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What is the extent of prokaryotic diversity?
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The extent of microbial diversity is an intrinsically fascinating subject of profound practical
importance. The term ‘diversity’ may allude to the number of taxa or species richness as well as their
relative abundance. There is uncertainty about both, primarily because sample sizes are too small.
Non-parametric diversity estimators make gross underestimates if used with small sample sizes on
unevenly distributed communities. One can make richness estimates over many scales using small
samples by assuming a species/taxa-abundance distribution. However, no one knows what the
underlying taxa-abundance distributions are for bacterial communities. Latterly, diversity has been
estimated by fitting data from gene clone libraries and extrapolating from this to taxa-abundance
curves to estimate richness. However, since sample sizes are small, we cannot be sure that such
samples are representative of the community from which they were drawn. It is however possible to
formulate, and calibrate, models that predict the diversity of local communities and of samples drawn
from that local community. The calibration of such models suggests that migration rates are small
and decrease as the community gets larger. The preliminary predictions of the model are qualitatively
consistent with the patterns seen in clone libraries in ‘real life’. The validation of this model is also
confounded by small sample sizes. However, if such models were properly validated, they could form
invaluable tools for the prediction of microbial diversity and a basis for the systematic exploration of
microbial diversity on the planet.
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1. INTRODUCTION
(a) What is the extent of microbial diversity?

Introductory comments

How many different kinds of microbes are there? It is

one of those child-like questions in science that exposes

the depths of our ignorance and the severe limitations

of our most sophisticated measurement tools and

intellectual strategies. This alone makes it a question

worth tackling. However, it is also a question of

profound practical importance. Microbes are required

to sustain almost every other form of life on Earth and

are especially important to human life: influencing,

even dictating, climate, health, agricultural pro-

ductivity and the fate of pollutants. They are often

unanticipated modulators of our activities working in

benign (pesticide degradation) or malign (mobilizing

arsenic in water) ways. However, microbes in real life

rarely, if ever, exist as the pure cultures from which we

have learnt so much. They exist as communities of

varying and typically unknown complexity. These

communities invariably form when the opportunity is

offered: be that opportunity a new baby or a new hole in

the ground. We do not yet really understand how these

communities form. This is in many ways more
tribution of 15 to a Discussion Meeting Issue ‘Species and
n in micro-organisms’.
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important and more challenging than estimating the
extent of microbial diversity. However, the two
questions are inextricably linked and a better under-
standing of microbial diversity will lead us to a firmer
comprehension of microbial community formation.

The question of microbial diversity was not always
considered a question, at least not a very interesting or
tractable one. Thomas Brock’s excellent 1966 text on
microbial ecology (Brock 1966) makes only passing
(though shrewd) comments. The usually thoughtful
and insightful MacArthur & Wilson (1967, p. 182) are
sure that ‘higher plants and animals comprise most of
the.species on Earth’. These presumably uncontro-
versial views probably had their root in the almost
complete reliance on laboratory cultivation for the
detailed characterization of micro-organisms and the
historically poor nature of prokaryotic taxonomy. Even
as microbial taxonomy improved, one still had to grow
an organism in the laboratory to learn all but the most
limited information about its properties. That infor-
mation was gained laboriously by tens of biochemical
tests, and new species were ‘discovered’ very slowly and
delineated based on poorly constrained criteria.

The extent of microbial diversity is now the subject
of polemic. Those who believe that diversity is large
have been greatly influenced by the work of Pace and
his colleagues (Hugenholtz et al. 1998). They demon-
strated that the presence of, and phylogenetic relation-
ships between, microbes in real communities could be
This journal is q 2006 The Royal Society
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inferred from the analysis of sequences of conserved
genes (typically 16S rRNA genes) recovered from the
environment, independent of the need to grow a pure
culture in the laboratory. This strategy is now very
widely applied in microbial ecology and whole new
phyla have been discovered and the description of new
16S rRNA sequences is commonplace. An insightful
and complementary piece of work by Torsvik and her
colleagues showed that the rate of re-association of
DNA extracted from soil was consistent with the
presence of several thousand distinct taxa in a few
grams (Torsvik et al. 1990), a finding that led E. O.
Wilson (1994) to suggest ‘no one has the faintest idea’
of the extent of microbial diversity. There are other
lines of evidence which also suggest that prokaryote
diversity is extremely large. There are reports of
endemic sequences for example in soil and hot springs
and large diversities are possible mathematically
(Fulthorpe et al. 1998; Curtis et al. 2002; Whitaker
et al. 2003).

Those who believe that global microbial diversity is
small have been particularly influenced by the ubiquity
of certain protozoan species. For example, small
samples from marine and freshwater environments
were found to contain the vast majority of the ciliates
associated with such environments globally. In an even
more remarkable study, Finlay & Clarke (1999) found
32 out of 50 known Paraphysomonas species in just
25 ml of sediment. It was reasoned that this apparent
ubiquity was a function of the huge numbers, small size
and ease of dispersal of ciliates in particular, and
microbes in general. Since there is essentially no
obvious barrier to the dispersal of microbes (microbes
are no respecters of mountain ranges or oceans) and
there are very many of them, microbes can, and do, get
everywhere. It has been assumed that high rates of
dispersal imply high rates of immigration and thus
immigration will also limit speciation, by robbing
microbial communities of the isolation required for
new taxa to arise allopatrically. Conversely, once
formed, it is very hard for a microbial species to go
extinct, because they exist at such large numbers.
Studying the ecology of protists is still largely based on
morphology, rather than nucleic acid sequence data
more commonly employed in bacterial ecology
(Fenchel & Finlay 2006). It has thus been argued that
the analysis of ‘morphospecies’ may obscure
differences that exist at the genome level and the
same ‘morphospecies’ from different locations may be
different ‘genomospecies’ and thus not globally dis-
persed. However, there is evidence of ubiquity and low
diversity in the bacterial world. Hagstrom et al. (2002)
have suggested that the rate of reporting of new 16S
rRNA sequences from marine bacteria is decreasing
year-on-year, suggesting that the majority of taxa which
exist have been sampled. Moreover, excellent and
authoritative evidence for ubiquity has been produced
by the Hugenholtz group using an environmental
genomics strategy. They have demonstrated that
organisms with virtually the same genome were found
in model wastewater treatment plants in the USA and
Australia (P. Hugenholtz 2006, personal communi-
cation). This is a particularly interesting finding.
Neither differences nor similarities in morphology or
Phil. Trans. R. Soc. B (2006)
conserved sequences are infallible guides to relatedness
in the microbial world. Thus, it has been possible for
the parties in the polemic to suggest that the
contrasting findings are a function of the contrasting
methods used. While this may in part be true, evidence
of ubiquity at the genomic level suggests that more than
methodological differences need to be invoked to
square the circle. The scale of disagreement is
extremely large. Though most papers eschew numbers,
‘moderate’ (Finlay & Clarke 1999) diversity in the
context of microbes might be less than 10 000 globally
and a few hundred taxa in a sample. On the other hand,
‘high’ diversity might be more than 10 million globally
and greater than 5–10 000 locally (Curtis et al. 2002).
This implies that we cannot agree, even to within three
orders of magnitude, on the extent of diversity. It is as if
we could not distinguish the height of Mount Everest
and the Eiffel tower.

What then are the causes of the uncertainty? We
have already alluded to the use of different methods for
inferring differences and similarities among species. In
addition, different environments might be expected to
have different diversities. Therefore, the diversity of soil
and seawater may not be comparable. However, even if
all these obvious methodological differences were
accounted for, one overriding problem remains: sample
size. Thus, a lake or an activated sludge reactor might
have 1015–1018 individual bacteria, and yet 16S rRNA
clone libraries of more than 1000 are exceptional. This
implies examining just one clone or sequence for every
1012–1015 individuals. These are impossibly small
samples. The implications of gross under-sampling
are only just beginning to be understood. Consider
taxa–area relationships (TARs). This probably uni-
versal phenomenon is actually difficult to observe in the
microbial world. If the same most abundant taxa are
found in samples of small and large areas or volumes,
then the diversity will look exactly the same, simply
because such a small proportion of the microbiota is
sampled. TARs therefore only become detectable if
environmental, evolutionary or demographic forces
affect the structure of the most abundant organisms
(Woodcock et al. in press). There may also be a
complex relationship between the change in diversity
and the change in the number of taxa detected. For
example, ‘molecular fingerprinting methods’ will only
detect differences in diversity when the true diversity
lies in a narrow range and neither very low nor very
high (Loisel et al. 2006).

The importance of appropriate sample sizes will
seem blindingly obvious to future generations.
However, the polemic and confusion that prevails at
present, largely as a consequence of sampling limi-
tations, are understandable as we are dealing with a
world, the microbial world, that operates at a scale
beyond the range of normal human intuition. It is not
therefore surprising that we use nebulous terminology,
overlook important factors, make mistakes and dis-
agree. However, this is not a situation that can be
allowed to persist. The exploration of the microbial
world is too important for that. We need to develop
effective strategies for authoritatively determining
prokaryotic diversity and move on to the greater
challenges that lie ahead.
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Figure 1. Non-parametric methods must be used with
caution when sample sizes are small. The sample sizes
required to correctly characterize a sample with a diversity
(i.e. richness) of 5000, undertaking a complete census, a 95%
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2. STRATAGEMS FOR DISCOVERING DIVERSITY
How then can we determine microbial/prokaryote
diversity? Not withstanding our comments about
sampling, it is clear that the diversity in a sample exceeds
the number of taxa observed by whatever empirical
measurement is used. Not least because when prokaryote
communities are analysed using 16S rRNA gene clone
libraries, a relationship between the clone library size and
the number of different taxa observed is almost invariably
found. In trying to determine diversity, one can adopt
one of a number of strategies, each with their own
advantages and disadvantages. The simplest approach is
probably to use some form of non-parametric estimator.
Alternatively, one can assume some form of distribution,
guided by either theoretical reasoning or extrapolation
from a dataset. Finally, one can also estimate the diversity
and the local distributions by using a calibrated
mathematical model of community assembly.
census or using non-parametric methods (Chao 1 and ACE).
Note that if the diversity is uniform, non-parametric
estimators are very efficient. However, if the diversity is
lognormally distributed, then a very large sample is required
to obtain the correct answer. The simulations are described in
more detail elsewhere (Schloss & Handelsman in press).
3. CHAO’S ESTIMATORS
In principle, non-parametric methods are an extre-
mely attractive way to estimate diversity. A suite of
such methods, developed by Chao and originally
popularized by Colwell (Chao 1984, 1987; Colwell &
Coddington 1994), give an estimate of the minimum
diversity compatible with the data. These methods
are simple and make no assumptions about the
underlying distribution. Though the methods them-
selves are excellent, they can be misinterpreted as
giving a true estimate of the diversity, irrespective of
the sample size. In reality, if the sample size is too
small, then the corresponding estimate of diversity
will be too small as well. The minimum sample size
required for this class of estimator is of the order of
the square root of twice the diversity. However,
minimum sample size is extremely sensitive to the
underlying distribution. Schloss & Handelsman
(in press) have explored the use of non-parametric
estimators by simulation. They found that for a
sample with a species richness of 5000, it could take
anything from 18 000 to 40 000 clones to correctly
estimate the true species richness if the bacteria have
a lognormal distribution, but a mere 150 clones if the
distribution is even (figure 1).

Schloss & Handelsman have also undertaken some
very interesting analyses of local (Schloss & Handels-
man 2005) and global (Schloss & Handelsman 2004)
biodiversity data that unequivocally show non-para-
metric estimates are a function of sample size. They go
on to show that we do not yet have sufficient data at a
local or global scale to estimate richness using these
estimators. The global analysis was undertaken by
analysing the sequences in the Ribosornal Database
Project II (RDP-II) database of 16S rRNA sequences.
While this stratagem is subject to many caveats, in
addition to the question of sample size, it does give a
lower limit to our estimates of global diversity of about
35 000 (based on species discrimination at 97%
sequence identity) and 325 000 (based on species
discrimination at 99% sequence identity). We know
that the global diversity of prokaryotes is greater than
this, but we do not know how much greater. This
uncertainty at small and large scale is not the fault of
Phil. Trans. R. Soc. B (2006)
the estimators; they are clever mathematical tools, not
magic wands. We simply need to make sure that the
sample sizes employed are big enough for the tools to
do their job and to answer the questions we ask.
4. ASSUMING A DISTRIBUTION
One way to try to escape the sample size issue is to
assume a particular taxa-abundance distribution from
which the samples are taken. The specific nature of the
distribution then becomes a critical factor. Ecologists
who study larger organisms have commonly observed
lognormal distributions within a given group of
organisms at a given location. A number of theoretical
explanations for such a pattern have been advanced.
MacArthur, and later May (MacArthur 1960; May
1974), pointed out that micro-organisms would be
subject to exponential growth, but without a large
standing population. They suggested that if many
different things acted independently on the growth
rates of the micro-organisms, then the growth rates
would be normally distributed and so the abundance of
the organisms would be lognormally distributed
(because growth is exponential). They further reasoned
that in more extreme environments fewer factors would
impinge on growth rates leading to communities with
geometric taxa-abundance curves.

In the absence of any reliable data on the relative
abundance of bacterial taxa, the lognormal taxa-
abundance curve is therefore a plausible place to start.
Making a further assumption that the least-abundant
bacterium in a sample is represented by a single
organism at an abundance of one, it is possible (Curtis
et al. 2001) to derive a relationship between ratio of the
abundance of the most abundant taxon (Nmax), the total
number of individuals (NT) or NT/Nmax ratio and the
number of taxa or species richness (figure 2).

This is a ‘quick and dirty’ estimate but has the
advantage of requiring relatively little information and
the disadvantage of more probably giving an
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Figure 2. A ‘quick and dirty’ way to estimate diversity by
assuming a distribution. (a) The total number of taxa in a
community with a lognormal species abundance curve is
simply the area under that curve (called the species curve).
The individuals curve is the number of species at each
abundance (the species curve) multiplied by their abun-
dance (the x-axis). There is therefore a mathematical
relationship between the area under a species area curve,
the number of individuals NT (the area under the
individuals curve), and the maximum and the minimum
abundance (Nmax and Nmin). (b) The relationship, over 30
orders of magnitude in population size, for various ratios of
NT/Nmax by assuming that Nmin is equal to one (Curtis
et al. 2002). As a rule of thumb, soil has a ratio of 10 and
seas and lakes have a ratio of 4. There are about 1030

bacteria in the world (Whitman et al. 1998).
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overestimate of species richness at any given level of

phylogenetic resolution. Furthermore, by comparing

the outcomes of this method and Chao’s non-

parametric estimators (assuming the sample size is

too small) one can get a feel for the range of possible

outcomes and possibly use the parametric method to

conservatively estimate the sample sizes required to

obtain a correct estimate from a non-parametric

method. Thus, the NT/Nmax ratio for the Schloss &

Handelsman (2005) global dataset is about 67 when

taxa are defined at the level of 97% 16S rRNA

sequence identity. This implies a global species richness

of less than 1010 assuming that there is a single least-

abundant organism with an abundance of one. The

true value is probably a great deal less than this

because the sequence database in general will contain a
small number of representative sequences and not

reflect the frequency at which particular sequences are

recovered in individual studies (which would lower the
Phil. Trans. R. Soc. B (2006)
NT/Nmax values). Thus, if the global NT/Nmax ratio was
10, then under the same assumptions as before the
global species richness would be about 108; this
probably represents a more plausible upper limit.
On the other hand, it is well known that discrimination
of taxa based on 16S rRNA sequence identity values
is innately conservative which could be used to argue
for higher estimates of species richness. These ‘back
of an envelope’ estimates must be couched in careful
terms and should be regarded as a tentative first
pass estimates.

However, there is one ‘bullet proof’ estimator that
assumes a distribution, but it can only be used in the
unusual situation where all the sequences detected in a
16S rRNA gene clone library are different (Lunn et al.
2004). In this case, one can assume that the underlying
distribution is uniform and estimate the probability of
observing that sample, given certain levels of diversity
in the sample. This approach was used to analyse data
from a clone library of 100 singletons obtained from
Amazonian soil (Borneman & Triplett 1997). Thus, for
100 singletons it would be very unlikely (pZ0.006)
if the soil diversity was less than 103, quite unlikely
(pZ0.6) if the diversity was less than 104 and probable
(pZ0.95) if the diversity was about 105. The
assumption of a uniform distribution is almost certainly
wrong. However, if there is any other kind of
distribution, the estimated diversity would be even
higher. Such samples are of course not common, and
there is some doubt about the truly flat nature of the
dataset which inspired the work (Schloss & Handels-
man in press). Nevertheless, the unequivocal nature of
the reasoning makes this work significant.

Though lognormal curves appear to be commonly
observed in communities of large organisms, we simply
do not know if they pertain in the microbial world.
Furthermore, MacArthur & May’s reasoning may not
be infallible. For example, samples of the Archaea and
the Bacteria can have apparently different distributions
(figure 3) in the same anaerobic digester (Godon et al.
1997). This should imply that the anaerobic digester
represents a permissive environment for Bacteria and
an extreme environment for methanogens. Similarly,
clone libraries of ammonia-oxidizing bacteria (AOB)
and the general bacterial community can have radically
differing distribution in the same treatment plant
engineered to meet all their needs. In retrospect, one
can construct a narrative to explain these differences.
However, this form of plausible qualitative reasoning is
probably of only limited application at present and we
should aspire to a more robust approach.
5. FITTING A TAXA-ABUNDANCE CURVE
TO THE DATA
An obvious and superficially attractive alternative to
simply assuming a distribution curve is to simply predict
the shape of the curve (and therefore the species
richness) on the basis of the relative abundance of
clones in clone library data (Dunbar et al. 2002; Hong
et al. 2006). The major flaw with this approach is that
sample sizes are dictated by budgets and technology
rather than a rational assessment of the sample
size required to undertake the task (but see below).
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There is, therefore, an implicit assumption that
there is enough information in the sample to describe
the underlying distribution. This assumption is not
necessarily met.

Sloan et al. (in press) have demonstrated that
relatively small samples from communities with
radically different diversities will look remarkably
similar (figure 4) and bear little resemblance to the
distribution of taxa in the community from which they
were drawn. It follows that one cannot assume that the
distribution of sequences observed in a 16S rRNA gene
clone library resembles the distribution of the commu-
nity from which it is drawn. In fairness, some curve
fitting papers have emphasized the problem of sample
size and given very useful estimates of the sample sizes
required for more confident estimates. Thus, Dunbar
(Dunbar et al. 2002) made a prediction on the basis of
clone libraries of several hundred clones, but showed
that, in reality, 16 284–44 000 clones might be required
to describe half the taxa present in a diverse soil sample.
Schloss & Handelsman (in press) have made analogous
calculations suggesting that while a complete census of
a diverse soil sample might require over 400 000
clones, a smaller sample of 18 000 clones would yield
enough information to make an estimate of the
diversity.

More recently, there has been an increase in both the
range of curves examined and the sophistication with
which they have been fitted. There has however been
no systematic attempt to obtain adequate samples sizes.
Gans et al. (2005) have attempted to get round this
problem by using DNA–DNA re-association data
rather than clone libraries of conserved genes, although
this method has its critics. Gans et al. (and others before
them) have realized that the pattern of re-association
reflects the underlying distribution of similar sequences
(and therefore we hope genomic diversity). Only
about half the DNA re-associates, but in simulations
Phil. Trans. R. Soc. B (2006)
of data from communities with a diversity of 5000,
this was enough to discriminate between distributions.
However, when the data were analysed, the best fitting
lines were compatible with the presence of over a
million distinct genomes. This implies that a far greater
proportion of the curve is hidden than perhaps Gans
et al. thought when they embarked on the study. This
makes the extrapolation more difficult and uncertain.
The study has drawn comments about strategies for
fitting curves from Hong et al. (2006) and I. Volkov
(2005, personal communication). However, the best
curve fitting in the world is pointless if there are
insufficient data to begin with. The studies reported to
date would have done a great service if they simply
illustrate this point (Narang & Dunbar 2004).

To persist in curve fitting with insufficient data will
yield papers but not knowledge. We need now to accept
we require ‘more power’ and that this means more data.
Larger sample sizes are technically feasible but are
potentially expensive, especially if one considers several
environments. However, it is probably not as expensive
as the present modus operandi of repeatedly asking
questions about diversity and only partially funding the
search to find the answer. Moreover, exciting new
sequencing technologies could well make very large
datasets far more easily available than they have been in
the past.
6. ‘A MORE FRUITFUL APPROACH’
Determining an appropriate distribution and diversity
for a given microbial community will be fascinating,
because it is difficult and unknown. There is, moreover,
tremendous satisfaction to be gained from breaking out
of the speculation and polemic that surrounds the field
and placing the exploration of the extent of the
microbial world on a more solid footing. However,
the limits of simply fitting curves, even with enough
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data, should be acknowledged. In 1957, MacArthur

(1957, p. 293), commenting on contemporary debates

about taxa-abundance curves, wrote:
Phil. T
One approach. is to fit known statistical distributions

of uncertain biological meaning to the data. A far more

fruitful approach seems to be. to predict on the basis

of simple biological hypotheses.
This critique is doubly relevant for microbial ecology.

There will probably be no single ‘one size fits all’

distribution or diversity. The picture will vary between

communities, levels of taxonomic resolution and

functional groups (functional group is a loose term
rans. R. Soc. B (2006)
meaning organisms with the same function, such as
the denitrifiers or AOB). We have already alluded to the
apparent differences between the Archaea and the
Bacteria in the same environment. Hong et al. (2006)
noted differing fits with differing levels of phylogenetic
resolution. This should remind us that describing the
diversity of any given community or functional group is
not an end in itself, but a milestone on a search for a
deeper understanding of how communities form.

Moreover, calculating prokaryote diversity in
particular and microbial diversity in general will often
be a laborious and expensive undertaking. We will be
better able to justify the expense if we can use such
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studies to draw meaningful and generalizable infer-
ences. Consequently, we cannot be content to simply
plot the lines and say the diversity is X. Rather, we must
use this information to test our ability to predict on the
basis of simple biological hypotheses.

This in turn will present us with tools to predict how
communities form and change, even when we have not
had the opportunity to characterize those communities
in great detail. If we had such tools, we might be able to
‘sketch out’ the lay of the land over many microbial
environments and landscapes using information gar-
nered from small samples that can be analysed cost
effectively.

Such estimates could be an invaluable guide to those
seeking to investigate, exploit or manipulate a given
class of environments. For example, a combined
genomics and proteomics investigation of an environ-
ment represents a substantial investment in the
diversity of a given community or class of community.
Predicting the nature, extent and stability of that
community will help ensure that the investment is of
an appropriate scale and that the information is valid
over appropriate spatial and temporal ranges.
7. CRITERIA AND PRINCIPLES FOR MODELS
OF MICROBIAL COMMUNITY FORMATION
MacArthur’s ideas for a better approach eventually
bore fruit as ‘The Theory of Island Biogeography’
(MacArthur & Wilson 1967). His co-author Wilson
(1998) suggested that a good theory should be judged
against the criteria of parsimony, generality, consilience
and predictiveness. This is good advice. The ability to
predict is particularly important in the context of
microbes. Many ecological theories are evaluated by
their ability to reproduce a world that has already been
well described. Theory is used in lieu of experi-
mentation to gain insights into underlying mechanisms.
This can mean using complex models with many
parameters, most of which are, necessarily, invented.

In the microbial world it is different. We must use the
parameters to predict the microbial world. It follows
that the parameters must be as near to reality as
possible and therefore inferable from either first
principles or reasonable measurements. This in turn
reinforces the need for parsimony, since this minimizes
the number of parameters. This implies a theory based
on simple truths.

In searching for these truths, one might be tempted
to look at certain putatively ubiquitous phenomena
such as TARs or lognormal taxa-abundance curves.
These phenomena are good indicators that universal
principles are at work. They are not universal principles
themselves. TARs have been, rather unfortunately,
described as ‘one of the few laws in ecology’ (Pounds &
Puschendorf 2004). This statement confuses a
phenomenon, the taxa–area curve, with the underlying
principles behind it, which might include demographic
considerations, selection or evolution. This is not
academic hair splitting. Since the microbial world
stretches over 30 orders of magnitude (i.e. from one cell
to all the cells on the planet), scale is one of the more
important challenges in microbial ecology. It will often
be easier to confidently upscale simple principles than
Phil. Trans. R. Soc. B (2006)
to extrapolate certain phenomena. The Earth orbits the
Sun, but a pea will not orbit a grapefruit: the law of
gravity explains both.
8. THE SIMPLEST POSSIBLE MODELS
An almost infinite number of factors impinge upon
microbial life. However, the simplest possible truths
about an open microbial system are that organisms
reproduce, die and immigrate. MacArthur & Wilson
(1967) used birth, death and immigration as the
founding principle of the theory of island biogeography.
Somewhat defensively noting in the preface (p. 5) that
crude theory ‘if it can account for, say, 85% of the
variation in some phenomenon of interest, it will have
served its purpose well’, they suggested that the
diversity observed on an island represented a balance
between immigration from some source community
and local extinction. Intriguingly they sought, and
found, their first qualitative evidence for this con-
ception in microbial communities. However, though
the theory of island biogeography is very simple, it is
too complicated for microbial ecologists. This is
because it is predicated on a complete, or almost
complete, census of local and source diversity, a
question that we found we could not satisfactorily
answer, as described earlier. Nevertheless, by
suggesting that the composition of a local community
is a function of immigration and some source
community, they do suggest a strategy for predicting
local diversity.

More recently, stochastic models of community
assembly have been proposed (independently) by
Bell & Hubbell (Bell 2000, 2001; Hubbell 2001).
These models are conceptually analogous to the
original theory of island biogeography and have been
termed neutral as they implicitly assume, on average,
the equivalence of species. Hubbell’s publication is the
more ambitious and wide ranging of the two. It is
intuitively appealing as it has just three parameters, a
source community, an immigration parameter and the
number of individuals in the local community
(figure 5), and yet, at least superficially, appears able
to generate the paradoxical range of diversities and
community abundance patterns found in the real
world. Thus, the Bacteria and the Archaea in
the same environment to which they are both well
adapted could have radically different distributions
if one occurred at higher numbers or with a higher
source diversity.

Hubbell’s model is also unusable in its original
format as far as microbial ecologists are concerned.
The most important problem is that it was based on a
discrete Markov chain and thus becomes computa-
tionally intractable for number of individuals greater
than 104: you would find a larger community in a one-
tenth of a thimble of seawater. The second problem
was that the original model was corroborated, using
two fitted parameters (the source term and the
immigration term), to known taxa-abundance curves.
This is unfortunate, in the microbial world we are still
unsure about the nature of the source diversity or
indeed the immigration term and we do not yet have a
single reliable taxa-abundance curve. Finally, the
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Figure 5. A schematic of the model used to estimate diversity. When an individual dies in the local community, it is replaced from
outside the community with a probability m, or from within the community with a probability 1Km (after Hubbell 2001; Sloan
et al. 2006, in press).
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model conceptualizes the source diversity as being a log
series; this may or may not be true for a given microbial
source community. The model for the evolution of the
source community in Hubbell’s model assumes that
variation is generated through simple point mutations.
This might be an adequate model for certain genes used
to characterize microbial diversity. However, it might
not be an adequate model for the whole organism as
horizontal gene transfer (HGT) appears to be a major
force in the speciation of prokaryotes.

In summary, a simple neutral community model is
an attractive option for exploring microbial diversity.
However, such a model must be able to cope with large
numbers, be calibrated without recourse to a taxa-
abundance curve, or more than one independent
parameter, and not be wholly reliant on Hubbell’s
conception of the source term. One such approach is
described in Sloan et al. (2006).
9. A NEUTRAL COMMUNITY MODEL
FOR MICROBES
To develop a stochastic model that may cope with very
large numbers, Sloan et al. (2006) have derived a
continuous form of Hubbell’s discrete model. They did
this by drawing on methods widely used in the study of
neutral evolution and originally developed by physicists
to scale up random walks. The conceptual basis of the
model is identical to that of Hubbell. It is predicated on
the idea that, over a small period of time, the number of
individuals in a community can either increase by one
organism, decrease by one organism or not change.
The probability of each of these possibilities can be
expressed in terms of the number of organisms (NT),
the probability that a death can be replaced by an
organism from outside the local community (m) and
the proportional abundance of the species in the source
community (pi). Based on these probabilities, it is
possible to derive an equation that describes the rate
of change of the probability that the species will have
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a particular relative abundance, xi. The relative
abundance is assumed to be a continuous random
variable for large microbial populations. The steady-
state solution of the equation gives an expression for
the probability density function for the relative
abundance of i th species. It is possible to confer a
slight advantage or disadvantage over other taxa (which
introduces a fourth advantage parameter that can be
used to represent competition) or have a purely neutral
system (in which case the advantage parameter is zero).
When the advantage parameter is zero, then xi is beta
distributed,

xi ZBetaðNTmpi ;NTm; ð1KpiÞÞ:

This is not the only analytical solution to Hubbell’s
model (Houchmandzadeh & Vallade 2003; Vallade &
Houchmandzadeh 2003; Volkov et al. 2003; McKane
et al. 2004), but it is the simplest and makes identical
predictions to those of the discrete model (figure 6),
even at very low NT values. For any given mean
proportional abundance in the source community,
the probability distribution spreads out or tightens
up as the value of the number of individuals (NT)
multiplied by the invasion rate (m) or NTm decreases
or increases (figure 7).
10. PARAMETER ESTIMATION
Though the development of analytical solutions,
especially simple ones, represents a helpful step
forward, plausible values for the parameters NT, pi
and m are required to put the model to work.

NT, the total number of individuals in a sample
might be the number of clones examined in a clone
library, or the number of bacteria in a sample from
which 16S rRNA gene fragments are subsequently
amplified and then analysed using a microbial com-
munity fingerprinting technique, such as denaturing
gradient gel electrophoresis (DGGE). Where subsets of
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Figure 6. Predictions of the Sloan et al. (2006, in press)
model. Probability density functions, fi for the local
abundance of a species that makes up 20% of the source
community. mZ1 means the space vacated by every death is
filled by an immigrant and the source and local communities
are highly coupled. Therefore, fi forms a tight bell-shaped
distribution with mean relative abundance 20%. As m drops,
the local community becomes increasingly more isolated and
the internal neutral dynamics act to increase the skew and
variance of the distributions, making low abundances more
probable, but increasing the uncertainty or variability. As m
continues to drop, the mode of the distribution becomes zero
(m!0.04) and the likelihood of the species being absent
increases.
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the bacterial community are examined using molecular
fingerprinting techniques, it may be necessary to use
fluorescent in situ hybridization (FISH) or some other
quantitative method to determine the number of
individuals comprising that subset of the community.
It is worth noting that though the model itself is
stochastic, the parameter NT is not. Rather, the
number of individuals in a particular functional group
is a function of the efficiency with which that particular
group converts energy to biomass. Where this is known,
the number of individuals can be estimated a priori.

Theproportional abundance in themeta-community,
pi, can also be estimated. Hubbell (2001) pointed out
that each local community is, in effect, a sample of
the community from which it is formed. Thus, by
sampling many local communities sourced from the
same meta-community, one can build-up a picture of
the proportional abundance of that organism in the
source community. This may be achieved by analysis of
a large number of 16S rRNA gene clone libraries or
microbial community fingerprints from similar
environments. The sample sizes should be approxi-
mately the same and the samples themselves should be
independent, ideally from different communities in
similar environments.

The parameter m is the probability that a death
within the community replaced from outside the
community (1Km is the probability that a death is
replaced by growth/reproduction of a member of the
local community). Authoritative commentators have
Phil. Trans. R. Soc. B (2006)
suggested that m, the immigration parameter, is
impossible to measure (Maurer & McGill 2004).
Fortunately, there are at least two ways by which m
can be inferred. Firstly, as the value of NTm increases or
decreases the variance of the local distribution will also
increase and decrease. For any given molecular
method, there is a detection limit (d ), a proportional
abundance a microbe must exceed to be detected. For
example, to be detected in a clone library an organism
must comprise at least 1/the number of clones, while in
DGGE an organism must be at least 1% of the sample
(Muyzer et al. 1993). Since the NTm value controls the
variance of the local distribution, it controls the
proportion of communities in which an organism is
present above the detection limit and thus the
frequency with which it is observed. Therefore, for an
organism of mean abundance pi, the probability that
the local abundance of the organism (xi) exceeds the
detection limit (d) can be related to the value of NT,
which can be measured and related to m by the
following equation:

PrðxiRdÞZ

ð1

d
Betaðxi : NTmpi ;NTm; ð1KpiÞÞdxi :

The predicted relationship between pi and NTm is
shown in figure 7. The prediction can be evaluated with
data on community composition from a number of sites
obtained using methods based on 16S rRNA or some
other conserved gene. Such a survey will provide an
estimate of both pi and the frequency with which a
particular organism is observed in several independent
samples. Since NT and d are already known, m can be
found using a simple spreadsheet-based routine.
Figure 8 shows the relationship between pi and
frequency for a range of quite different environments;
further examples can be found in Sloan et al. (2006).
We suspect that this pattern is widespread, perhaps
even universal in the microbial world.

The absence of a species definition might be
considered a barrier to theoretical microbial ecology.
However, the parameter m is the probability of an
individual immigration and should therefore be
independent of the species definition. Data from
Horner-Devine et al. (2003) offer some insight into
this issue as it was recorded at different levels of
phylogenetic resolution (95, 97 and 99% 16S rRNA
sequence identity used to discriminate taxa), which
might crudely correspond to genus, species and
subspecies discrimination. The estimate of m obtained
using data at different levels of phylogenetic resolution is
similar (0.13, 0.13 and 0.2, respectively). This suggests
that the model parameters are not constrained by, or an
artefact of, species-specific, niche-adaptation consider-
ations. This observation may have a bearing on ecology
in general as frequency abundance relationships were
first observed by Darwin and niche-based and stochastic
rationales have been offered (Brown 2000).

The immigration parameter m can also be inferred
without recourse to complex mathematical models. In
colony forming organisms, each colony represents an
immigration event. The number of individuals (not
involved in the immigration) in a colony represents
reproduction events in the local community. Where a
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Figure 7. How the value of NTm and m can be determined.
(a) For a given mean source community abundance, the
frequency with which an organism is observed is related to
NTm, the total number of individuals multiplied by the
immigration parameter. At high NTm values, the local
distribution is tightly clustered around the mean meta-
community distribution (in this case 0.2). As the NTm values
drop, the distribution widens and eventually the mode of the
curve falls below the detection limit and the organism is no
longer observed. There is therefore a relationship between the
mean source community abundance NTm and the frequency
with which an organism is observed. (b) The expected
frequency–relative abundance relationships observed in a
local community for differing NTm values. Thus, for a given
dataset, the NTm values can be found by fitting a line to these
data; where the value of NT is known, m can be easily inferred.
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single organism immigrates, the value of m is the ratio
of the total number of colonies to the number of
individuals in those colonies. This is also the minimum
possible value for m, since more than one organism
could form a colony (and thus decrease the ratio of
immigration events to increase in numbers by repro-
duction), but less than one organism cannot initiate a
colony and increase that ratio. AOB in wastewater
treatment occur in just such microcolonies and a
reanalysis of recently published data (Coskuner et al.
2005) permits us to estimate immigration rates by
this method. We found rates of 7!10K3 (s.d., 0.0017;
nZ12) and no evidence of genus-specific immigration
parameters from data obtained by the specific quantifi-
cation of Nitrosomonas spp. (mZ0.006) and Nitrosospira
spp. (mZ0.007; Curtis et al. in preparation).
11. SCALING OF IMMIGRATION RATES
The immigration parameter is not likely to be constant;
Sloan et al. (in press) demonstrate, albeit using almost
complete censuses of tree communities, that immigra-
tion scales with the size of the community and
potentially its physical attributes. Moreover, the
Phil. Trans. R. Soc. B (2006)
immigration parameter identified using small random
samples like clone libraries from a neutrally assembled
community is confounded by the variance introduced
by sampling effects. This means that the value of m that
one perceives in a small sample can be much higher
than the migration into a larger sample, or the
community as a whole. Sloan et al. (in press) derived
a relationship between the effective immigration that
can be seen in a sample ~m of size Ns and the true
immigration rate m in a neutral community of size NT.
The relationship proposed should be used with
caution. It may only pertain in successively larger
samples of relatively well-mixed communities and will
not indicate migration into a discrete community or
over a landscape. It does indicate that the immigration
rate will decline as the samples get larger and larger;
this in itself is significant.

By estimating the value of m using differing methods
working at differing scales, we can see how m varies
with the number of individuals in a well-mixed
environment (wastewater treatment plants; figure 8).
The observed migration rates do scale in the manner
that Sloan et al. (in press) suggested. The data has a
slope of K0.876 (standard error of 0.082) while the
tentative theory suggested a slope of K1. We can
probably cautiously extrapolate migration rates within
the system on the basis of the observed and predicted
relationships and suggest that for 1018 individuals
(i.e. all bacteria in the plant) the value of m might be
1.5!10K16. We do not know what happens to
migration at the boundary of the system, but it
presumably drops below this value and may further
decline or plateau.
12. AN ASIDE ABOUT SPECIATION AND
MIGRATION RATES
In considering the implications of ubiquitous taxa, it has
been assumed that dispersal rates are so high that
evolution is slowed down by immigration, leading to a
few very abundant taxa. The implicit assumption is that
immigration rates are sufficiently high to permit
immigration to outweigh evolution. This is an assump-
tion we can now consider in more detail by comparing
plausible immigration rates with plausible speciation
rates. Mutations are thought to occur at a rate of about
0.003 per genome per replication. This corresponds to a
rate of about 10K10 per base pair per replication in a
6 Mb genome (Drake 1991); speciation cannot occur
faster than this, except perhaps by HGT. The prob-
ability of a mutation being observed in a specific gene
will be perhaps 7!10K7 substitutions per replication
for a 1.5 kb gene. It appears that mutation in specific
genes could exceed migration in as few as 106–107

organisms. This is less than the number of individuals
found in a few millilitres of seawater or lake water, or a
few drops from a wastewater treatment bioreactor. This
is consistent with recent observations of sequence
variation in bacteria in the open sea, which could be
interpreted as evidence of the accumulation of neutral
mutations and periodic selective sweeps (Thompson
et al. 2005). Speciation will of course be slower than
mutation and influenced by the selection pressures
present at a particular time. However, if migration rates



(b)

0.1 0.2 0.3 0.4 0.5 0.60

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.4
fr

eq
ue

nc
y

(a)

mean relative abundance (pi)

0

0.2

0.4

0.6

0.8

1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35

(d )
(c)

0

0.2

0.4

0.6

0.8

1.0

1.2

0.1 0.2

mean relative abundance (pi)

fr
eq

ue
nc

y

Figure 8. Data and theory compared. The theoretical (solid line) and observed (squares or triangles) relationship between the
mean relative abundance of taxa and the frequency with which they appear in a population of fixed size. Each of the points
represents a different taxon. (a) Clone libraries of different ammonia monooxygenase (AMO) genes at 13 different domestic
sewage works, NTmZ1.41 (Wagner & Loy 2002). The triangles represent putative salt tolerant taxa. (b) Clone libraries of 16S
rRNA genes from different AOB at six sites from the Humber Estuary, NTmZ14. (c) Clone libraries of 16S rRNA genes from
five experimental aquatic microcosms, NTmZ10.3 (Horner-Devine et al. 2003). (d) 16S RNA sequences for 16 different
bacterial taxa that are considered to be specific to freshwater environments sampled from 96 different lakes (Zwart et al. 2003),
NTmZ1.36. It is interesting to note that though both panels (c) and (d ) pertain to lakes, the fit is much better in the larger
dataset. This might be for two reasons: first, a larger dataset from larger systems will give a better indication of pi but also because
prior to the analysis of (d ) we removed data that represented three cyanobacterial lineages, leaving only data from one functional
group of putative heterotrophs whereas (c) contains all the bacterial sequences. Other examples and a full description are given in
Sloan et al. (2006, in press).
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are a function of NT, then they could be very low indeed

(see below). There therefore seems no reason why

evolution should not occur in a system subject to

immigration provided that the probability of a cell lost

from the system by death being replaced by an

immigrant decreases as the number of individuals

increases, but the probability of that death being

replaced by reproduction and replacement with a

genetically different individual does not. The two

processes of selection and evolution should exist in

some form of dynamic equilibrium in the microbial

world and similarities and differences between the genes

in differing communities should contain information

about the relative importance, perhaps even the rate, of

these two mechanisms. There is the possibility of some

link here between ecology and the work of population

geneticists. For example, Slatkin & Maddison (1989)

have developed methods for inferring immigration from

phylogenies. They concluded that when the value of

the effective population size Ne multiplied by the

immigration rate m exceeds one, then there is enough

gene flow to prevent the divergence of neutral genetic

loci. Roberts & Cohan (1995) studied communities of

Bacillus subtilis and Bacillus mojaviensis and found that

Nem values did indeed exceed one. However, it is not

certain that the Nem of Slatkin & Maddison (1989) is

comparable to the NTm presented here. A more formal

linkage between bacterial population genetics and

microbial neutral community models may be possible,

but would probably require a thorough re-examination

of both. This would be a very worthwhile exercise,

not only because of the insights one might gain about
Phil. Trans. R. Soc. B (2006)
immigration, but also because community models
and the population biology models should, ideally,
be consilient.
13. SIMPLE SCENARIOS
Now that we have a model for community assembly
and some plausible parameters, it is possible to begin
an exploration of the diversity of the microbial world
from a more ‘MacArthurian’ perspective. That is to
invoke the rules and parameters described earlier in an
attempt to gain insight into the extent of microbial
diversity. The extent of the source diversity does of
course remains unknown, local diversity remains
unmeasured and a formal validation of the model is
therefore unwarranted.

However, we do have a tentative method for
estimating immigration rates, we do know how many
individuals are present in certain functional groups and
we do know how many different sequences are found in
a clone library of a given size. It is therefore possible to
run the model to generate a hypothetical local
community which we can sample to generate an
in silico clone library to crudely compare with observed
clone library species richness.

The parameters we have already obtained pertain to
b-proteobacterial AOB and the bacterial community
as a whole (greater than 95% heterotrophs) in aerobic
wastewater treatment plants in the British midlands.
The two groups are of contrasting species richness and
evenness. The AOB are of low richness and evenness
with a 50 clone clone library comprising five distinct
sequences (at the 97% level) with one sequence
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comprising 40–45 clones. By contrast, a clone library

of 542 sequences from the whole bacterial community

might comprise 242 different sequences, with the most

abundant clone comprising only about 10% of the

total clone library ( J. C. Baptista 2005, unpublished

data). If the wastewater treatment reactor was

1000 m3, then one might expect the local community

to have an NT value of about 1018 for the whole

bacterial community and 1016 for the AOB (Coskuner

et al. 2005). The data and methods described earlier

suggest that this might lead to immigration rates of

10K12 and 1.5!10K16, respectively (figure 9).

To attempt to reproduce sample diversities com-

parable to those observed using the parameters we have

inferred, we must select possible source terms which

can be sampled (Sloan et al. 2006, in press) to produce

‘local diversities’ which can be sampled an appropriate

number of times to give a ‘clone library’ (figure 5).

Thus, AOB might have a very low source diversity,

perhaps 100–200 species capable of growing in a

wastewater treatment plant in a global community of

1027. By contrast, the general bacterial or ‘heterotroph’

source community might be very large indeed, perhaps
Phil. Trans. R. Soc. B (2006)
containing just over 105 different taxa in a global

community of 1029 bacteria. We used these high and

low diversities as source terms in the model. The

in silico clone library of 50 clones from the low diversity

simulation yielded five types of ‘AOB’ (approx. 20% of

the putative source diversity), the most abundant

sequence comprised 50% of the sample (figure 10).

By contrast, about 500 clones from the high diversity

simulation yielded just ‘133 heterotroph’ taxa, though

the true local species richness might be 4500. The AOB

and general ‘heterotroph’ species richness in the

simulated clone libraries were, respectively, very close

to, and of the same order as, those observed in real life.

We believe that this is tentative and qualitative evidence

that simple models using parameters derived from real

systems can reproduce patterns observed when real

analyses are done.

This may sound like convincing evidence for a

source diversity (i.e. richness) of over a 100 000 for

heterotrophs: it is not. The local community is so

grossly under sampled that source richness values

varying between 104 and 106 (or more) distinct taxa are

superficially indistinguishable even with ‘large’ clone
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Figure 10. Model predictions are qualitatively consistent with the patterns seen in ‘real life’. A sample of 50 ammonia-oxidizing
bacteria (AOB) clones and 500 bacterial clones in one of the wastewater treatment plants featured in figure 9 found taxa
diversities of 7 and 202, respectively, in the two samples. Here, we examine the ability of the Sloan et al. model to qualitatively
reproduce that finding. We used known NT values and, hypothetical source diversities of 200 (for the low source diversity group
corresponding with the AOB) and 100 000 (for the high source diversity corresponding with the general bacterial population);
immigration parameters were estimated using the extrapolation procedure mentioned in this paper (10K12 for the AOB and
1.5!10K16 for the general bacterial population). (a) Represents the AOB, the diversity is similar to that found in the samples.
(b) Represents the high source diversity group, the most abundant members of which are shown in (c) for greater clarity. The
clone and local diversity are obviously distinct. Slightly less diversity was found in the model than observed in practice,
suggesting some small errors in the source term or the immigration parameter. This is neither proof nor disproof of the model,
but an encouraging indication that a more formal validation may be worthwhile undertaking.
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libraries (figure 11) for any migration parameter less

than 10K8. Nevertheless, it is apparent that relatively

large source diversities are required to generate the

clone library diversities commonly observed in the

natural world, presumably, because the low immigra-

tion rates act as a sort of ‘barrier’ or ‘filter’ which must

be overcome if moderately diverse local communities

are to form. However, further insights into the source

diversity might be gleaned from the proportional

abundance of the taxa detected. These are early days

with simple models. We should however be able to get a

much clearer picture of the un-sampled diversity

through an intelligent mixture of model calibration,

simulation and samples of an appropriate size. If such

an approach could be validated, there seems to be no

reason why we should not, in principle, start to

systematically infer local and source diversities of

microbial communities throughout the world and
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thus start to systematically map the microbial diversity
of the planet.

Preliminary evidence from the study of taxa–area

curves lookshopeful. Inparticular, the radical differences

in observed taxa–area curves for microbes can be easily

reproduced using such a model (Woodcock et al.
in press). Thus, the very flat or none existent observed
taxa–area curves seen in some studies are to be expected

in most environments examined using small samples.

Taxa–area curves will be more easily observed in low

diversity communities with a relatively low number of

individuals. Moreover and more intriguingly, Woodcock

et al. (in preparation) have recently shown that the model
can be calibrated in one insular community (treeholes)

and used to predict the diversity measured using DGGE

in others. If this finding could be reproduced, it

would make the systematic mapping and prediction of

microbial diversity a great deal more tractable.
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Figure 11. The validation of the model is impossible with
small sample sizes. Using the neutral model to simulate the
effect of migration and source community diversity in a
microbial community of 1018 individuals (e.g. a wastewater
treatment plant) on (a) the number of taxa in a library of 500
clones and (b) the true local richness in a community of 1018.
The number of taxa in the sample soon plateaus, which
means we can infer relatively little about the local or source
diversity except that both probably exceed 103 and 104,
respectively. Note how the clone library species richness
actually dips slightly at higher diversities, probably owing to a
change in evenness in the underlying local community.
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14. THE FUTURE
Contemporary studies of microbial diversity are severely
handicapped by extremely small sample sizes. The data,
and thus our perception, of the microbial world are a
function of methods and budgets, rather than a rational
assessment of the sample size required. The inadequate
nature of the samples commonly obtained from the
environment must go some way to explain the polemic
that surrounds microbial diversity. Moreover, unless
and until sufficiently large samples are obtained in
studies of microbial diversity, definitive statements
about microbial diversity should only be made with
caution. At present, we do not know quite how large the
samples will have to be, and it may become apparent that
‘adequate’ sample sizes will be beyond the reach of most
laboratories. Predictive mathematical models of micro-
bial diversity could help in both cases. We have
described one such model and how it can be calibrated
here. The predictions of the model could be used to
design an intensive sampling programme to determine
the diversity of selected local communities and thus give
us valuable information about the wider communities
from which they are drawn. This in turn would allow
laboratories to make predictions about microbial
community diversity by calibrating the model using
small samples. A routine and generally accepted method
Phil. Trans. R. Soc. B (2006)
for predicting microbial community diversity, comple-

mented by occasional deep sampling, would open the

way for a systematic survey of the extent of the diversity

of the microbial world. The exploration of the microbial
world could become a routine, accumulative and

very powerful long-term endeavour underpinning the

knowledge and economic base of the sponsoring nation.
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