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The genes for the b, b*, and seven s factor subunits of RNA polymerase, for elongation factors EF-Tu1 and
EF-Tu3, and for six rRNA operons were mapped on the combined genetic and physical map of the Streptomyces
coelicolor chromosome. Like the previously mapped tRNA genes, the RNA polymerase and rRNA genes map to
scattered positions. The lack of rRNA operons in the immediate vicinity of the origin of replication (oriC) and
the absence of tRNA genes in any of the rRNA operons are novel features of the Streptomyces chromosome.

A combined genetic and physical map of the Streptomyces
coelicolorA3(2) chromosome, carrying some 150 genes or gene
clusters, has been constructed from a combination of the re-
sults of linkage analysis via plasmid-mediated conjugation and
pulsed-field gel electrophoretic studies of chromosomal frag-
ments generated by rare-cutting restriction enzymes (19, 21).
Although the linkage analysis included a set of 28 temperature-
sensitive lethal mutations (18), none of these was shown to be
blocked in specific steps in DNA replication, transcription, or
translation. Other such mutations were later implicated in
macromolecular synthesis but were not mapped (15). In fact,
until recently, the only mapped genes involved in the machin-
ery of nucleic acid or protein synthesis were three putative
ribosomal protein or RNA polymerase genes (strA, spcA, and
rifA), which were identified by mutations that confer resistance
to the antibiotics streptomycin, spectinomycin, and rifampin,
respectively. This situation has changed with reports of the
mapping of the chromosomal replication origin (11, 50), one
putative RNA polymerase s factor gene, whiG (14), and 20
tRNA genes (23, 35). Here, we report the physical mapping of
eight RNA polymerase subunit genes, the two tuf genes for
polypeptide chain elongation factors EF-Tu, and the six rRNA
operons on the S. coelicolor chromosome. We also discuss
current information on the distribution of genes for aspects of
macromolecular synthesis in this member of the high-G1C
gram-positive actinomycetes.
Mapping of genes encoding RNA polymerase subunits. The

S. coelicolor genes encoding the b, b9, and seven s subunits of
RNA polymerase have recently been isolated (see Table 1 for
references). Of these, hrdB is believed to encode the primary s
subunit and is an essential gene (7). shrdB strongly resembles
Escherichia coli s70; it has been shown biochemically to have a
promoter specificity very similar to those of E. coli s70 and
Bacillus subtilis sA and to be the major polypeptide associated
with the core S. coelicolor RNA polymerase (6). The hrdA,
hrdC, and hrdD genes (7, 8, 39, 40) encode group 2 s factors
(26) that show a lower overall similarity to the primary s
factors of other eubacteria than does shrdB but are very similar

in their DNA-binding domains, suggesting that they recognize
related promoter sequences. However, the functions of these
three s factors remain unknown: a triple hrdACD null mutant
showed no obvious phenotypic differences from the wild type
(8). The whiG and sigF genes encode s factors involved in the
control of morphological differentiation. The level of swhiG is
critical in determining the developmental fate of hyphae. whiG
mutants develop long, straight aerial hyphae that show no signs
of further development into spore chains (29); conversely,
overexpression of whiG leads to ectopic sporulation in the
vegetative hyphae, which are normally fated to lyse (14). Mu-
tations in sigF produce aberrant spores that fail to develop the
normal thick wall and are subject to lysis (31). The sigE gene
encodes sE (formerly s28), which has been identified biochem-
ically as the s subunit that directs transcription from one of
four promoters (P2) of the agarase gene (dagA) (10). The
recent cloning of sigE has led to the identification of a new
subfamily of s factors involved in the control of a range of
different extracytoplasmic functions in a wide variety of eubac-
terial genera (27).
The positions of the eight new RNA polymerase genes on

the S. coelicolor chromosome were determined by hybridizing
suitable probes to Southern transfers of AseI and DraI digests
of S. coelicolor M145 DNA, which were separated by pulsed-
field gel electrophoresis (21). The results are summarized in
Table 1, and their interpretation is given in Fig. 1B.
When the S. coelicolor hrd genes were originally isolated,

Takahashi and coworkers (38) reported that hrdC was absent
from the closely related strain Streptomyces lividans 66,
whereas Buttner and coworkers (7) found it to be present and
showed that the S. lividans 66 derivative used by Takahashi and
coworkers had undergone a deletion of hrdC. The wild-type
appearance of this strain was consistent with the lack of phe-
notypic consequences later associated with the construction of
a hrdC null mutant of S. coelicolor (7). The hrdC gene of S.
coelicolor lies on AseI fragment M, in the 1 to 2 o’clock region
of the chromosome, close to a chromosomal end (25) and to a
region of DNA subject to deletion (20). The corresponding
region of the S. lividans chromosome (24) is also often involved
in large deletions and amplifications (33). Perhaps the sponta-
neous loss of hrdC in some isolates of S. lividans is related to
such deletion events.
The S. coelicolor b and b9 subunit genes rpoB and rpoC were
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isolated using the corresponding E. coli genes as probes (9).
Preliminary sequencing showed that the two genes are adja-
cent on the chromosome in the order rpoB rpoC (9), as in other
eubacteria that have been investigated (1, 17, 28) (in the cya-
nobacteria, rpoC is split into two genes i.e., rpoC1 and rpoC2
[48]). Chater (13) isolated three classes of rifampin-resistant
mutants of S. coelicolor, designated rifA, rifB, and rifC. Only in
rifA mutants was RNA synthesis resistant to rifampin in ex-
tracts, as well as in whole cells. By analogy with E. coli and B.
subtilis, it is expected that rifA and rpoB are the same gene. The
genetic location of rifA, which is very close to that of strA (13),

and the physical location of rpoB (Fig. 1B) are consistent with
this expectation.
In the 11 gram-negative species examined, the gene encod-

ing the principal s factor is part of the macromolecular syn-
thesis operon which contains three essential genes, in the order
rpsU, dnaG, and rpoD, whose products (ribosomal protein S21,
DNA primase, and principal s factor) are necessary for the
initiation of protein, DNA, and RNA syntheses, respectively
(45). In gram-positive species, the macromolecular synthesis
operon appears to lack rpsU but maintains dnaG next to rpoD
(45). Interestingly, DNA sequencing of the hrdB region shows

FIG. 1. Combined genetic and physical maps of the S. coelicolor M145 chromosome. (A) Complete map (from reference 19). The physical map for the restriction
enzymes AseI and DraI is from previously published work (21), with correction of the position of AseI fragment Q (32) and the relative positions of DraI fragments
A and C (20). The ends of the chromosome (25) are indicated. (B) Positions of genes for aspects of macromolecular synthesis superimposed on the physical map from
panel A (genes are indicated at the midpoint of the relevant restriction fragment). Map locations of the tRNA genes are from Sedlmeier et al. (35) (only the first genes
in each cluster are shown); those flanking oriC are from Calcutt and Schmidt (11), and whiG is from Kieser et al (21).

TABLE 1. Map locations of S. coelicolor RNA polymerase, elongation factor, and rRNA genes

Gene or
operon

Fragment to which
the clone hybridized Gene product and its properties Reference(s)

AseI DraI

rpoBC D D b, b9 subunits (rpoB is expected to be equivalent to rifA) 9
hrdA C G Group 2 s factor; nonessential and of unknown function 8, 39, 40
hrdB B A/Ba Principal s factor; essential gene 6, 7, 36, 39
hrdC M —b Group 2 s factor; nonessential and of unknown function 7, 8, 39, 40
hrdD E A/Ba Group 2 s factor; nonessential and of unknown function 7, 8, 39, 40
sigE E A/Ba sE (formerly s28); extracytoplasmic function (ECF) s factor 10, 27
sigF D A/Ba sF; required for normal spore maturation 31
whiGc B F swhiG; controls the onset of sporulation in aerial hyphae 14, 29
tuf-1 D D Major EF-Tu (EF-Tu1); rpsL, the first gene of the S12 operon to which

tuf-1 belongs, is probably equivalent to strA
43

tuf-3 G C Putative elongation factor EF-Tu3; not expressed during normal growth 43
rrnA D D 23S, 16S, and 5S rRNA 42
rrnB I E 23S, 16S, and 5S rRNA 4
rrnC G C 23S, 16S, and 5S rRNA 42
rrnD E A/Ba 23S, 16S, and 5S rRNA 4
rrnE B A/Ba 23S, 16S, and 5S rRNA; possibly expressed late in growth 42
rrnF E A/Ba 23S, 16S, and 5S rRNA 4

a Hybridized to the unresolved doublet band of DraI-A and -B in these experiments.
b—Not done.
c The data for whiG were published previously (21).

474 NOTES J. BACTERIOL.



that the principal s factor of S. coelicolor is not associated with
dnaG or rpsU, and these genes are not found in association
with hrdA, hrdC, or hrdD either (34, 36, 37, 40).
Mapping of the tuf genes. Polypeptide chain elongation fac-

tor EF-Tu, which is responsible for delivering aminoacyl-tRNA
to the translating ribosome, is among the most abundant pro-
teins in the bacterial cytoplasm and can constitute up to 10%
of total protein during exponential growth in E. coli (46). In E.
coli, two tuf genes, tufA and tufB, encode elongation factors
EF-Tu that differ only in their C-terminal amino acids (2, 49).
A third E. coli elongation factor, which is encoded by the selB
gene, was identified; however, this protein is highly specialized,
and its size is 67 kDa, much larger than the usual 43 kDa (16).
Recently, multiple tuf genes were found in various Strepto-

myces species. The kirromycin producers Streptomyces ramo-
cissimus and Streptomyces collinus have three tuf genes that are
surprisingly heterogeneous; S. ramocissimus tuf-1 and tuf-2
have 85% nucleotide sequence identity, whereas tuf-3 shows
only 70% identity with tuf-1 and tuf-2 (47). Like most other
streptomycetes, S. coelicolor and S. lividans have two tuf genes,
corresponding to tuf-1 and tuf-3 (43). In contrast, other acti-
nomycetes, including Mycobacterium spp., Nocardia spp.,
Corynebacterium fasciens, Micromonospora chalcea, and Sac-
charopolyspora erythraea, contain only a tuf-1 homolog (41).
Therefore, both tuf-2 and tuf-3 may be unique for streptomy-
cetes. The function of the tuf-2 and tuf-3 gene products is still
unclear; however, the apparent absence of these proteins dur-
ing normal growth (41) hints at a specialized role in the Strep-
tomyces life cycle.
Like E. coli tufA, S. coelicolor tuf-1 is probably located in the

S12 operon, which also encompasses rpsL (encoding ribosomal
protein S12), rpsG (encoding ribosomal protein S7), and fus
(encoding EF-G) (43). By analogy with other microorganisms,
rpsL and strA are expected to be the same locus, and the map
location of strA is known (around 7 o’clock; Fig. 1A). There-
fore, tuf-1 was likely to be very close to strA and thus also to
rifA (rpoB). Genetic and physical mapping of the E. coli chro-
mosome revealed that tufA and tufB are well separated but that
both are near the chromosomal origin of replication (22).
To locate the tuf genes on the S. coelicolor map, blots con-

taining AseI- and DraI-digested genomic DNAs were hybrid-
ized with probes specific for S. coelicolor tuf-1 and tuf-3 (the
results are summarized in Table 1 and Fig. 1B). S. coelicolor
tuf-1 maps to the overlap between AseI and DraI fragments D,
which is consistent with genetic mapping of strA and rifA; thus,
the organization around the S12 operons of E. coli and S.
coelicolor may be comparable. In contrast to S. coelicolor tuf-3,
the E. coli tufB gene is located in a tRNA operon and is
expressed at a high level. Therefore, these genes are not com-
parable, and this is emphasized by their positions relative to
the origins; tufB is close to the E. coli origin (22), whereas tuf-3
is far from the S. coelicolor origin (Fig. 1B). A functional
analysis of tuf-3 and its gene product is currently in progress
and should provide insight into the role of this unique elonga-
tion factor in Streptomyces protein biosynthesis.
Mapping of the rRNA operons. The organization of rRNA

operons in several Streptomyces species has recently been in-
vestigated. Like most streptomycetes, S. coelicolor contains six
rRNA operons, rrnA to rrnF (4, 42), and, typically, the gene
order is 16S323S35S rDNA. In E. coli (and most other eu-
bacteria), the spacer region between the 16S and the 23S
rRNA genes contains a tRNA gene (5); however, in strepto-
mycetes this is not the case (35 and references therein).
Physical and genetic mapping of the E. coli chromosome

showed that the rRNA operons rrnA, rrnB, rrnC, and rrnE lie
close to the origin of replication (3 and references therein). In

contrast, none of the S. lividans rrn operons is adjacent to the
chromosomal origin (50). For mapping the six S. coelicolor rrn
operons, probes were obtained from l clones by selecting frag-
ments upstream of the 16S rRNA specifying genes, which were
shown to allow specific identification of the operons.
The S. coelicolor rRNA operons are scattered over the well-

marked segments of the chromosome (Fig. 1B). Although the
operons rrnA, rrnD, and rrnF map in the vicinity of the chro-
mosomal origin of replication, they are not very closely linked,
which is also the case in S. lividans (50). The rrnE operon lies
on AseI fragment B, where many developmental genes and
genes encoding pleiotropic regulators of secondary metabolism
have been mapped, including whiF, whiG, whiH, whiI, bldB,
bldH, afsB, and absB (21). This is interesting, since one of the
rrn operons is probably transcribed in the transition phase in
liquid cultures (44) and could therefore, in principle, be re-
garded as being involved in Streptomyces development. Prelim-
inary experiments suggest that the operon that is transcribed
late in growth may indeed be rrnE (41, 44); however, a tran-
scriptional analysis of this operon is required to verify this.
The origin of replication and flanking genes. Figure 1B

summarizes the arrangement of all classes of genes concerned
with aspects of DNA replication, transcription, and translation
that have so far been mapped. The origin of chromosomal
replication has been convincingly located on AseI band H. A
probe of S. lividans DNA that hybridized to the Pseudomonas
putida dnaA gene hybridized to this band (21), as did a cloned
fragment of S. lividansDNA that could replicate as a minichro-
mosome and contained characteristic DnaA boxes (50). The
corresponding sequences of the S. coelicolor chromosome were
found to be flanked by dnaA (encoding the replication initiator
protein) and dnaN (for the b subunit of DNA polymerase III)
(11). The rpmH gene (for ribosomal protein L34) and rnpA
(for the RNase P protein) lie very close upstream of dnaA (11),
and gyrB (for the DNA gyrase B subunit) is located 2 to 3 kb
downstream of dnaN (30). Functional evidence that oriC is the
principal replication origin was obtained by studying the over-
representation of a sample of chromosomal genes in rapidly
growing cultures (30). The location of oriC in the center of
what is now known to be a linear chromosome in at least some
derivatives of S. coelicolor A3(2) (25) is interesting in compar-
ison with a similar finding for the linear chromosome of Bor-
relia burgdorferi (12). It was suggested that replication from
oriC might be completed by priming from the protein mole-
cules covalently bound to the free 59 ends of the chromosome
(25).
Although S. coelicolor resembles most other eubacteria in

having a series of characteristic genes very close to oriC, the
locations of genes involved in transcription and translation are
distinctly different from those on the E. coli and B. subtilis
chromosomes. As discussed in this paper, there are no rRNA
operons in the vicinity of oriC (the closest are rrnA, rrnD, and
rrnF, at least some few hundred kilobases away), and the set of
six operons is spread around the whole chromosome. Addi-
tionally, no tRNA genes are closely linked to any of the rRNA
operons, a feature that is so far unique for actinomycetes. The
scattering of genes for RNA polymerase subunits, EF-Tu’s,
rRNAs, and tRNAs is also a striking feature of the S. coelicolor
chromosome.
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48. Xie, W.-Q., K. Jäger, and M. Potts. 1989. Cyanobacterial RNA polymerase
genes rpoC1 and rpoC2 correspond to rpoC of Escherichia coli. J. Bacteriol.
171:1967–1973.

49. Yokota, T., H. Sugisaki, M. Takanami, and Y. Kaziro. 1980. The complete
nucleotide sequence of the cloned tufA gene of Escherichia coli. Gene 12:
25–31.

50. Zakrzewska-Czerwinska, J., and H. Schrempf. 1992. Characterization of an
autonomously replicating region from the Streptomyces lividans chromo-
some. J. Bacteriol. 147:2688–2693.

476 NOTES J. BACTERIOL.


