie et al. (17). The large change in the free
fraction of unbound cefonicid (approximately an eightfold
reduction over a 12-h period) resulted in a statistically
significant increase in the renal clearance of unbound
cefonicid during that time interval.

Despite similar binding characteristics, the effects of sat-
urable in vivo serum protein binding on the renal excretion
of unbound and total cefonicid are in sharp contrast to that
observed for ceftriaxone. Stoekel et al. (21) demonstrated no
change in unbound renal ceftriaxone clearance but a statis-
tically significant decrease in total ceftriaxone renal clear-
ance with time. The differences in the time dependence of
the renal excretion rate of these drugs may be explained by
the models of renal clearance proposed by Levy (11) and
Dudley and Nightingale (3). Assuming that the renal tubular
secretion rate of cephalosporins is a function of the total
drug concentration, the renal clearance of total drug may be
described by

CLTR = (1 - F) [(fu x GFR) + CLs] (6)

where F is the fraction of drug reabsorbed, GFR is the
glomerular filtration rate, fu is the fraction unbound, and
CLs is the renal secretion clearance or (Q x CL,)I(Q + CLI,
where Q is the plasma flow to renal tubular secretion sites,
and CL1 is the intrinsic renal secretion clearance referenced
to total drug (11).

Division of equation 6 by fu would define the renal
clearance of unbound drug

CLUR = (1 - F)[GFR + (CLs/fu)] (7)

Cefonicid appears to undergo extensive renal tubular secre-

tion in humans, with glomerular filtration accounting for only
a small part of the renal excretion (3). Under these condi-
tions, equation 6 may be reduced to

CL R = (1 - F)CLs
and equation 7 may be reduced to

CLUR = (1 - F)(CLs/fu)

(8)

(9)
Therefore, reduction in the free fraction (fu), which occurs
with time after dosing (Fig. 1), would be expected to result in
little change in total renal clearance and an increase in
unbound renal clearance; this is consistent with Fig. 3. In
contrast, ceftriaxone undergoes little or no renal tubular
secretion (3). The renal clearance of ceftriaxone may thus be
expressed as

CLTR = (1 - F) x fu x GFR (10)
and

CLUR = (1 - F)GFR (11)
Therefore, changes in the free fraction would be expected to
have no effect on the renal clearance of unbound ceftriaxone
and result in a decrease in the renal clearance of total
ceftriaxone with time. These predictions agree with the
observations noted by Stoekel and colleagues (21). Thus, it
appears that cephalosporins with a high degree of renal
tubular secretion and high, saturable protein binding would
be expected to have nonlinear excretion of the unbound,
pharmacologically active drug and linear excretion of total
drug.
These data may partially explain the poor clinical results

of single daily administration of cefonicid in the treatment of
tricuspid valve endocarditis due to Staphylococcus aureus
(2). Our data demonstrate that serum concentrations of
unbound, pharmacologically active cefonicid would exceed
the MBC for the isolates reported by Chambers et al. (2) only
transiently or not at all. Although some cephalosporins have
been shown to exert a postantibiotic effect against S. aureus
(approximately 2.5 h) (1), it is unlikely that the total duration
of bactericidal activity was sufficient to eradicate valve
infection (6). This experience and the present study suggest
that more frequent administration of cefonicid is necessary
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for the treatment of serious infections due to moderately
susceptible organisms, such as S. aureus.
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