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Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review,
we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on
historical and recent expeditions, and against the background of the geological events and
phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa.
The relationship of the fauna to environmental parameters, such as water depth, sediment type, food
availability and carbonate solubility, as well as species interrelationships, probably have shaped
present-day biodiversity patterns as much as evolution. However, different taxa exhibit different
large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of
biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition
or grain size. Similarities and differences between the SO biodiversity and biodiversity of global
oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as
well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is
likely to decrease as more information is gathered about SO deep-sea biodiversity by future
expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are
already apparent between deep Weddell Sea faunas and those from similar depths in the North
Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water,
biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due
to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water
production that can fuel the SO deep sea with freshly produced organic matter derived not only from
phytoplankton, but also from ice algae.
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1. INTRODUCTION
The deep sea is the largest environment on the planet,

the least well known and one of the least studied. It

contains extremely large habitats, andmillions of square

kilometres of continental slopes and abyssal plains.

These enclose other geological structures, including

canyons, seamounts, reefs, hydrothermal vents, mud

volcanoes and faults at active and passive margins,

which support unique microbiological and faunal

communities. When considering our humble knowl-

edge of deep-sea biodiversity, we assume that it is likely

that more species occur in the deep sea than anywhere
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else on Earth. In many taxa, far more than 90% of the

species collected in a typical abyssal sediment sample

are new to science, and many of these are rare. One

could argue that the high numbers of new species do not

necessarily mean that the deep-sea environment in the

SO is more diverse than the shelf, only that these areas

are less well studied. Although this is certainly the case,

intensive investigations since 2002 at approximately 40

stations in the SO during the ANDEEP (ANtarctic

benthic DEEP-sea biodiversity: colonization history

and recent community patterns) expeditions (figure 1)

reveal that, for some taxa, almost as many species are

known in the deep SO as on the Antarctic continental

shelf (Fütterer et al. 2003; Brandt &Hilbig 2004). Some

authors have demonstrated that the occurrence of rare

species in samples is the result of sampling the regional

fauna only (Rex et al. 2005a). If these species reflect
This journal is q 2006 The Royal Society
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Figure 1. Locations of the ANDEEP expeditions. Diamonds, ANDEEP I (January to February 2002); triangles, ANDEEP II
(February to April 2002); circles, ANDEEP III (January to April 2005).
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source–sink dynamics of larvae transported from bath-

yal to abyssal sites, then current views about the

hyperdiverse nature of deep-sea environments may

need to be moderated. Nevertheless, we do find rather

different patterns in the biodiversity and biogeography

of SO deep-sea meio-, macro- and megafaunal taxa,

which points to the fact that—even if the source–sink

hypothesis can be proved for some taxa—large-scale

biodiversity and biogeography patterns largely depend

on size, biology (feeding mode and reproductive

adaptations) and mobility of the taxa investigated

(cf. also Rex et al. 2005b) combined with historical

geologic patterns, productivity, predation and the

relationship between regional and local species diversity

(Witman et al. 2004).
In total, the SO covers an area of 34.8 million km2.

The shelves around Antarctica are on average

450–500 m deep, but exceed 1000 m in places. Of

the total SO area, the continental shelf (!1000 m in

depth) covers 4.59 million km2, the continental slope

(1000–3000 m in depth) covers 2.35 million km2 and

the deep sea (O3000 m in depth) covers approximately

27.9 million km2 (Clarke & Johnston 2003). Thus,

much of the SO is deep sea. The main purpose of this

paper is to present the first review of the benthic

organisms which inhabit this vast and little-known area

of ocean floor. We first consider the geological back-

ground to deep SO biodiversity. We then briefly review

biodiversity and biogeographic patterns, phylogenetic

relationships and relationships between faunal assem-

blages and environmental variables. In §9, we compare

and contrast Antarctic deep-sea ecosystems with those

from other parts of the world ocean. Much remains to

be learnt about biodiversity in the deep SO and we

hope this review will create a platform on which future

studies can build.
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2. HISTORY OF ANTARCTIC BIODIVERSITY
WORK
A chronological list of all terrestrial and marine

Antarctic expeditions and related historical events was

published by Headland (1989). The major expeditions

at the beginning of deep-sea exploration were orga-

nized by European scientists, although these were not

devoted to the SO deep sea. The first oceanographic

cruise, the Challenger Expedition, took place from 1872

to 1876. Further examples are the North Atlantic deep-

sea expeditions of the Norwegian RV Michael Sars in

1910, the Swedish RV Albatross Expedition in

1947–1948 and several others, culminating in the

Danish Galathea Expedition from 1952 to 1956

(Wolff 1960) that demonstrated the existence of life

even at the greatest depths of the oceans.

Many early expeditions to the SO investigated the

sediments. These included the German South Polar

Expedition (Philippi 1910), the Discovery Expeditions,

or later the USNS Eltanin, RV Conrad and USCGC

Glacier (e.g. Bullivant 1959; Anderson 1990), or

Russian and French expeditions (e.g. Dangeard et al.
1977). Their results documented that the SO deep

seafloor is characterized by soft sediment like other

deep-sea basins. However, it is characterized by a high

frequency of dropstones, and grain size usually

decreases with increasing distance from the continent

due to iceberg rafting. The percentage of silicate and

carbonate has also been demonstrated to increase to

the south of the Polar Front.

Few investigations of deep-sea biology have been

carried out in the SO, and none has been devoted

exclusively to the deep water. Some data were collected

in the years between 1950 and 1960 as part of

Russian and US expeditions (Eltanin, Glacier, Akade-
mik Kurchatov, Akademik D. Mendeleiev) that mainly
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Figure 2. Diagram to show the evolution of deep-marine connections between the Weddell Sea region and the rest of the world’s
developing oceans as the Gondwana supercontinent broke up. Horizontal lines represent developing oceans through time, with
side arrows indicating the initiation of links to other oceans and seas. The timing of events is in millions of years.

The deep Southern Ocean benthos A. Brandt et al. 41
focused on the shelf off the South Orkneys and South

Sandwich Islands. The Beagle Channel was sampled in

1873–1876 (HMS Challenger), including several deep-

sea stations, and later during IBMANT (interactions

between the Magellan Region and the Antarctic) in

1994 (Arntz & Rios 1999; Arntz et al. 1999).
More recent programmes, such as EPOS (European

Polarstern Studies) and EASIZ (Ecology of the

Antarctic Sea Ice Zone), also included collection of

deep-sea data, but again only as additional sampling to

that on the shelf to study key ecological processes at the

organism and community level. Both have provided a

wealth of taxonomic data on the benthos of the high

Antarctic Weddell Sea and the Antarctic Peninsula

(Arntz et al. 1990; Arntz & Gutt 1997; Arntz & Clarke

2002; Arntz & Brey 2003). GLOBEC and JGOFS both

concentrated on process studies in the deep pelagic

realm. Most information on the benthic deep-sea fauna

in the Weddell Sea, available to date, is based on a few

stations sampled during EASIZ II in the austral

summer of 1998 (Brandt 2001; Arntz & Clarke

2002), and ANDEEP I–III, which was the most recent

and extensive biological deep-sea survey in the

Antarctic, yielding 40 biological, sedimentological and

geological stations in 2002 and 2005 (Brandt & Hilbig

2004). The results from previous Russian deep-sea

expeditions were summarized by Malyutina (2004),

including a table with all benthic taxa collected during

these surveys.

While the biological results from the Eltanin
expeditions in the deep Atlantic and Pacific show that

a high percentage of the shelf fauna can also be found

on the slopes and in the deep sea (Menzies et al. 1973),
data from the RV Polarstern ANDEEP campaigns in the
Phil. Trans. R. Soc. B (2007)
SO demonstrated that a high percentage of the deep-
sea fauna is unknown.
3. GEOLOGICAL HISTORY AND EVOLUTION OF
THE ANTARCTIC
The focus of ANDEEP investigations has been the
deep oceanic basins of the Scotia and Weddell Seas
(Brandt et al. 2004a,b). The region has a complex
tectonic history, being sited close to the point where
the break-up of the Gondwana supercontinent began,
ca 180 Myr ago, close to the Bouvet Mantel Plume
(White & McKenzie 1989; Storey 1991, 1995). Thus,
the Weddell Sea developed at the focus of radial
seaways, spreading out to become the Indian and
South Atlantic oceans (figure 2). The Weddell is the
older of the two seas under consideration here, with
the seafloor dating back to the Middle Jurassic,
whereas the Scotia Sea formed much later, during
the last ca 40 Myr ago (Thomson 2004).

(a) Indian Ocean

Probably the first break across the Gondwana super-
continent was that between Africa and the Madagascar–
India–Antarctica block, forming the Somali and
Madagascar basins. Although spreading began ca
165 Myr ago, the Madagascar Basin remained ‘closed’
until some time between 132 and 120 Myr ago (Roeser
et al. 1996), after which a continuous seaway opened
along the coast of eastern Africa and a link to the
Tethyan Ocean was initiated. India/Madagascar began
to break away from Antarctica/Australia at ca 135 Myr
ago and had completely separated by 100 Myr ago.
Madagascar itself separated from India at ca 100 Myr
ago. Thus, by Mid-Cretaceous times there were
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well-developed marine connections between the south-
ernmost Atlantic/Weddell Sea region and the Tethys
Sea. An arm from the southern Indian Ocean began to
extend between Australia and Antarctica from ca
95 Myr ago, and the complex of continental fragments
that now make up the New Caledonia–New Zealand
region began to separate from the Australia–West
Antarctica margin between 75 and 84 Myr ago.

(b) South Atlantic

The South Atlantic began to open from the south at
ca 127 Myr ago and promulgated northward to join up
with the North Atlantic at ca 90 Myr ago (Natland
1978; Ryan et al. 1978). However, for a considerable
time, the Walvis Ridge acted as a barrier, separating
the South Atlantic into two basins: Angola–Brazil
(northern) and Cape–Argentine (southern). During
the Aptian (121–112 Myr ago), the Angola–Brazil
Basin was closed to the north and the Walvis Ridge at
least partly emergent, forming a more-or-less closed
basin and leading to the deposition of evaporate
deposits. The Cape–Argentine Basin was also
restricted to the south by the Agulhas Fracture Zone
sill and largely anoxic conditions prevailed. Sinking
of the Walvis Ridge and Agulhas sill through the
Albian (112–99 Myr ago) allowed flushing and
oxygenation of first the Cape–Argentine Basin and
finally the Angola–Brazil Basin in the Turonian
(93.5–89 Myr ago) when a connection to the North
Atlantic was established.

(c) Weddell Sea

The tectonic history of the Weddell Sea is by no means
as clear as for the Atlantic and Indian oceans, not least
because the pre-break-up configuration of the region
has yet to be confirmed, and because of the difficulty in
identifying seafloor magnetic anomalies. The whole of
what is now West Antarctica is generally believed to
have been a mosaic of continental blocks, each of which
moved to its present position in Late Mesozoic times.
However, there seems to be little agreement as to their
precise original positions (cf. Grunow et al. 1991;
Leitchenkov et al. 1996; Storey et al. 1996). Further
problems are posed by the Falkland Islands. Once
widely considered as part of an original fixed extension
to the Argentine continental shelf, there is a growing
body of geological argument to suggest that they
rotated from a position, east of Natal (Mitchell et al.
1986; Curtis & Hyam 1998). However, it is uncertain
exactly when and how this occurred, and no suture
between a supposed Falkland block and continental
Argentina has yet been identified.

The opening history is clearer some time after
126 Myr ago when gravity (McAdoo & Laxon 1996)
and magnetic anomalies become identifiable in the
central and northern Weddell Sea (Livermore &
Hunter 1996). By that time, the Falkland Islands
block was probably attached to the Argentine con-
tinental shelf as the Falkland Plateau, and the
Ellsworth–Whitmore mountains, Haag Nunataks and
Weddell Sea Embayment blocks had moved close to
their present locations; the Antarctic continent had
more or less its present configuration back to ca
120 Myr ago (Hunter et al. 1996; Livermore & Hunter
Phil. Trans. R. Soc. B (2007)
1996, p. 236). Although identifiable seafloor magnetic
anomalies are absent in the southern part of the
Weddell Sea, LaBrecque & Barker (1981) reported
seafloor ca 165 Myr old between 698 and 708 S in the
eastern Weddell Sea and suggested that the ‘southern
Weddell Basin is pre-Late Jurassic to Cretaceous in
age’; other authors (e.g. Livermore & Hunter 1996)
suggest a younger age, ca 150 Myr old. Seafloor in the
northern Weddell Sea can be dated to as recent as
10 Myr ago in the vicinity of latitude 608 S.

The possibility for the existence of a ‘shallow’
marine connection from the Pacific Ocean into the
Weddell Sea–South Atlantic area, prior to the opening
of Drake Passage (§3d ), was suggested by Lawver &
Gahagan (1998). They envisaged that, in the Early
Cenozoic, prior to Antarctic glaciation, a seaway
existed between the Pacific and the Atlantic, extending
from the Ross Sea, between Marie Byrd Land and the
Transantarctic Mountains, and then between South-
eastern Antarctic Peninsula and the western end of the
Ellsworth Mountains, into the Weddell Sea. While this
‘trans-Antarctic seaway’ was unlikely to have permitted
much water exchange between the proto-Ross and
Weddell Seas (Lawver & Gahagan 2003), it could
nevertheless have provided a route for the migration of
marine animals. They suggested that this seaway may
have persisted into the Oligocene, as long as there was
no West Antarctic ice sheet, and perhaps even into the
Mid-Miocene (ca 22.5 Myr ago). This trans-Antarctic
seaway could have reopened during the Pliocene
(ca 4 Myr ago) warming.
(d) Drake Passage and Scotia Sea

Owing to its importance to the understanding of the
origin of the Antarctic Circumpolar Current (ACC),
there have been numerous studies of the tectonic
evolution of Drake Passage and the Scotia Sea. Ideas
on the time of opening of Drake Passage and the
Scotia Sea and their possible effects on the marine
biota were reviewed by Thomson (2004, 2005), and
the resultant oceanographic changes by Mackensen
(2004). There is general agreement that the old
continental link between South America and the
Antarctic Peninsula began to disintegrate ca 40 Myr
ago (Lawver & Gahagan 2003) or even 50 Myr ago
(Livermore et al. 2005), but the detailed history is far
from resolved (cf. also Brown et al. 2006). A key
issue has been the timing of the opening of Drake
Passage and the onset of deep-water flow. Livermore
et al. (2004) argued that the Shackleton Fracture
Zone ridge is a relatively recent feature (less than
8 Myr old), and therefore that deep-water flow from
the Pacific eastwards was possible in the Early
Oligocene and potentially more powerful than that
of today. However, it still remains unresolved as to
how much of a barrier the dispersing horseshoe of
continental fragments of the Scotia arc to the east
might have posed (Maldonado et al. 2003). The
precise relationship between the development of the
ACC and the onset of glaciation also awaits clarifica-
tion. The timing of the two is close, around the
Eocene–Oligocene boundary (ca 34 Myr ago), but
which is the older?



Table 1. Species numbers and endemism rates for selected macro- and megabenthic taxa in the SO. (All numbers are based on
the current knowledge of diversity in the SO and are given to the best estimate taken from either article or personal
communications. Numbers are given for the total number of species known from the SO and their percentage of endemism. The
columns ‘shelf (0–1000 m)’ and ‘deep sea (O1000 m)’ give total number of species found at these depth zones. The columns
‘shelf only’ and ‘deep sea only’ represent the number of species found only in this depth zone. As for some taxa, no information
on their depth distribution of species is given in the article; the numbers presented below do not always add up.)

Southern
Ocean endemics

shelf
(0–1000 m)

shelf
only

deep sea
(O1000 m)

deep sea
only

Porifera ( Janussen & Tendal 2005, personal communication)
Hexactinellida 50 60% 27 w45 w30
Calcarea 20 60% 14 w15 w10
Demospongiae 400 60% w350 100 w60

Cnidaria (Peno Cantero 2004)
Hydrozoa 155 148 13 7

Mollusca
Bivalvia (Linse et al. 2003, 2006b) 158 57% 122 76 82 36
Gastropoda
Prosobranchia (Linse et al. 2003, 2006b) 535 80% 463 365 160 62

Polyplacophora (Linse, personal communication) 8 60% 8 6 2 0
Scaphopoda (Steiner & Kabat 2004) 8 50% 3 3 6 5
Cephalopoda
Octopoda (Collins & Rodhouse 2006) 36 100% 25 22 11 9

Crustacea
Malacostraca
Amphipoda (De Broyer 2005, personal com-
munication)

510 85% 470 427 84 38

Tanaidacea (Guerrero-Kommritz 2005, personal
communication)

127 23% w80 w50

Cumacea (Mühlenhardt-Siegel 2005, personal
communication)

77 95% 72 68 9 5

Isopoda (Brandt 2006, personal communication) 991 87% 371 327 w650 w600
Mysidacea (Brandt et al. 1998) 37 51% 37 24 13 0
Natantia (Gorny 1999) 10 10 8 4
Reptantia (Gorny 1999) 27 27 21 1

Tentaculata
Bryozoa (Barnes & De Grave 2001)
Stenolaemata 35 35 0
Gymnolaemata 307 w280 w30

Brachiopoda (Forster 1974) 19 79% 13 6 13 5

Echinodermata
Echinoidea (David et al. 2000)
Regularia 35 66% 31 19 16 4
Irregularia 39 75% 29 19 20 10
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Such profound geographical changes in the past
would almost certainly have had a marked influence on
the migration, distribution and evolution of marine
taxa in general. Given its location close to the point of
origin of the Gondwana break-up, it might be expected
that the faunas of the Weddell Sea were particularly
influenced. To what extent the changes may still be
reflected in the benthic marine faunas of the present
day remains to be seen, but the tectonic history should
be borne in mind when trying to assess the evolutionary
history of the faunas.
4. BENTHIC COMPOSITION AND DIVERSITY OF
MEIO-, MACRO- AND MEGABENTHOS
The composition and biodiversity of SO marine taxa
has been dealt with in many publications (e.g. Dayton
1990; Arntz et al. 1997; Brandt 1999; Clarke &
Johnston 2003; De Broyer et al. 2003). Species richness
of the SO marine fauna was published, for example, by
Phil. Trans. R. Soc. B (2007)
Dell (1972) andWhite (1984) and recently reviewed by

Arntz et al. (1997), De Broyer et al. (2003) and Clarke &
Johnston (2003). Themost speciose taxa of theAntarctic

benthos are the Polychaeta, Gastropoda, Bryozoa,
Amphipoda, Isopoda and Porifera (table 1). The sessile

taxa are favoured on the Antarctic shelf as a result of the
adequate substrata provided by the poorly sorted
glacial–marine sediments and increasing incidence of

dropstones towards the shore (Clarke 1996). Polychaetes
and molluscs are speciose in the SO, occurring with 800

species or more. Some taxa of Amphipoda and Isopoda
(Peracarida)may have radiated owing to the extinction of
decapod crustaceans.

In general, the species composition of abyssal deep-
sea communities is poorly known in comparison with

shelf and upper-slope environments (Gage & Tyler
1991). The SO deep sea differs in faunal composition

from the shelf. Contrary to the SO shelf, which is
zoogeographically well isolated through the ACC, the
SO deep-sea fauna can freely migrate in and out of
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the SO abyssal plains. Data from the SO deep sea
obtained so far have shown that the fauna does not
differ generally in composition at the higher taxonomic
level from that of other deep-sea regions of the world
oceans. However, at the species level, most of the SO
deep-sea meio- and macrofauna are new to science,
except for certain well studied groups, notably the
hard-shelled, Foraminifera which are well known at the
species level.

Large-scale biodiversity in the deep sea exhibits a
strong poleward decline in the northern hemisphere
(Poore & Wilson 1993; Rex et al. 1993; Crame 2000).
However, patterns in the southern hemisphere have
been shown to be different (Brey et al. 1996), and
largely reflect a combination of evolutionary processes
and environmental gradients that have helped to shape
taxonomic diversity gradients (Crame & Clarke 1997;
Crame 1999).

(a) Meiofauna

The deep-sea meiofauna (protists and metazoans in the
32–1000 mm size range) is usually dominated by
Foraminifera and nematodes, followed by harpacticoid
copepods, with other groups constituting a minor
component (Thiel 1983; Vincx et al. 1994). Many
studies have excluded the Foraminifera, and data on
their contribution to the meiofauna are therefore sparse
on a global scale. Published values range from a few per
cent to more than 90% of the total meiofaunal
abundance (Gooday 2001). However, when the rarely
studied soft-shelled taxa are included, the proportion of
Foraminifera usually exceeds 50% (Vincx et al. 1994;
Gooday 2001). Cornelius & Gooday (2004) report the
only data on the relative abundance of the foraminiferal
and metazoan meiofauna in the same samples from the
SO. Foraminifera typically made up 60–78% of the
meiofauna in the western Weddell Sea (1100–5000 m
water depth).

To a large extent, work on Foraminifera and
metazoan meiofauna in the SO has been conducted in
different places by different people with different
scientific aims. Early taxonomic work on Foraminifera
was linked to major national expeditions and based
on qualitative samples collected using sounding
devices and trawls (Ehrenberg 1844; Pearcey 1914;
Heron-Allen & Earland 1922; Wiesner 1931; Earland
1933, 1934, 1936; Chapman & Parr 1937; Parr 1950;
Lindenberg & Auras 1984). Much of the subsequent
research was carried out by geologists and addressed
only the fossilizable hard-shelled Foraminifera.
Mcknight (1962)made the earliest quantitative studies,
while the first workers to use rose Bengal staining to
distinguish live from dead Foraminifera were Herb
(1971) and Basov (1974). In recent decades, box corers
(Mackensen et al. 1990, 1993; Schmiedl & Mackensen
1997) and hydraulically damped multiple corers
(Harloff & Mackensen 1997; Cornelius & Gooday
2004) have been the standard equipment used to
sample Foraminifera and other meiofauna in the SO.
In general terms, foraminiferal assemblages in the deep
SO comprise a mixture of calcareous, agglutinata and
organic-walled taxa, resembling those found at similar
depths in the North Atlantic. Macrofauna-sized komo-
kiacean species that are known from the North Atlantic
Phil. Trans. R. Soc. B (2007)
are abundant in the central Weddell Sea, as they are on

other abyssal plains. However, as discussed below,
distinctive, entirely agglutinated assemblages occur in

some intrashelf basins around the Antarctic continent.
Another notable feature of SO Foraminifera is the

prevalence of species attached to hard substrata, mainly
dropstones. Taxa such as Dendrophrya spp., Dendronina
spp.,Sorosphaera spp. andTholosina spp. are abundant at
sites on the continental slope aroundSouthGeorgia, the

Antarctic Peninsula and in the Scotia Sea (Earland
1933, 1934). More than two-thirds (69%) of the 852

stained Foraminifera recovered from a box core (above
300 mm fraction, 0–5 cm layer) at 1100 m in the

northwestern Weddell Sea (ANDEEP II station 133)

by Cornelius (2005) were attached to dropstones.
However, many of these species are macrofaunal in size.

Data on the diversity of deep-water foraminiferans
have been reported for Antarctica by many authors

since the 1960s (Mcknight 1962), but different
methodologies have made comparisons between sites

difficult. Moreover, the vast majority of studies are
confined to hard-shelled taxa, and many earlier

investigations concerned ‘total’ (live plus dead) assem-
blages. Only Cornelius &Gooday (2004) included soft-

shelled species among their live assemblages. They
recognized 158 live foraminiferal species in small core

samples (above 63 mm fraction) from the western
Weddell Sea. Diversity indices were highest, and

dominance lowest at 3000 and 4000 m. A notable
feature of this dataset was that species numbers,

diversity indices and dominance varied considerably
between replicate subcores at some stations, largely

resulting from variations in the abundance of the
dominant species, Epistominella exigua.

The first metazoan meiofaunal study in the Antarc-

tic deep sea was by Herman & Dahms (1992), who
described higher taxon composition along a depth

transect (500–2000 m) across the continental shelf in
Halley Bay. Subsequently, the ecology of higher taxa

was studied off Kapp Norvegia (Vanhove et al.
1995a,b), along a depth transect at the South Sandwich

Trench (Vanhove et al. 2004), at abyssal depths near
the Shackleton Fracture Zone (Gutzmann et al. 2004)
and at two sites in the Ross Sea (Fabiano & Danovaro
1999). The last is the only paper on deep-sea

meiofauna in a non-Atlantic sector of the SO.
Metazoanmeiofauna communities are generally rich

in higher taxa. A total of 29 have been reported from
the Antarctic, with between 3 (Gutzmann et al. 2004)
and 22 (Herman & Dahms 1992) coexisting in
individual samples. As in most other marine sediment

communities, nematodes dominate the meiofauna
(excluding Foraminifera) in the Weddell Sea, where

they make up between 83 and 97% of the total

community compared with 56 and 97% in the Ross
Sea (Fabiano & Danovaro 1999). The second most

abundant group are the harpacticoid Copepoda
(1–9%; 27% are reported in the Ross Sea). Other

taxa frequently found in Antarctic marine sediments
include the Polychaeta, Kinorhyncha, Ostracoda,

Loricifera, Gastrotricha, Tardigrada and Bivalvia,
although these are often represented by a few

individuals only.
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Figure 3. (a) Average meiofauna densities versus depth, with
symbols referring to the information source. Note that the
data points from Gutzman et al. (2004) represent median
densities, while other data points represent mean densities.
(b) Average number of genera versus depth, with symbols
referring to the information source.
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The Nematoda is the only group to have been

examined at a lower taxonomic level (genera and
species; figure 3a,b). Nematode genus composition has

been studied on the continental slope off Kapp
Norvegia and Halley Bay (Vanhove et al. 1999),

Vestkapp and Bransfield Strait (Lee 2005, unpublished
data) and along a bathymetric gradient towards the
South Sandwich Trench (Vanhove et al. 2004). In total,

194 nematode genera have been recognized, with
between 30 (1100 m, South Sandwich Transect) and

73 (1000 m, Drake Passage) occurring at each station.
On the trench floor (6300 m), 34 nematode genera

were counted. Genus diversity seems to be negatively
related to depth (figure 3b), although this conclusion is
based mainly on data from a single study at depths

between 2000 and 6000 m in the South Sandwich
Trench (Vanhove et al. 2004).

Recently, species diversity has been analysed within
a number of selected nematode genera (Vermeeren

et al. 2004; Fonseca et al. 2006; De Mesel et al. 2006;
Ingels et al. in press). These studies suggest very high

local and regional species diversity. The highest
number of co-occurring species within the same
genus was found at 2000 m off Vestkapp, where 23

species of the genus Acantholaimus occurred in one
sample. At the same site, five Dichromadora species and

one Molgolaimus species were recognized. Thus, 29
species were distinguished among only 3 out of the 68

genera analysed. These genera represented 14% of the
total community in terms of numbers. Many species
occurred only at one site, indicating high species
Phil. Trans. R. Soc. B (2007)
turnover between sites (b-diversity) and thus high
regional diversity.

(i) Macrofaunal composition and diversity

Diversity of macrofaunal taxa is poorly known, but
differs tremendously between taxa. For example, high
latitude decapod crustaceans are impoverished,
probably as a result of physiological constraints since
the Tertiary climatic deterioration, and crabs probably
became extinct ca 15 Myr ago (Arntz et al. 2006).
Approximately 120 benthic species of shrimp and crab
occur in the Subantarctic. In the high Antarctic, only
five benthic shrimp species are represented (Arntz &
Gorny 1991; Gorny 1999; Thatje et al. 2005).

Lithodidae (decapod crabs) were recently found in
Antarctica (Thatje et al. 2005) and occur in the SOwith
15 species. Recolonization of the continental shelf
might have occurred via the deep sea and there is
evidence of recent speciation among taxa on isolated
seamounts and islands (Thatje et al. 2006).

Within the Isopoda, 317 species (morphotypes)
were discriminated during the first two SO ANDEEP
I and II deep-sea surveys to the Atlantic sector of the
SO, the Drake Passage, Elephant Island, the South
Shetland Islands and trench, the Weddell Sea and the
southeastern South Sandwich Islands (Brandt &
Hilbig 2004). Ninety-eight per cent of these belong
to the suborder Asellota. Species of the suborder
Valvifera or the family Serolidae that are typical for
shelf stations were much rarer in the SO deep sea.
Species richness was documented to be highest in the
northwestern Weddell Sea during ANDEEP I and II.
Preliminary results from ANDEEP III revealed that
the eastern Weddell Sea slope or lower shelf at
approximately 1000 m depth is characterized by a
very high abundance of isopods, indicating that
diversity might also be high. Within the Asellota, the
Munnopsididae were the most dominant isopod
family, with 61% of the specimens, 118 species and
28 genera. Other important families were the
Desmosomatidae with 48 species, Haploniscidae
with 42, Ischnomesidae with 34, Nannoniscidae with
14 and Macrostylidae with 7 species (Brandt et al.
2004a,b; Fahrbach 2006). Families such as the
Paramunnidae (11 species) and Munnidae (12
species) were less diverse in the deep sea, as were
the species of the suborders of the Scutocoxifera (e.g.
the Valvifera with six species and the Serolidae—three
species in the SO deep sea—of the suborder
Sphaeromatoidea).

A very high number of the species, almost 50%, were
rare and occurred only at a single station, with only one
or a few specimens. The proposed source–sink
hypothesis by Rex et al. (2005a,b) is unlikely to apply
here owing to the brooding biology of isopods and their
feeding mainly on detritus. Moreover, the evolution of
many of the rare species in the bathyal or abyssal depths
is likely and was hypothesized (Brandt 1991; Raupach
2004). Depth was the most important factor account-
ing for differences in isopod communities followed by
sediment composition and grain size, and there was no
clear pattern between isopod communities and geo-
graphical area. In the past, the SO deep-sea Isopoda
were most extensively investigated by Russian scientists,
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and the knowledge (mainly the descriptions of new

species) is summarized in a table by Malyutina

(2003, 2004).

Amphipod crustaceans are known to count among

the most speciose animal groups in Antarctic coastal

and shelf communities, where 510 benthic and bentho-

pelagic species have been recorded (De Broyer &

Jazdzewski 1996, updated; Vinogradova 1997). In the

Antarctic deep sea, the very limited investigations

before the ANDEEP cruises revealed the presence of

72 benthic or benthopelagic species belonging to 33

families below 1000 m. Among these, only 16 species
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from 12 families—all primitive and characterized by

free-swimming males—were known from the abyssal

zone below 3000 m.

More than 10 000 amphipod specimens were

collected during the ANDEEP cruises (Brandt &

Hilbig 2004), using epibenthic sledge (EBS), baited

traps, Agassiz trawl and boxcorers. For the Antarctic

deep sea, the ANDEEP results showed that Amphi-

poda contributed up to 32% of the large material

collected by the EBS, ranking second after Isopoda

(38%), the usual dominant group in the deep sea. This

is in sharp contrast with other deep-sea samples where
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amphipods are usually much less abundant (Dahl
1954; Brandt et al. 2004a,b).

Within the amphipods (with an estimated 200
species in the Antarctic deep sea), the scavenger guild
has been studied in detail and provided useful
information on the composition and distribution of
this part of the amphipod taxocoenosis. In the
Antarctic deep sea, below 1000 m, 46 scavenger species
were collected using baited traps (Takeuchi et al. 2001;
De Broyer et al. 2004, in press). They mostly belong to
the Lysianassoidea, including 39 species from 18
genera and 8 families. New species of Alicella,
Hirondellea, Orchomenopsis, Paralicella and Tryphosella
were found. In addition to lysianassoids, single species
of Epimeriidae and Iphimediidae (the latter acciden-
tally in traps) were also sampled, as well as some
Eusiridae and Stegocephalidae.

The Antarctic continental slope (1000–3000 m)
appears to be richer in scavenger species than elsewhere
in the world at similar depth range (31 Antarctic spp.
versus maximum 11 elsewhere). On the other hand, in
the Antarctic abyssal waters (3000 m or deeper), the
species richness of the scavenger guild (17 spp.
recorded) appears quite similar to that of the abyssal
trap collections elsewhere in the world. Indeed, the
largest abyssal trap record outside the SO yielded 15
different species (13 lysianassoids, 1 scopelocheirid, 1
valettiopsid), from 3144 to 5940 m in the northeastern
and tropical Atlantic Ocean (Vader 1972; Bowmann
1974; Thurston 1990; Berge & Vader 2001, 2003).
The relation between species richness of necrophagous
amphipods and depth is shown in figure 4a. The figure
clearly shows the variability of amphipod richness in
coastal and shelf traps, and its relatively limited
reduction from the shelf down-slope to the abyssal
zone. As the identification process is still in progress,
the total number of deep-sea amphipod species
collected by ANDEEP is presently unknown, but it
can be estimated on the basis of the sorting operations
and present identifications to be over 200. A high
percentage of unknown species has been detected in
most families (De Broyer et al. 2004; Berge 2005,
personal communication; Thurston 2005, personal
communication).

Tanaidacea were known with 127 species from the
SO, mostly from shelf depths (Brandt 1999; Schmidt
1999). However, recent descriptions (e.g. Blazewicz-
Paszkowycz & Larsen 2004; Guerrero-Kommritz &
Blazewicz-Paszkowycz 2004) have raised this number
to 173 species according to Guerrero-Kommritz
(2005, personal communication). Besides 55 species
known from the deep sea, 50 are known from the
continental shelf, 34 from the west Antarctic and 34
species from the east Antarctic.

Cumaceans were known with 77 species from the
SO, mainly from the shelf, and 73 are endemic for this
area. From these 73 species, four species show a wide
bathymetric distribution and occur on the shallow shelf
deeper than 1000 m, and another five species occur
only deeper than 1000 m. Nevertheless, many new
species still need to be described from the ANDEEP
material, and identification and sorting of these has just
started (Mühlenhardt-Siegel, personal communi-
cation). Mysidacea are known with 59 SO species
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(Brandt et al. 1998; Brandt 1999), with 18 species
occurring at 1000 m or deeper. Mysidetes is the most
speciose genus and the species Eucopia australis has the
widest bathymetric range down to 6000 m (Brandt
et al. 1998).

Besides Peracarida, the most important macrofaunal
taxa are Polychaeta and Mollusca (Bivalvia and
Gastropoda). There is very little information on the
diversity of deep-sea polychaetes from the SO, as
publications resulting from the expeditions to Antarctic
waters since the end of last century (e.g. McIntosh
1885; Monro 1930, 1936; Augener 1932; Fauvel 1936;
Hartman 1964, 1966, 1967; Hartmann-Schröder &
Rosenfeldt 1988, 1989) do not address quantitative
questions. Hilbig (2001) published the first quan-
titative results based on samples from depths greater
than 1000 m that yielded approximately 800 individ-
uals belonging to 115 species in 28 families. The most
speciose family was the cirratulids with 13 species,
followed by ampharetids (11 species), terebellids
(9 species), paraonids (8 species) and maldanids
(8 species). All of these families are sedentary or
discretely motile surface or subsurface deposit feeders
that live either at the sediment–water interface
(cirratulids, ampharetids, terebellids and paraonids)
or deeper in the sediment (maldanids). The only vagile
family with a relatively large number of species was the
syllids. The opportunistic spionids and capitellids were
poorly represented (6 and 2 species, respectively), as
well as epibenthic and highly vagile forms, such as
polynoids, and motile carnivores, such as nephtyids
and glycerids. Thus, while polychaete diversity at the
level of families in the Antarctic generally resembles
that found elsewhere in the deep sea, several opportu-
nistic families typically dominating temperate slope
communities are poorly represented. Reasons for this
may be a lesser abundance of patches of organically
enriched sediments and opportunist niches being
occupied by amphipods rather than polychaetes
(Hilbig 2001). Species richness is low if compared
with the temperate deep sea (Hilbig & Blake 2006;
Hilbig et al. in press), but the diversity is high if the
extremely low abundances are considered.

Diversity patterns of polychaetes have proved to be
complex (Hilbig et al. in press) as depth-related trends
can be overlain by strong regional differences. For
example, if the shelf and upper slope off the Antarctic
Peninsula are compared with the Weddell Sea shelf,
species richness is about half as high on theWeddell Sea
shelf and thus very similar to the adjacent slope region.
First quantitative investigations of abyssal plain and
trench stations in the Weddell and Scotia seas indicate
highly variable abundance and species richness values
that on average tend to be about half that of the slope
(Ellingsen et al. submitted).

Most of the molluscan species found in the Antarctic
deep sea belong to the macrofauna. Exceptions are
some large-sized turrid, naticid, buccinoid and bath-
ydorid gastropods, scaphopods of the genera Siphono-
dentalium and Fissidentalium and cephalopods.

To date, we know approximately 190 molluscan
morphospecies of five classes from the deep sea. With
100 morphospecies, gastropods are the dominant
group in terms of species numbers, followed by
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bivalves. Sixty species of bivalves belonging to 17
families were found during the ANDEEP cruises, and
at least seven of these species are new to science. In
comparison with the shelf fauna of the Scotia Arc, the
deep-water bivalve community showed similar species
richness. This indicates that there is no diversity cline
with depth in Antarctic bivalves, but it does provide
evidence for underestimated species richness in deep
water owing to the lack of sampling (Linse 2004).
Aplacophoran species are quite common with 6
morphotypes of Caudofoveata and 15 morphotypes of
Solenogastres. Seven species of scaphopods and two
species of polyplacophorans were found. While most of
the bivalve and scaphopod species show a wide
distributional range and occur with several specimens
in the samples, gastropod species have rare occur-
rences; often they are found with only one to two
specimens at one to two sites (Linse et al. 2006b).

The diversity and spatial distribution of polychaetes,
isopods and bivalves in the Atlantic sector of the deep
SO has recently also been compared in Ellingsen et al.
(submitted), using datasets collected during the EASIZ
and ANDEEP cruises. Both the isopods and the
polychaetes had a high proportion of unique (species
restricted to one single site, 46 and 50%, respectively)
and duplicate species (species found at only two sites,
24 and 22%, respectively). However, the bivalves
displayed a different distributional pattern, with a
higher proportion of the species represented at more
sites and only 17% of the species restricted to one site.
The proportion of bivalve species found at only one,
two or three sites (50%) was lower than that of isopods
and polychaetes (Ellingsen et al. submitted).

The number of species shared between all pairwise
combinations of sites was low for all three taxonomic
groups, and the proportion of the average number of
shared species of the average total richness for all
pairwise combinations of sites was low (7.0% for
isopods and polychaetes and 17.6% for bivalves).
Using Whittaker’s original b-diversity measure and
the classical Jaccard similarity coefficient, Ellingsen
et al. (submitted) showed that the extent of change of
community composition among sites was high for all
three taxonomic groups, although to a lesser extent for
the bivalves.
(ii) Megafaunal composition and diversity

More than 26 major taxonomic groups are recognized
among the megafauna of the SO deep sea. Echino-
derms dominate in terms of abundance, biomass and
species richness. Within this taxon, holothurians are
more diverse and higher in biomass than ophiuroids,
asteroids and echinoids. The dominance of holothur-
ians is typical of many deep-sea communities in the
northeast Atlantic Ocean (Billett et al. 2001). In terms
of abundance and biomass, other taxa, including
sponges, anthozoans, malacostracan crustaceans, poly-
chaetes, gastropods and bivalves, were of less import-
ance. When present, both fishes and cephalopods
(mainly octopodids) are important components in
terms of biomass.

In general, the SO deep-sea megafauna can be
divided into three major groups defined by their
Phil. Trans. R. Soc. B (2007)
lifestyles: (i) errant benthopelagic species, (ii) errant
benthic species, and (iii) sessile species.

The benthopelagic species comprise large scaven-
ging amphipods, deep-water shrimp-like decapods,
octopods and bottom-living fishes. Specimens of
these taxa occur frequently in the samples, but often
in low numbers. The exceptions are swarm-forming
natant shrimps Nematocarcinus and the scavenging
amphipods that appear in high numbers as soon as
food is available. The most common scavenging
amphipod in the Antarctic deep sea was found to be
the panoceanic eurytheneid Eurythenes gryllus (De
Broyer et al. 2004, 2006). Baited traps deployed in
bathyal and abyssal depths attracted several hundreds
of individuals. Several species of cirrate octopods
occurred in abyssal trawls, often represented by single
specimens only. Bottom-living fishes comprise the most
important part of the benthopelagic deep-sea fauna in
terms of biomass. Most commonly, specimens of the
families Macrouridae, Zoarcidae and Liparidae are
collected, but also species of the families Oreosomati-
dae, Muraenolepididae, Moridae and Rajidae are
found (Andriashev 1987). The Macrouridae, also
called rattails or grenadiers, are among the most
abundant and diverse deep-sea fishes worldwide and
in Antarctica. The snailfishes or Liparidae are also
species rich.

The five classes of the echinoderms, Ophiuroidea,
Asteroidea, Echinoidea, Crinoidea and Holothuroidea,
are the dominant errant megafaunal taxa in the
Antarctic deep sea in terms of abundance and diversity.
Although their species richness is higher on the shelf,
echinoderms show a rich diversity along the slope and
on the deep-sea plains. Large and long-armed ophiur-
oids can cover the abyssal seafloor in dense beds, and
they show biomasses comparable to those on the shelf.
In these brittle star associations, several different
species occur next to each other. The deep-water
asteroids vary little from the morphotypes that can be
found on the shelf; cushion-like forms exist next to
short- and long-armed forms. Remarkable in trawls
from the Antarctic abyssal plains is the high species
diversity, as often the number of morphospecies
resembles the number of the few collected specimens.
The species richness and biogeography of Antarctic
Echinoidea, comprising regular and irregular sea
urchins, are well studied (David et al. 2000). At
present, 35 regular sea urchins are known, of which
31 species are reported from the shelf and 16 from the
deep sea. Only four of the deep-sea species are endemic
to the deep and the other 12 species show eurybathy.
For the Irregularia, 29 species are known from the shelf
and 20 species from the deep sea; half of them are
endemics. An interesting ecological aspect in the
Antarctic echinoid fauna is that high numbers of
brooding species are observed in both regular cidaroid
and irregular sea urchins (Lockart et al. 2003). With
approximately 30 described species, Crinoidea are the
least species-rich class of the Antarctic echinoderms.
Most of the species belong to the Comatulida, feather
stars, and are common on the shelf and nearshore
habitats, but they can also be found on the upper
continental slope. These unstalked forms often raise
their position by attaching themselves to large
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hexactinellid sponges and gorgonians. More remark-
able is the occurrence of stalked crinoids, sea lilies,
from the upper slope to abyssal depth. Several genera,
Bathycrinus, Hyocrinus and possibly Rhizocrinus, are
reported (Lockart et al. 2003; Bohn 2006). Stalked
crinoid densities vary extremely between locations;
often only single specimens are collected by trawls or
seen on deep-sea videos, while at two slope locations in
the eastern Weddell Sea (PS65/231, 1500 m; Gerdes
2004, unpublished data) and Bellingshausen Sea
(PS67/154, 3600 m; Bohn 2006; Carpenter 2002,
unpublished data), dense aggregations with several
specimens per metre square occurred. Holothuroidea
of the SO are accounted with just over 100 species
(Clarke & Johnston 2003). Most obvious are the large-
sized, epibenthic elasipodid holothurians, which occur
in almost all deep-water trawls, while the small-sized,
mainly infaunal apodid forms are less reported. At
present, 13 apodid holothurians are known from the
SO, of which nine species are found in the deep sea.
Records report approximately 30 elasipodid morpho-
species from the SO deep sea. Local species richness
can be high, as up to seven morphospecies were found
in trawl catches. Conspicuous are species with fused
dorsal podia that form shorter or longer ‘sails’, for
example in the genera Peniagone and Scotoplanes.
Deep-sea holothurian species are very widely distrib-
uted in various ocean basins; the species Psychropotes
longicauda and Oneirophanta mutabilis are thought to
occur from the northeast Atlantic Porcupine Abyssal
Plain to the South Atlantic abyssal Weddell Sea.

Molluscs from the shelf of the SO are fairly well
known, especially for the gastropods and bivalves,
while records from the Antarctic deep sea are
scarce. Recent publications (e.g. Allcock et al. 2004;
Harasewych & Kantor 2004; Linse 2004) enhance the
knowledge on the deep-water fauna. All seven
molluscan classes with benthic taxa are represented
in the deep sea: Aplacophora (Caudofoveata and
Solenogastres); Monoplacophora; Polyplacophora;
Gastropoda; Scaphopoda; Bivalvia; and Cephalopoda.
For all classes, more species are reported from the
shelf. Aplacophorans, famous from the Antarctic shelf
for their enormous gigantism in genera like Neomenia
(Salvini-Plawen 1978), are small-sized in the deep sea.
The discovery of one of the three Antarctic mono-
placophorans, Laevipilina antarctica, from the SO
abyssal extends the bathymetric range for this species
from former 210–644 m to over 3000 m. Polyplaco-
phorans are almost absent in SO deep waters, with only
two records for Leptochiton kerguelensis and Stenosemus
simplicissimus from the upper continental slope in the
Ross andWeddell seas (Linse et al. 2003,2006b). Three
species of the scaphopod genera Fissidentalium and
Siphonodentalium can grow to a large size (18–54 mm).
The deep-sea gastropod fauna is characterized by the
dominance of medium-sized (10–40 mm) omnivorous,
predatory species of the Buccinoidea, Turridae and
Naticidae and the occurrence of many small-sized
(1–3 mm) taxa. Analysis of the taxonomic diversity of
Antarctic buccinoid genera showed that the abyssal
fauna shared no genera with sublittoral or bathyal
faunas (Harasewych & Kantor 2004). The deep-sea
bivalve fauna is dominated by taxodont taxa, especially
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of the Nuculanidae and Limopsidae, but also carnivor-
ous genera like Cardiomya and Cuspidaria are present.
Most of the bivalve species reach final sizes of
less than 10 mm, although some species such as
Lyonsiella angelikae, Limopsis marionensis and Limatula
(Antarctolima) can be larger. The comparison of the
ratios of gastropod to bivalves species richness from the
shelf (1.94–2.94) with the deep sea (1.37–1.66) shows
that bivalve richness decreases less with depth than
gastropod richness.

While polychaetes, in general, dominate species
numbers in the deep sea, the number of megafaunal
species in the SO is negligible. Sea spiders, pycnogo-
nida, that are commonly found with large-sized species
on the Antarctic shelf are less frequent on the bathyal
continental slope and were not found at abyssal depths.
Burrowing sipunculids and echinoids are recorded
from bathyal and abyssal depths, but little is known
of their taxonomy.

Sessile megafauna are often attached to exposed rock
outcrops or basaltic rocks of oceanic spreading centres,
but as these substrata are rare in the Antarctic deep sea,
the fauna here relies on dropstones lost by icebergs or
has to attach to the sediment. The most diverse
component of the sessile megafauna is anthozoan
taxa, including Alcyonaria, Pennatularia and Actinaria,
while sponges are important in terms of biomass. Rare
in occurrence and biomass are bryozoans, stalked
ascidians and stalked crinoids, with the exception of
two sites recently discovered in the Weddell and
Bellingshausen seas, where dense beds of stalked
crinoids were discovered (Bohn 2006).

The phylum Porifera is well represented in the
SO by members of the three classes Hexactinellida,
Calcarea and Demospongiae. While Demospongiae
and Calcarea in temperate and tropical waters displace
hexactinellid sponges from the shelf to the deep sea, the
latter dominate the south-polar shelf waters. At
present, species richness is dominated by species
found on the shelf, while records from the Antarctic
deep sea are still scarce owing to the undersampling of
abyssal depths. The most species-rich group are the
Demospongiae, with approximately 400 species
followed by the Hexactinellida (approx. 50 spp.) and
the Calcarea (approx. 20 spp.; Janussen & Tendal
2005, personal communication). At depths greater
than 1000 m, the fauna probably comprises approxi-
mately 100 demosponge species, 40–45 hexactinellid
(Barthel & Tendal 1992; Janussen et al. 2004) and
10–15 calcareous sponge species. The most important
uncertain factors concerning this estimate are (i) lack of
investigations as mentioned previously, (ii) some
collections are still not worked up, (iii) some species
are considered circum-Antarctic in distribution, but
may in fact represent groups of species very similar in
morphological traits, and (iv) small-sized species are
easily overlooked. For instance, the Calcarea were
undiscovered in the Antarctic deep sea before the
ANDEEP II expedition in 2002 ( Janussen et al. 2003).
Recent sampling in the deep Weddell Sea collected 11
species of hexactinellids, 29 species of demosponges
and 4 species of Calcarea; 33% of these species were
new to Antarctica and 20% new to science ( Janussen
et al. 2004, Janussen in press). Most of the specimens
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collected at the slope down to approximately 2000 m
depths are representatives of known, eurybathic
Antarctic shelf species, although their genera are well
known from the global deep sea, like the hexactinellids
Bathydorus, Caulophacus and Chonelasma. In depths
below 3000 m, members of the typical deep-sea sponge
associations can be found. Compared to the sponges on
the shelf, most of the deep-water forms are smaller in
size and much lower in biomass. In the abyssal
environment, soft bottoms dominate and hard sub-
strata like rocks are rare. The surfaces of the latter,
mostly dropstones lost by melting icebergs, are often
covered by encrusting demospongids similar to Sphaer-
otylus. Sponges inhabiting the soft bottom environ-
ments have erect, often vase-shaped bodies that might
even sit on slender stalks. In the samples collected at
abyssal depths during the ANDEEP expeditions,
carnivorous demosponges of the family Cladorhizidae
were common. This family are typically deep-sea
sponges adapted to a life in waters with poor suspended
nutrition ( Janussen 2003). Of special interest are the
records of several species of Calcarea from the deep
Weddell Sea, as this group is extremely rare in Antarctic
shelf water and almost unknown from abyssal depths
worldwide ( Janussen 2003).

Cnidarians, next to sponges, are important parts of
the Antarctic benthos in structuring the benthic
habitats, especially the hydrozoans and alcyonarian
anthozoans. Benthic scyphozoans are of less import-
ance owing to only few records of the genera Atolla and
Periphylla from the shelf and deep sea.

The latest reviewof benthic hydrozoans recorded155
species for Antarctica, with most species (142 spp.)
inhabiting the shelf (down to 1000 m depths), only six
species occurring from the shelf to the upper slope and
only seven species being endemic to the deep sea (Peno
Cantero 2004). Our current knowledge of the total
number ofAntarctic anthozoan species is imprecise, and
therefore comparisons of species richness between the
shelf and the deep sea are impossible. However,
recently, the eastern Weddell Sea and Antarctic
Peninsula have been sampled from the shelf to the
deep sea by several expeditions with RV Polarstern (e.g.
Gili et al. 2005; López-González 2006) and the
anthozoan fauna was identified to morphospecies.
When the anthozoan species are separated into their
subclasses Octocorallia and Hexacorallia, a trend in
species richness with depth is seen. While on the shelf
Octocorallia comprise approximately 60%of anthozoan
fauna, Hexacorallia dominate the deep-sea fauna.
Within the Hexacorallia, an increase in the diversity of
the order Zoanthidea is observed. The abyssal plains of
the Weddell Sea show a nearly constant species/group
composition as in the deep sea in other oceans
(López-González 2006): Galatheanthemum profundale;
Antipatharia spp.; and Umbellula cf. thomsoni.
Caryophyllia and Fungiacyathus represent the group of
the stony corals, the Scleractinians, in the Antarctic
deep sea down to approximately 3500 m depth.

Ascidians are a conspicuous and ecologically
important component of the Antarctic continental
shelf fauna and comprise approximately 120 species
(Clarke & Johnston 2003). Data on their species
richness and diversity are unavailable for the SO deep
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sea. During the ANDEEP expeditions, only few, often
single, specimens were found in Agassiz trawl catches,
which await taxonomic identifications. In the abyssal
depths of the Weddell Sea (2500–4900 m), solitary and
colonial stalked ascidians similar to the genera
Octacnemus and Megalodicopia, typical deep-sea asci-
dians, occurred in most trawls.
5. PHYLOGENETIC RELATIONSHIPS OF
SELECTED TAXA
(a) Foraminifera

Molecular data on the phylogenetic position of deep-
water Antarctic Foraminifera are published for
two monothalamous species from the Weddell Sea.
Bathyallogromia weddellensis branches within a morpho-
logically heterogeneous clade that includes species
from a coastal site in Explorers Cove (McMurdo area
of the Ross Sea) and shallow-water sites in the northern
hemisphere (Pawlowski et al. 2002a,b; Gooday et al.
2004). Its closest relative is an undescribed allogromiid
from Mediterranean caves. The second species,
Conqueria laevis, constitutes a distinct clade of mono-
thalamous Foraminifera. It forms a sister group to a
clade (Clade E of Pawlowski et al. 2002a,b) that
includes Vellaria zuchellii from Terra Nova Bay
and Psammophaga sp. from Explorers Cove, in addition
to two northern hemisphere species (Gooday &
Pawlowski 2004). However, the relationship between
Clade E and Conqueria is very weakly supported.

Pawlowski et al. (2005) provide the first report of the
diversity of monothalamous Foraminifera and gromiids
from under the Ross Ice Shelf (923 m water depth).
They recognized 14 allogromiids and 3 morphotypes.
Partial small subunit rDNA sequences, including 19
obtained from individual isolates and 17 from environ-
mental DNA samples, revealed the existence of 11 new
allogromiid lineages. Molecular phylogenetic analyses
suggest the endemic character of this assemblage,
although more work is required to confirm this
conclusion.

There is preliminary molecular evidence for genetic
divergence between morphologically identical Arctic
and Antarctic populations of shallow-water foraminif-
eral morphospecies (Pawlowski et al. 2003). Consider-
able genetic differentiation has occurred in Arctic and
Antarctic populations of the planktonic foraminiferan
Neogloboquadrina pachyderma (Darling et al. 2004).
Whether deep-water populations of widely distributed
benthic morphospecies in Antarctic waters are differ-
entiated genetically from populations of the same
morphospecies in the northern hemisphere remains to
be tested.

(b) Isopoda
On the shelf, many species of isopods possess well-
developed eyes and are endemic to the SO (Brandt
1991), while closely related species sampled in the SO
deep sea were eyeless or had only rudimentary eyes.
The Antarcturidae, for example, occur in the Atlantic
deep sea down toO7200 m (Kussakin & Vasina 1993).
For this family, we have to conclude that the deep-sea
species had ancestors on the continental shelf. For
some Janiroidea, like the families Acanthaspidiidae,
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Munnidae and Paramunnidae, Brandt (1991)
hypothesized polar submergence, because the abun-
dant shelf species possess highly developed eyes. The
Asellota, which are typical shallow-water species
known to thrive globally on the continental shelves,
can also be found at greater depths in the SO deep sea,
supporting the theory of enhanced eurybathy of the SO
benthic taxa (Brey et al. 1996). Kussakin (1973), like
Dahl (1954), Wolff (1962) and Menzies et al. (1973),
was also in favour of the submergence theory of SO
Isopoda.

Other opinions are that the Isopoda have developed
in the deep sea in situ, where they radiated before they
emerged onto the continental shelves, especially at
higher latitudes (e.g. Zenkevitch & Birstein 1960;
Broch 1961; Belyaev 1974; Hessler & Thistle 1975;
Hessler & Wilson 1983; Wilson & Hessler 1987).
Emergence can be postulated in Antarctica, for
example for the Munnopsididae, Haploniscidae, Des-
mosomatidae, Nannoniscidae and Ischnomesidae
(Brandt 1991, 1992; Wilson 1998, 1999; Brandt et al.
2004a,b; Brökeland 2004). Both submergence and
emergence do occur within the Isopoda, and the
evolution of the shelf taxa cannot be studied in isolation
from that of the deep-sea fauna. Hypotheses on the SO
deep-sea isopod evolution and radiation were also
published by Brandt (1999, 2000); however, the
abyssal isopod fauna of the SO deep sea was not
investigated in detail until recently (Brandt et al.
2004a,b).

Raupach (2004) corroborated these hypotheses of
the evolution of isopod asellote families using molecu-
lar methods. He demonstrated the monophyly of the
deep-sea families Munnopsididae, Acanthaspidiidae,
Desmosomatidae, Haploniscidae, Ischnomesidae and
Macrostylidae, as well as the eye-bearing shelf family
Joeropsididae (Asellota, Janiroidea) using 18S rDNA
sequences. On the contrary, the eye-bearing ‘Janiridae’
are polyphyletic. Moreover, the author could demon-
strate that the deep sea was colonized at least four times
independently, by the Acanthaspidiidae, the Haplonis-
cidae, the Dendrotiidae and Haplomunnidae, and by a
clade consisting of the Mesosignidae, Janirellidae,
Nannoniscidae, Macrostylidae, Ischnomesidae, Des-
mosomatidae and Munnopsididae (Raupach 2004).

16S rDNA data from the circum-Antarctic species
Acanthaspidia drygalskii document that this species is a
cryptic species complex, consisting at least of three
species; two haplotypes were found sympatrically in the
western Weddell Sea and another one in the eastern
Weddell Sea. Brökeland (2004) described speciation
and radiation of deep-sea asellotes on the basis of a
Haploniscus (Haploniscidae, Asellota, Janiroidea)
species complex. She described seven new species
within this genus. Whether this speciation process is a
similar phenomenon like the adaptive radiations of the
shelf isopod families Antarcturidae and Serolidae
(Brandt 1991) and amphipod families Epimeriidae
and Iphimediidae (Watling & Thurston 1989) is not
known. Raupach (2004) discriminated four haplotypes
within the Haploniscus species complex using 16S
rDNA. Cryptic speciation within Isopoda is also
known for shelf taxa (e.g. Held 2003). It is likely that
these species have also colonized the deep sea several
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times independently. The speciation processes culmi-
nating in radiations on the shelf or in the deep sea might
have been caused by the subsequent changes in the ice-
shelf extension, causing fragmentation, reproductive
isolation, speciation and secondary contact of popu-
lations. It is for this reason that Clarke & Crame (1992)
and others (e.g. Briggs 2003) have referred to
Antarctica as a diversity pump.

It is unknown to what extent species have migrated
up and down the Antarctic continental shelf and slope
following ice extensions and retreats during glacial
maxima and minima. As a potential consequence of
past climate changes, eurybathy can be observed within
many taxa today (Brey et al. 1996). The Weddell Sea is
known to feed the newly formed cold deep water, the
so-called Antarctic Bottom Water, into the ACC from
where it spreads as part of the global thermohaline
circulation into the basins of all three world oceans. By
this process, the SO plays a significant role in global
climate. The more-or-less isothermal water column of
the Weddell Sea and other SO areas provides a perfect
conduit for the migration of shallow-water species into
the deeper waters. It is therefore possible that the SO
deep sea is a centre of evolution for the Isopoda and
other taxa, and it has influenced the composition and
species richness of the isopod faunas of the world deep
oceans. Whether the observed changes in the bottom
water with temperature decrease (Fahrbach et al. 2005)
influence the evolution andmigration of any SO species
will have to be investigated in the future.
(c) Tanaidacea
Sieg (1988) and his last unpublished manuscript
postulated that the SO shelf Tanaidacea are descen-
dants from deep-sea ancestors. This is because the
Apseudomorpha, which are considered to be an
ancient taxon, are missing on the shelf.
(d) Mollusca

Molecular studies on Antarctic species of the bivalve
genus Limatula from the SO shelf revealed evidence of
speciation and dispersal across the Polar Front (Page &
Linse 2002) and strong support for the subgenera
L. (Limatula) and L. (Antarctolima). Since this study,
several specimens, morphologically belonging to both
subgenera, have been found in deep-water samples of
ANDEEP I–III and selected specimens have been
sequenced. Preliminary analysis of sequences from the
two morphotypes showed that the deep-water speci-
mens group within the species of their subgenus but are
genetically distinct from these shelf species (Linse
2004, unpublished data). Further molecular work on
more specimens of the deep-water limids collected
during ANDEEP will show if there is genetic
divergence between morphologically identical speci-
mens from the deep Weddell Sea (Atlantic Ocean) and
Bellingshausen Sea (Pacific Ocean).

Studies on the molecular relationships of the mytilid
Dacrydium sp. from a wide geographical range (eastern
Weddell Sea to western Antarctic Peninsula, distance
O2600 km) showed no significant divergence in the
18S, 16S and 28S sequences (Walsh & Linse 2004,
unpublished data).
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The Antarctic members of the arcoid Limopsis
belong to a phylogenetically old group of this genus
(Oliver 1981). The molecular results on the Antarctic
members of the arcoid genus Limopsis show basal
positions of deep-sea species (Limopsis tenella, Limopsis
sp. 1 and Limopsis sp. 2), from which the shelf species
(L. marionensis, L. enderbyensis and L. lilliei ) evolved
(Linse, unpublished data). The molecular data show
evidence against extreme eurybathy and for the
existence of cryptic species in the case of Limopsis
marinoensis, as specimens collected from the shelf to the
slope (300–1500 m) differed significantly from
morphologically similar specimens collected at the
deeper slope (2000–3000 m, Limopsis sp. 2) and in
the deep-water basins (O3000 m, Limopsis sp. 1;
Linse, unpublished data). 18S, 28S and ITS sequences
of specimens collected within the three depth ranges
varied insignificantly over a wide geographical area,
ranging from the Antarctic Peninsula and Weddell Sea
over the islands of the South Orkneys, South
Sandwichs and South Georgia to the island of Bouvet.
6. BIOGEOGRAPHY AND ENDEMISM
At least for metazoan taxa, only preliminary data are
available on the biogeographic relations of the Antarc-
tic deep-sea fauna, because until now only the Atlantic
sector of the SO deep sea has been investigated in detail
(Brandt & Hilbig 2004).

(a) Porifera
For sponges, it is to be expected that the high
percentage (more than 60%) of species endemism
found on the shelf can be traced down to approximately
2000 m, although probably decreasing with depth
(Barthel & Tendal 1989). At abyssal depths, endemism
seems to be lower (Janussen 2003). Most Antarctic
deep-water sponge species have been found only once
or a few times, and this of course gives a high
theoretical endemism. Below 2000 m, depending on
how the Antarctic region is defined in the deep sea, the
endemism may be high in some areas, especially in
closed or semiclosed basins, but it is to be expected that
faunal connections to areas of the Atlantic, Pacific and
Indian Ocean will be found.

(b) Foraminifera

Based on his own and other work conducted in the
early part of last century, Earland (1934) concluded
that Antarctic deep-water Foraminifera are cosmopo-
litan and have migrated from deep-sea areas adjacent to
the SO. Some later studies support this view. For
example, Ward et al. (1987) found that 23% of species
in their samples from 79 to 856 m in McMurdo Sound
also occurred at Arctic sites. Many of the deeper-water
associations recognized by Murray (1991) from the SO
are dominated by widely distributed species, such as
Cyclammina pusilla, Epistominella exigua, Nuttallides
umboniferus and Globocassidulina subglobosa. A pre-
liminary comparison by Cornelius & Gooday (2004)
of calcareous foraminiferans in Weddell Sea and
Porcupine Abyssal Plain samples suggested that more
than 65% of species were common to both the areas.
Some deep-water species, however, may be endemic to
Phil. Trans. R. Soc. B (2007)
Antarctic waters (Mikhalevich 2004). One possible
example is Haplophragmoides umbilicatum Pearcey
1914, a species reported only from the abyssal Weddell
Sea (Cornelius and Whittaker, in preparation). Many
specimens of the distinctive monothalamous genus
Vanhoeffenella from deep Antarctic waters differ from
those found at lower latitudes in having a wide
agglutinated rim. They may represent a distinct species
confined to the SO.

Benthic foraminiferal species ranges in the deep
ocean are based almost entirely on test morphology.
A recent study by Pawlowski et al. (2005) of the
morphological and molecular diversity of monothala-
mous Foraminifera and gromiids (a related group of
testate protists), from a site 12 km from the edge of the
Ross Ice Shelf (923 m water depth), indicates a high
degree of endemism, with approximately 50% of the
allogromiid phylotypes being unknown at other
localities (McMurdo Sound, Weddell Sea, Arctic
Ocean) from which molecular data are available.
However, the small number of comparative sites made
this conclusion preliminary. It is also possibile that
apparently bipolar and cosmopolitan species consist of a
number of cryptic species.Mikhalevich (2004) points to
the existence of closely related Arctic and Antarctic
species that were formerly regarded as representing
single bipolar species (see also Schmiedl & Mackensen
1993). Taxonomic studies that combine morphological
and molecular genetic approaches may reveal further
examples of other apparently bipolar species, which
really comprise closely related ‘paired species’.
(c) Metazoan meiofauna

The generic composition of the deep-sea nematode
fauna seems to be very similar worldwide (e.g. Netto
et al. 2005), including the Antarctic deep sea (Vanhove
et al. 1999, 2004). However, in addition to the
typical deep-sea nematode genera (e.g. Acantholaimus,
Microlaimus, (Thalasso) Monhystera, Daptonema,
Leptolaimus and Halalaimus), other genera that are
generally less common for deep water can be rather
abundant in the SO. These taxa include Southerniella,
Paracanthonchus, Pareudesmoscolex and Desmodora.
Unlike the macrofauna, however, no endemic nema-
tode genera have been found.

The ecology and distribution of species within
five genera (Acantholaimus, Dichromadora, Desmodora,
Desmodorella and Molgolaimus) has been studied on
Antarctic shelves and slopes (Vermeeren et al. 2004;
Fonseca et al. 2006; DeMesel et al. 2006; Ingels et al. in
press). Of the 89 species distinguished, 57 occurred in
deep-sea sediments. At least 56% of these deep-sea
species were new to science, 37% were endemic to one
station and 56% were endemic to one region (e.g.
Weddell Sea, Antarctic Peninsula, South Sandwich
Trench). On the other hand, a number of species had a
rather wide distribution. Whether some are circumpo-
lar is presently unknown, because species-level infor-
mation is only available from the Atlantic Sector of the
SO. Owing to our limited knowledge of deep-sea
species worldwide, it is too early to draw any general
conclusions regarding the biogeography of Antarctic
deep-water nematodes.
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(d) Peracarida
The SO deep-sea isopod fauna is unique, although at
the genus level, many taxa are widely distributed and
are cosmopolitan or bipolar. Many SO deep-sea species
are new to science and of those being recognized, most
were known from the South Atlantic (11 species), with
others from the North Atlantic (five species), the
Pacific (one from the north and three from the south)
and one species from the Indian Ocean. However, these
numbers are probably influenced by the sample
locations in the Atlantic sector of the SO deep sea. Of
the SO deep-sea species of Isopoda sampled, approxi-
mately 50% were rare and occurred at only one station.
Almost 85% of the species known to date are endemic
to the SO deep sea, a value similar to that of the shelf
(88%; Brandt 1991; Brandt et al. 2004a,b). However,
at this stage, it is not clear whether these are true
patterns or a result of the undersampling of the SO
deep sea. This result is probably an artefact, as the deep
basins around the SO deep sea are generally unknown.
However, Ellingsen & Gray (2002) also found a high
proportion of North Atlantic shelf species to be rare.
Thirty-six per cent of the total number of species were
restricted to only one or two sites along the Norwegian
continental shelf (i.e. 1960 km apart).

With the exception of the benthopelagic amphipod
species exhibiting a larger distribution (e.g. E. gryllus,
Paralicella similis, Paracallisoma cf. alberti, Parandania
boecki), all but 10 of the strictly benthic deep-sea
species are restricted to the SO. The 10 bathyal and
abyssal species also occurring outside the SO have been
recorded in only one other basin peripheral to the SO
(Argentinian, Cape or Eastern Australian Basin).

There are 510 known Antarctic species of Amphi-
poda, with 85% endemism in the SO. To date, it is not
possible to present an estimate of SO deep-sea
endemism, because the data are not yet worked up
for Amphipoda.

Tanaidacea are represented by 25% of endemic
species in the SO, but 29% of the deep-sea species
are endemic (Guerrero-Kommritz 2005, personal
communication).

Cumaceans show 95% endemism in the SO; 73 out
of the 77 known species have only been sampled in
the SO, but mainly on the shelf. From the deep sea
(O1000 m), five of these species were described to date
(Mühlenhardt-Siegel 2005, personal communication)
and ANDEEP Cumacea will be worked up by
Mühlenhardt-Siegel in due course.

Eighteen per cent of the 59 SO species of Mysidacea
are known from the deep sea (Brandt et al. 1998).

(e) Mollusca

TheSOdeep-sea bivalves share 90%of their generawith
the Antarctic shelf. The remaining 10% of genera are
typical deep-sea genera and are, for example, found in
the deep South African basins. Within the SO Atlantic
sector (Weddell Sea, Scotia Sea), the collected bivalve
fauna is homogenous; species and morphospecies
different from the SOoneswere foundduringANDEEP
III in the Cape and Aghulas Basins, indicating the
existence of a barrier to dispersal between these basins.
In the samples taken off Brabant Island (Bellingshausen
Sea), two distinct morphotypes of two taxodont species
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were found that are very different from any other
Antarctic taxodont. The species collected on the shelf
near Brabant are the same as those commonly found on
the Antarctic Peninsula and Weddell Sea. This might
indicate that the deep-sea fauna of the Bellingshausen
Sea is influenced by Pacific species.

Most of the bivalve species from the Antarctic deep
sea are known to have lecithotrophic larvae. This
means that their dispersal range is not as wide as in
planktotrophic species, but currents can distribute
lecithotrophic larvae to a considerable distance.

Most Antarctic deep-sea gastropod species are
endemic to the deep sea, especially the brooding and
directly developing species of the Buccinoidea,Naticidae
and Turridae. Harasewych & Kantor (2004) discuss the
high rate of endemism and high proportion ofmonotypic
genera in the Antarctic and Magellanic deep waters.

(f ) Echinodermata

Within the regular sea urchins 4 out of 16 deep-sea
species are endemic, and in the irregular urchins it is 10
out of 20 deep-sea species. Lockart et al. (2003)
mentioned the high proportion of brooding species in
Antarctic irregular urchins.

(g) Brachiopoda

Nineteen species are known from the SO, of which
13 species can be found in the deep sea and five of these
species are endemic.

(h) Polychaeta
Polychaetes, unlike other taxa, apparently have wide
geographical ranges. Similarities were found with deep-
sea fauna worldwide on the generic level and with
adjacent basins at the species level. A few yet
undescribed species are already known to occur in the
Angola Basin: Flabelligella sp. 2DIVA (family Acrocir-
ridae); Brada sp. 1DIVA; Pherusa sp. 2DIVA (family
Flabelligeridae); and Unobranchus sp. 1DIVA (family
Trichobranchidae). Moreover, the abyssal polychaete
fauna of the SO includes a number of new species
belonging to genera that have not been reported from
the area, but could be expected to occur there because
their congeners have been reported at least once from
the deep sea of the northern hemisphere, e.g. the
ampharetids Egamella sp. 1, Mugga sp. 1, and
Muggoides sp. 1 (family Ampharetidae). Other genera
represented by new species in the abyssal SO are typical
faunal elements on continental slopes worldwide, e.g.
Cossura (family Cossuridae) and Dysponetus (family
Chrysopetalidae). Noteworthy was the occurrence of
two new species of the dorvilleid genus Ophryotrocha, as
this genus is known to be abundant and speciose on
continental slopes worldwide, but highly under-rep-
resented in deep waters of the SO (Hilbig 2004).
7. RELATIONSHIP OF SELECTED FAUNAL
ASSEMBLAGES TO ENVIRONMENTAL
VARIABLES
(a) Large-scale patterns with depth

(i) Meiofauna
Mikhalevich (2004) noted that wide bathymetric
ranges are characteristic of Antarctic Foraminifera,
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with some deep-water species emerging into the upper
bathyal zone and onto the shelf. Bandy & Echols
(1964) established a series of bathymetric zones based
on the first appearance of foraminiferal species with
depth. A number of species occurred from 200 m to
more than 3000 m depth. Faunal boundaries based on
Foraminifera have been recognized in the Antarctic by
a number of other authors. For example, in the Scotia
Sea, Echols (1971) found a rapid turnover among
agglutinated Foraminifera at 1200–1300 and
2100–2300 m depth. Like those of Bandy & Echols
(1964), however, some of Echol’s (1971) species have
bathymetric ranges extending from approximately
200 m to several thousands of metres. Murray (1991)
distinguished a series of faunal associations in the
Antarctic, each characterized by an abundant species
and additional common species. Some of these
associations span an enormous depth range, e.g.
164–3770 m (Alabaminella weddellensis association),
50–4008 m (Cassidulina crassa association), 0–2100 m
(Miliammina arenacea association). Such studies
suggest that while many species are confined to shelf
depths, some extend across the shelf break into the
bathyal or even abyssal deep sea. These patterns,
however, are based almost entirely on morphospecies.
Molecular data (SSU rRNA gene sequences) from a
depth transect are available for only one species, the
allogromiid Bathyallogromia weddellensis. Sequences
were almost identical between 1080 and 6330 m
water depth in the Weddell Sea, suggesting a sub-
stantial degree of genetic coherence between bathyal
and abyssal populations.

For the metazoan meiofauna, most of the available
information on bathymetric patterns relate to total
densities. In samples from the continental shelf and
slope from Kapp Norvegia (Vanhove et al. 1995a,b;
Lee, unpublished data), Halley Bay (Herman &Dahms
1992), Vestkapp, Bransfield Strait and Drake Passage
(Lee, unpublished), and from two depth transects on
the Weddell Sea abyssal plain (Gutzmann et al. 2004),
there was a clear drop in total densities around 500 m
water depth (figure 3a). The meiobenthic densities
shown in figure 3a are situated above the world ocean’s
regression line of meiobenthic stock against water
depth (unpublished data based on Soltwedel 2000). In
the Ross Sea, however, densities are two to seven times
lower than in similar deep polar regions (Fabiano &
Danovaro 1999).

Many taxa (e.g. Copepoda and Tardigrada) follow
the same general pattern of decreasing densities with
increasing water depth. However, there is no corre-
lation between the depth and the abundance of the
Loricifera and Tantulocarida, and there is only a
positive correlation of low significance in the case of
the Gastrotricha (Gutzmann et al. 2004). Absolute
nematode densities either decrease with depth or
exhibit no correlation (Vanhove et al. 1995a,b;
Gutzmann et al. 2004).

In the South Sandwich Trench, Vanhove et al.
(2004) found the same genera between 750 and
6300 m water depth. However, a shift in dominance
enabled them to distinguish between a ‘shallow’
community (750–1100 m), characterized by Dapto-
nema, Dichromadora, Molgolaimus and the families
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Comedomatidae, Cyatholaimidae and Desmodoridae,
and a ‘deep’ community (4000–6300 m) characterized
by the genus Tricoma. The intermediate stations (2000
and 3000 m) formed a transit between these two
assemblages. Along a depth transect from the shelf to
the slope at Kapp Norvegia and Halley Bay, there was a
distinction between ‘upper-slope’, ‘down-slope’,
‘Halley shelf ’, ‘Kapp Norvegia shelf ’ and ‘shelf-
break’ communities. Again, it was the relative abun-
dance of genera, rather than their presence or absence,
that defined these communities (Vanhove et al.
1995a,b). Finally, a number of typical deep-sea genera
of copepods (Pseudotachidius; Veit-Köhler & Willen
1999) and nematodes (Acantholaimus; De Mesel et al.
2006) have been found in shelf communities,
suggesting that the eurybathic distribution patterns
reported for certain macrofauna (Arntz et al. 1994) and
Foraminifera (see above) in the SO also apply to some
metazoan meiofaunal taxa.

(ii) Macrofauna and megafauna
In very general terms, macro- and megafaunal
organisms also show clear differences in patterns with
increasing depth and between taxa (e.g. Carney 2005).
Within Peracarida, for example, abundances and
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diversity are highest around 3000 m and Isopoda are
more abundant deeper than other peracarid taxa
(figures 5 and 6).

Kussakin (1973) reported for the Janiroidean asellote
isopods, which dominate in the ANDEEP material, that
a minor fraction (16%) would exist at shallow depths in
boreal areas, whereas 46% occur in polar or deep-sea
areas. An investigation of the vertical distribution of the
Isopoda revealed that the Acanthaspidiidae were
recorded at greatest depths down to 7210 m, followed
by theMunnopsididae (6730 m) and the Ischnomesidae
(6071 m; Brandt 1991), and some deep samples
immediately increased the knowledge on the bathymetric
range of taxa (Zimmermann & Brandt 1992).

The SO isopod shelf fauna differs in taxon
composition from the SO deep sea. For example, 45
species of Munnopsididae are known from the SO
shelf, in the deep-sea 118 species were observed; eight
species of the Desmosomatidae are known from the
shelf, 48 were found in the deep sea; and six species of
Haploniscidae were sampled in the past (Brandt 1991)
and until now 36 species could be discriminated
(Brandt et al. 2004a,b). Emergence is likely for these
taxa. On the contrary, the Acanthaspidiidae were
known to occur with 20 species on the SO shelf, in
the deep sea only five species could be discriminated
until now. The Serolidae occur with at least 44 species
on the SO shelf; however, during the deep-sea
investigations only three species were sampled, and
while 90 species of Valvifera (mainly Antarcturidae) are
known from the shelf, ANDEEP discovered only six
species in the area sampled (Brandt et al. 2004a,b).
These findings support the theory that these taxa have
evolved and radiated on the shelf and later submerged
in the deep sea, where they occur only with a small
number of species to date.

Down to approximately 1500 m, we still find a
typical shelf fauna within the isopod crustaceans, being
composed of higher numbers of Valvifera and Seroli-
dae; on the contrary, the stations deeper than 2000 m
are clearly characterized by the deep-sea asellote
isopods, which comprise 98% of the Isopoda sampled.
Therefore, we expect the change between the shelf/
slope and the true deep-sea fauna somewhere between
1500 and 2000 m depth.
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While abundance of Isopoda is generally highest on

the shelf around 1000 m (Brandt 2001), species

richness increases with depth and is highest at approxi-

mately 3053 m depth in the northwestern Weddell Sea;

for example, in 3053 m depth, 83 species were

recorded (Brandt et al. 2004a,b; figure 5).

Contrary to the former knowledge of the scarcity of

SO deep-sea Isopoda (Brandt 2000), recent expedi-

tions have documented that the deep sea of the SO is

characterized by a large number of isopod species.

Prior to the ANDEEP cruises, 25 families of SO

Isopoda were known, now 27 families are reported.

Likewise, the number of known genera increased

from 73 to 151 and the number of SO isopod species

from 371 to 991 due to the recent ANDEEP

investigations, although not many of the recently

sampled, newly identified species are as yet described,

and not all of them can be described, due to the scarcity

of the material (almost approx. 50% of the species

sampled at only a single location and often only with

one specimen).

Brandt et al. (2005) reported that depth explains

isopod species richness better than both latitude and

longitude. Between 58 and 658 S, the number of

species ranged from 9 to 82 (mean 36), while further

south in the Weddell Sea, between 73 and 748 S,

species richness was found to be lower and the number

of species ranged from 6 to 35 (mean 19). When

longitude was compared, the highest species richness

(up to 82 species) was found between 508 and 608 W in

the area of the South Shetland Islands and around the

Antarctic Peninsula, whereas numbers did not exceed

50 species in the eastern Weddell Sea.

The Amphipoda collected in the Antarctic deep sea

belong to 38 families (De Broyer & Jazdzewski 1993;

Thurston 2001; Vader & Berge 2003; De Broyer et al.
2004, in press). In comparison, from all oceans,

Thurston (2001) recorded 56 amphipod families with

representatives occurring deeper than 1000 m. The

families particularly well represented in the Antarctic

deep sea are the various lysianassoid families, in

particular Eurytheneidae, Lysianassidae (Trypho-

sinae), Scopelocheiridae and Uristidae, as well as

Eusiridae, Ischyroceridae and Podoceridae.
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The current understanding is that half of the 72
amphipod species occurring below 1000 m are in fact
shelf species extending their distribution from a few
tens of metres depth to the upper slope at a maximum
depth of 1500–2000 m (in one case at 2894 m).
Eighteen species (15 Antarctic endemics) are restricted
to the bathyal zone (1000–3000 m) and 13 species
(nine endemics) to the abyssal zone (O3000 m depth).

A number of scavenger species occurred on both the
shelf and the slope, showing in some cases a quite
extended level of bathymetry (figure 4b, updated from
De Broyer et al. 2004). In the SO, E. gryllus is the only
scavenger species found on the shelf, the slope and in
the abyssal zone. It is known as a panoceanic bathyal,
abyssal and hadal stenothermal species that can occur
far above the seafloor (Thurston 1990). It has been
found in both polar regions at bathyal and abyssal
depths, as well as in bird stomachs (Stoddart & Lowry
2004). Concerning the two other widely eurybathic
species (Orchomenopsis cavimanus and Abyssorchomene
scotianensis), small morphological differences have been
observed between their shelf and deep-sea populations,
and a molecular analysis is required to detect potential
cryptic species before confirming this very wide
eurybathy.

Polychaetes show a very particular depth zonation,
with a ‘eurybathic’ shelf community reaching down to
over 2000 m (Hilbig 2004). Below approximately
1000–1500 m, the fauna becomes increasingly depau-
perate because there is no replacement of shelf species
by a slope and rise community, a typical phenomenon
seen on the continental slopes of temperate regions that
results in the common diversity peak around 2000 m
(Paterson & Lambshead 1995; Cosson-Saradin et al.
1998; Hilbig & Blake 2006). A shift to a true deep-sea
community does not occur until approximately
2000–2500 m. This community, which is composed
of genera considered typical for the deep sea world-
wide, may extend down to abyssal plains.

The degree of eurybathy was not found to differ
substantially between the deep SO and the other deep-
sea areas (Hilbig et al. 2006). The wide geographical
ranges suggest that polychaetes in the SO, in contrast to
other invertebrates such as peracarid crustaceans, have
larval stages for dispersal, even though only occasional
catches have been made with plankton nets and the
EBS. Possibly, they live in low densities within the
nepheloid layer that cannot be sampled with either
gear. The use of innovative technology may reveal the
presence of polychaete larvae, which until now can only
be deduced from distributional patterns.

Ellingsen et al. (submitted) examined general
macrofaunal response to water depth (figure 5) using
data on polychaetes, isopods and bivalves collected
during the EASIZ and ANDEEP cruises, ranging from
774 to 6348 m water depth. They found that the
isopods displayed higher species richness in the middle
depth range and lower in the shallower and deeper
parts of the area (Brandt et al. 2005), as reported for
other deep-sea areas (e.g. Gage & Tyler 1991).
However, interestingly, the number of polychaete
species showed a negative relationship to depth,
whereas the bivalves showed no clear relationship to
depth (Ellingsen et al. submitted). Although the data
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were collected over a huge geographical scale
(58814 0–74836 0 S, 22808 0–60844 0 W), neither the num-
ber of isopod, polychaete nor bivalve species showed
any clear relationship to latitude or longitude.
However, sample (or small scale) species richness of
all taxonomic groups was very variable, a finding that is
typical for marine datasets (e.g. Clarke & Lidgard
(2000): bryozoans; Ellingsen & Gray (2002): shelf
macrobenthos).

According to Peno Cantero (2004), hydroid species
show three distinct depth zones in vertical distribution,
from the shallow to approximately 500 m, from
approximately 500 to 1000 m, and species occurring
deeper than 1000 m. Ninety per cent of bryozoans
occur on the shelf at depths above 1000 m (Barnes &
De Grave 2000); until now not a single cyclostome
species was found in waters deeper than 1000 m. In the
Bivalvia, samples collected down to 1500 m shared
many species and morphospecies with the shelf, while
samples from 2000 m and below represented a different
species composition only known from the deep sea. In
Gastropoda, the shelf to deep-sea break appears to be
around 800–1000 m. Brachiopods were reported to
shift from the shelf to the deep sea between 1000 and
1200 m in the SO (Forster 1974). Within the
Echinoidea, DeRidder (2005, personal communi-
cation) found no clear distinction between shelf and
deep-sea species, although the various families are
known to have different depth preferences.

To summarize, based on the existing datasets from
the deep SO, the spatial distribution of species varies
between different taxonomic groups, and the impact of
depth is not consistent among groups. However, it
seems that a common limit at 1500–2000 m for shelf
fauna appears in isopods, amphipods and part of the
molluscs.
8. PATTERNS INFLUENCED BY OTHER
ENVIRONMENTAL OR PHYSICAL FACTORS
(a) Foraminifera

On some parts of the Antarctic continental margin,
carbonate dissolution leads to major changes in
foraminiferal assemblages over relatively small dis-
tances. In the Ross Sea (Kennett 1968; Osterman &
Kellogg 1979; Ward et al. 1987), the Weddell Sea
(Anderson 1975) and off the Adelie-George V coast
(Milam & Anderson 1981), continental shelf and slope
assemblages are predominantly either calcareous or
agglutinated. Deep, intrashelf basins are occupied by
assemblages that are almost entirely agglutinated.
Saidova’s (1998) synthesis of foraminiferal distri-
butions in the SO (552 stations covering the depth
range 20–5500 m) supports the idea that carbonate
dissolution strongly influences foraminiferal assem-
blage composition on the Antarctic margin. She
recognized 40 associations (‘communities’), of which
24 were dominated by agglutinated species and the
remainder by calcareous species. Saidova concluded
that distributions are controlled mainly by the bottom-
water temperature and the degree of carbonate under-
saturation. However, carbonate undersaturation does
not always limit species distributions. Cornelius &
Gooday (2004) report substantial numbers of certain
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small calcareous species at depths O4000 m in the
Weddell Sea, where the carbonate compensation
depth (CCD) is located approximately at 4000 m
(Mackensen et al. 1990). Both Anderson (1975) and
Saidova (1998) considered the foraminiferal assem-
blages from this depth to be entirely agglutinated. The
persistence of these opportunistic species below the
CCD was attributed by Cornelius and Gooday (2004)
to the availability of phytodetritus.

Other factors linked to the well-developed water
mass architecture around the Antarctic continent
influence foraminiferal species distributions in the SO
(Mackensen et al. 1995; Mikhalevich 2004). In the
eastern Weddell Sea, Mackensen et al. (1990) recog-
nized five live assemblages on the shelf and the slope
(237–4541 m). A Trifarina angulosa assemblage is
associated with strong currents and sandy sediments
around the shelf break and the upper slope. A
Nonionella iridea assemblage is associated with high
organic carbon fluxes in the outer-shelf, shelf-break
and upper-slope area. A Bulimina aculeata assemblage
is associated with lower current activity, warmer water
(above 08C) and higher organic carbon content on the
upper slope. A Cribrostomoides subglobosus assemblage
occurs from 2000 to 3000 m and at O4500 m depth,
the upper limit coinciding with the upper boundary of
Antarctic Bottom Water. Ishman & Domack (1994)
also emphasize the role of water masses in controlling
the distribution of two main foraminiferal assemblages
on the western margin of the Antarctic Peninsula. The
B. aculeata assemblage, although named after a
calcareous species, is predominantly agglutinated,
while the Fursenkoina spp. assemblage is predominantly
calcareous. Ishman & Domack (1994) link the
distribution of these assemblages to warm Circumpolar
Deep Water (CDW; B. aculeata assemblage) and cold
Weddell Sea Transitional Water (Fursenkoina spp.
assemblage) rather than to the CCD or the organic
carbon content of the sediment.

(b) Metazoan meiofauna

Sediment grain size and food availability are considered
the most important factors influencing the distribution
and community structure of metazoan meiofauna. This
was well illustrated by Fabiano & Danovaro (1999),
who found significantly higher meiofaunal densities,
and a different higher taxon composition, in muddy
sediments compared with coarser sands mixed with
calcareous debris at 500 m water depth in the Ross Sea.
The latter sediment type harboured much higher
densities of copepods and nauplii. Ostracods and
isopods were also associated with these coarser
biogenic sediments, whereas kinorhynchs and loricifer-
ans were present only in the muddy sediments. At each
site, meiofaunal distributions were affected by different
inputs of utilizable organic material originating from
the photic layer. According to the same study,
nematodes are the group most sensitive to changes in
food availability, a conclusion confirmed by a later
study at abyssal depths in the Weddell Sea (Gutzmann
et al. 2004). Off Kapp Norvegica and in Haley Bay, the
distribution of half the nematode genera was signi-
ficantly correlated with granulometry and/or food
(organic matter, CPE and ATP; Vanhove et al. 1999).
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(c) Isopoda
Faunal differences in isopod composition reflect
historical processes that influenced the evolution of
the species as well as biotic (e.g. competition,
coexistence) and abiotic parameters (depth, sediment
grain size, salinity, temperature and ocean currents). In
the SO deep sea, no clear pattern in isopod compo-
sition could be observed with geographical area. The
Bransfield Strait, however, seems to be different in
terms of lower abundances and values of species
richness if compared with the deep Weddell Sea
(Brandt 2004).

Rex et al. (1997) documented that the variability of
large-scale biodiversity patterns depends on both
bathymetry and latitude, a result which was also
shown for SO deep-sea Isopoda (Brandt et al. 2005).
Rex et al. (1997) found maximum species richness at
mid-slope depth, while the species richness declined
towards greater depth. However, considering the
decreasing abundance with depth, this result might
not be astonishing (Gage & Tyler 1991). Species
richness of Isopoda was also observed to be generally
higher below 1000–1500 m depth (Brandt 2004) and
highest at 3053 m in the northeastern Weddell Sea; it
then decreased with increasing depth (Brandt et al.
2005). This might result from higher food availability
in deeper waters owing to deep-water production
(Fahrbach et al. 1994). In very general terms, the
shallower stations were more similar to each other and
so were the deeper stations.

Differences between stations were probably not only
owing to depth, but also to the nature of the
substratum. Grain size of the sediment at different
stations does not necessarily depend on depth, but also
on the steepness of the slope (e.g. Howe et al. 2004).
Depth was the most important environmental par-
ameter being responsible for patterns followed by
sediment composition and grain size in the Weddell
Sea (Brandt et al. 2004a,b). Unfortunately, we do not
know much about the behaviour and lifestyles of most
janiroidean asellote isopods, making it difficult to
correlate their distributions with environmental par-
ameters (Hessler & Strömberg 1989).
9. SIMILARITIES AND DIFFERENCES BETWEEN
THE ANTARCTIC AND OTHER DEEP-SEA
SYSTEMS
(a) The environment

The deep SO is a subset of the deepworld ocean (Clarke
2003). Above a depth of approximately 3000 m, all the
main deep-sea regions are directly connected and thus
there should, in theory, be nobarrier to dispersal and the
establishment of populations, both to and from the SO.
Below 3000 m are the major ocean basins that reach
depths of 5000–6000 m, requiring adegree of eurybathy
in potentially colonizing species.

However, a greater effect on potential dispersal and
thus endemism will come from the distribution of water
masses in the world ocean. Not only will water masses
determine geographical distribution, but also their
flow will aid dispersal and may also affect zonation at
bathyal depths along the deep ocean margin (Tyler &
Zibrowius 1992).
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The deep sea around Antarctica is contiguous and
bathed in water that forms the Antarctic CDW mass,
which circulates in a general west to east direction and
may form an effective barrier between the SO deep sea
and the rest of the world. A possible connection
between the SO deep sea and the rest of the world is
the Antarctic Bottom Water. This is a generic term for
very dense cold waters formed especially in theWeddell
Sea, but also in the other peripheral seas of Antarctica.
This water sinks to the deepest seabed and is entrained
in the lowest layer of the CDW. As it flows to the east,
branches extend into the main oceans, although the
extent of penetration varies, being limited by topo-
graphic features such as the Walvis Ridge in the
Atlantic and the Southwest and Southeast Indian
Ridges in the Indian Ocean. However, most of the
great abyssal plains of the world ocean are bathed in
North Atlantic Deep Water (NADW) formed in the
Norwegian Sea and spread at abyssal depths through-
out the world ocean (Mantyla & Reid 1983).

A third major variable to consider is the flux of
surface production to the seabed. Surface production
varies considerably through the surface waters of the
ocean, and generally it appears that species diversity
and benthic biomass are related to food availability at
the seabed, as well as to other factors (Levin et al.
2001). One might predict that the generally high
production in Antarctica would lead to a species
diversity similar to the northeast Atlantic, but greater
than the regions of the Pacific and Atlantic underlying
surface oligotrophic gyres.
(b) A direct comparison between the deep sea of

the SO and the world ocean

A comparison such as this is constrained by the
sampling effort from different areas. Diversity is
reasonably well known for the northeast and northwest
Atlantic (Grassle & Maciolek 1992; Gage 1997), in the
Central Pacific (Lambshead et al. 2002) and the central
North Pacific (Hessler & Jumars 1974). Even in these
cases, the diversity in detail is limited to specific
taxonomic groups. The same applies to the SO,
although the ANDEEP programme is possibly one of
the most taxonomically comprehensive programmes in
the deep sea.

Clarke (2003) summarizes the information on the SO
megafauna and compares it with that of the world ocean,
and notes that at the generic level there are many
similarities. This applies particularly to the holothurians,
ophiuroids, some echinoids and the pennatulids.
Another similarity is that in all theworld’s ocean, biomass
decreases with depth, although actual values may vary.

Specific diversity differences between the SO and the
rest of the world are better known for some taxa. The
higher Crustacea, particularly the Decapoda, were
believed to be absent in the SO, being replaced by a
rich pycnogonid and peracarid fauna. Recently,
however, Thatje et al. (2005) reported 15 species of
lithodid crabs in the SO and discussed the potential
reasons for this distribution. The low species numbers
of the Decapoda are regarded to be the prime reason for
the success of the brooding peracarid crustaceans in
the SO.
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The high number of isopods in the deep SO is also
typical for other deep-sea basins (Menzies 1962;
Hessler & Thistle 1975; Gage & Tyler 1991; Hilbig
1994; Gage 1997; Kröncke 1998). In the European
Northern Seas, Isopoda were found to dominate deep-
sea peracarid composition in EBS samples as well
(Brandt 1995, 1997; Brandt & Schnack 1999);
however, in the northern areas, samples were charac-
terized by lower isopod species richness but higher
abundances (Brandt 2001). It is known that processes
regulating species diversity differ at local, regional and
global scales (Levin et al. 2001; Snelgrove & Smith
2002), and therefore it is difficult to compare data from
different areas. A factor of prime importance for
biodiversity of taxa in zoogeographic areas is the age
of the environment (Gaston & Chown 1999) and the
evolutionary time over which species have developed in
that particular region (Webb & Gaston 2000). This
may explain why we generally find high species richness
in many taxonomic groups in the SO compared with
northern polar areas (Gaston 2000).

A potential, but as yet, unquantified difference
between the SO and the rest of the world ocean is the
zonation from the edge of the shelf into deep water. In
Antarctica, the deep shelfmay contain eurybathic species
thus giving rise to wide zones for individual species
(Clarke 2003). Conversely, in the northeast Atlantic, the
asteroid fauna showsnarrowspecies zonationwithdepth,
with the densest distribution being found over very
limited vertical distances (Howell et al. 2002), but see the
recent review of deep-sea zonation by Carney (2005). A
strong zonation was also observed on the steep rocky
surfaces in deepwater to the west of Ireland, inwhich the
zones were related to water mass structure (Tyler &
Zibrowius 1992). The lack of definition in CDW in the
SOmay allow greater vertical dispersal of larvae and thus
reduce constrained zonation.

(c) Dispersal and recruitment between the SO

and the rest of the world

Most marine invertebrates disperse by means of a
planktotrophic or lecithotrophic larva. The accepted
paradigm is that planktotrophic development will have
the widest dispersal, while lecithotrophy would have
limited dispersal. This accepted theory was challenged
by Shilling &Manahan (1994), who demonstrated that
lecithotrophic larvae had a potentially significantly
longer larval life in the plankton than planktotrophic
species. Such a dispersal adaptation would be of great
benefit for dispersal in the generally oligotrophic deep
sea. However, relatively little is known of the reproduc-
tion in SO deep-sea species, when compared with the
world ocean.

Peracarid crustaceans are brooders and juveniles
leave the maternal brood pouch when they can feed
themselves after several moults. This brooding biology
might have an influence on the gene flow and thus the
migration potential of the species, a potential reason
why we find such a high degree of endemism, both on
the shelf and in the deep sea. The SO deep-sea
Peracarida document a high diversity including many
rare and new species, and only a minor proportion of
the species is known from other deep-sea basins. One
might wonder how they find a partner to mate, as most
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of the species are not very vagile; they are rather small
and many were only found once on roughly 85 000 m2

of seafloor covered with the EBS.
In contrast, within the Polychaeta, many more

species seem to have crossed the barrier between the
SO and adjacent oceans, and these have a much wider
zoogeographic and also bathymetric distribution.
Although we do not know the reasons for this
phenomenon, we might suspect differences in the
biology (Hilbig 2004). For example, brooding is, as
far as we know, much less common among polychaetes,
making larval dispersal via free-swimming trocho-
phorae more common. In addition, polychaetes may
exhibit a particularly high physiological flexibility in
coping with large temperature and pressure changes.
Data on reproductive stages of some polychaetes
suggest that species limited to abyssal depths are
reproducing there. Other species with broader depth
ranges may be receiving recruits from slope depths
(Blake & Narayanaswamy 2004; Hilbig 2004). As
passive distribution via ocean currents is more likely for
larvae than for benthic life forms, the source–sink
hypothesis is more likely to apply to polychaete
abundance and distribution than to that of the
brooding peracarids (Pearce et al. 2001).

(d) The special case of chemosynthetically driven

deep-sea systems

The discovery of hydrothermal vents in 1977, and the
subsequent discovery of cold seeps in 1984, forced
marine biologists to assess the energy available for
primary production in the deep sea. In the intervening
years, there has been a huge effort in determining, inter
alia, the biogeography of these ecosystems (Van Dover
et al. 2002;Tyler et al. 2003).However, to the south of the
Polar Front, such ecosystems were unknown—although
expected, as hydrothermal plumes had been detected at
the Scotia Ridge (German et al. 2000)—until sediment-
hosted vents and cold seeps were found in the Bransfield
Strait (Klinkhammer et al. 2001), and the first Antarctic
chemosynthetically hosting metazoan, a siboglinid tube-
worm, was described from this area (Sahling et al. 2005).
As many of the conditions for vent and seep ecosystems
are found inAntarctica, it is only amatter of time before a
large chemosynthetically driven ecosystem is found. The
relationship between the species at such vents or seeps
and their relationship with Atlantic or Pacific species will
give an interesting guide to the dispersal of larvae of vent
and seep organisms.
10. CONCLUSIONS
SO biodiversity is high, although the spatial distribution
of species varies betweendifferent taxonomic groups, and
the impact of depth is not consistent among groups. A
common limit for shelf fauna appears at 1500–2000 m in
isopods, amphipods and part of the molluscs, probably
documenting the depression of the Antarctic continent
due to theweight of the overlaying ice shield. This special
physical characteristic of the Antarctic continental shelf
combined with the isothermic water column might have
led to the extended eurybathy documented for several
taxa.This, aswell as the fact thatdeepbathyal andabyssal
sites can be fuelled with freshly produced organic matter
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(phytoplankton, detritus and remains of ice algae) due to

deep-water production, makes it unlikely that the

source–sink hypothesis of Rex et al. (2005a) applies to
SO abyssal benthic organisms. The high proportion of

species new to science, the ongoing speciation of selected

taxa (e.g. Haploniscidae, Isopoda), the high degree of

endemism as well as the high number of rare species

document the fragility of this pristine environment and

serve as a sound basis for future conservation. Unlike

deep-sea systems in the rest of the world oceans,

exploitation of abyssal resources in the SO might result

in significant levels of species extinctions because

conspecific source populations do not exist on the

adjacent continental margins. On the other hand, there

is good evidence for strong faunal links among some taxa

with other parts of the deep ocean. For example, abyssal

foraminiferal assemblages in the deep Atlantic sector of

the SO are remarkably similar to faunas occurring at

equivalent depths in the North Atlantic.

Carbonate dissolution is an important environ-

mental factor in some parts of the SO. The depth of

the CCD is highly variable and sometimes very shallow,

as witnessed by the almost entirely agglutinated

foraminiferal assemblages that characterize intrashelf

basins, such as the Crary Trough in the Weddell Sea.

These unusual faunas provide a glimpse of how deep-

water benthic communities might respond to acidifica-

tion of the oceans caused by global climatic changes.

Differences between local and regional biodiversity

are already apparent in selected groups, but must be

investigated further before hypotheses regarding the

taxonomic and ecological characteristics of the SO

deep-sea fauna can be formulated and tested statisti-

cally. Nevertheless, our recent investigations have

improved our knowledge of SO deep-sea biodiversity

considerably. We hope the present review will be a

springboard for future studies, which will provide a

sound scientific basis for policies on environmental

conservation.As human impact on deep-sea ecosystems

increases, and concerns about the profound impli-

cations of climate change grow, the need for further

surveys of the fragile and remote SO ecosystems has

never been more urgent.
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Hessler, R. R. & Strömberg, J. O. 1989 Behaviour of

janiroidean isopds (Asellota), with special reference to

deep-sea genera. Sarsia 74, 145–159.

Hessler, R. R. & Thistle, D. 1975 On the place of origin of

deep-sea isopods. Mar. Biol. 32, 155–165. (doi:10.1007/

BF00388508)

Hessler, R. R. & Wilson, G. D. F. 1983 The origin and

biogeography of malacostracan crustaceans in the deep

sea. In The emergence of the biosphere, vol. 23 (ed. R. W.

Sims, J.H. Price&P. E. S.Whalley).Systematic Association,

pp. 227–254.

Hilbig, B. 1994 Faunistic and zoogeographical character-

isation of the benthic infauna on the Carolina continental

slope. Deep-Sea Res. II 41(4–6), 929–950.
Hilbig, B. 2001 Deep-sea polychaetes in the Weddell Sea and

Drake Passage: first quantitative results. Polar Biol. 24,

538–544. (doi:10.1007/s003000100259)

Hilbig, B. 2004 Polychaetes of the deep Weddell and Scotia

Seas—composition and zoogeographical links. Deep-Sea

Res. II 51, 1817–1827. (doi:10.1016/j.dsr2.2004.07.015)
Hilbig, B. & Blake, J. A. 2006 Deep-sea polychaete

communities in the northeast Pacific Ocean off the Gulf

of the Farallones, California, USA. Bull. Mar. Sci. 78,

243–269.

Hilbig, B., Gerdes, D., & Montiel A. In press. Distribution

patterns and biodiversity in polychaete communities of the

Weddell Sea and Antarctic Peninsula area (Southern

Ocean). J. Mar. Biol. Assoc. UK 86, 711–725.

Howe, J. A., Shimmield, T. M. & Diaz, R. 2004 Deep-water

sedimentary environments of the northwestern Weddell

Sea and South Sandwich Islands, Antarctica. Deep-Sea

Res. II 51, 1489–1515. (doi:10.1016/j.dsr2.2004.07.011)
Howell, K. L., Billett, D. S. M. & Tyler, P. A. 2002 Zonation

and distribution of seastars (Echinodermata: Asteroidea)

in the Porcupine Seabight and Porcupine Abyssal Plain,

NE Atlantic. Deep-Sea Res. 49, 1901–1920.
Hunter, R. J., Johnson, A. C. & Aleshkova, N. D. 1996

Aeromagnetic data from the southern Weddell Sea

embayment and adjacent areas: synthesis and interpre-

tation. In Weddell Sea tectonics and Gondwana break-up (ed.

B. C. Storey, E. C. King & R. A. Livermore). Geological

Society Special Publication 108, pp. 143–154. London, UK:

The Geological Society.

Ingels J., Vanhove S., De Mesel I., & Vanreusel, A. In press.

Free-living nematodes at both sides of the Scotia Arc, with

special attention to the biodiversity of the genera

Desomodora and Desmodorella (family Desmodoridae).

Polar Biol.
Phil. Trans. R. Soc. B (2007)
Ishman, S. E. & Domack, E. W. 1994 Oceanographic

controls on benthic Foraminifera from the Bellingshausen

margin of the Antarctic Peninsula. Mar. Micropalaeontol.

24, 119–155. (doi:10.1016/0377-8398(94)90019-1)

Janussen, D. 2003 First report on the deep sea Porifera from

the Northern Weddell Sea and the slope of South

Sandwich Trench. Ber. Polar. Meeresforsch. 470, 104–108.
Janussen, D. 2006 Preliminary report on the Porifera

(sponges) of the ANDEEP III-Expedition. The expedition

ANTARKTIS XXII/3-5 of the Research Vessel “Polar-

stern” in 2005 (ed. E. Fahrbach). Ber. Polar. Meeresforsch.

533, 174–177.

Janussen, D., Rapp, H. T. & Tendal, O. S. 2003 A myth

vanished: Calcareous sponges are alive and well at abyssal

depths. Deep-Sea Newsl. 32, 17–19.
Janussen, D., Tabachnick, K. R. & Tendal, O.S 2004 Deep-

sea Hexactinellida (Porifera) of the Weddell Sea. Deep-Sea

Res. II 51, 1857–1883. (doi:10.1016/j.dsr2.2004.07.018)
Kennett, J. P. 1968 The fauna of the Ross Sea, part 6, ecology

and distribution of foraminifera. NZ Dept Sci. Ind.Res.
Bull. 186, 1–47.

Klinkhammer, G. P., Chin, C. S., Keller, R. A., Dahlmann,

A., Sahling, H., Sarthou, G., Petersen, S., Smith, F. &

Wilson, C. 2001 Discovery of new hydrothermal vent sites

in Bransfield Strait, Antarctica. Earth Planet. Sci. Lett. 193,

395–407. (doi:10.1016/S0012-821X(01)00536-2)
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