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In the last few decades, evolutionary algorithms have emerged as
a revolutionary approach for solving search and optimization
problems involving multiple conflicting objectives. Beyond their
ability to search intractably large spaces for multiple solutions,
these algorithms are able to maintain a diverse population of
solutions and exploit similarities of solutions by recombination.
However, existing theory and numerical experiments have dem-
onstrated that it is impossible to develop a single algorithm for
population evolution that is always efficient for a diverse set of
optimization problems. Here we show that significant improve-
ments in the efficiency of evolutionary search can be achieved by
running multiple optimization algorithms simultaneously using
new concepts of global information sharing and genetically adap-
tive offspring creation. We call this approach a multialgorithm,
genetically adaptive multiobjective, or AMALGAM, method, to
evoke the image of a procedure that merges the strengths of
different optimization algorithms. Benchmark results using a set of
well known multiobjective test problems show that AMALGAM
approaches a factor of 10 improvement over current optimization
algorithms for the more complex, higher dimensional problems.
The AMALGAM method provides new opportunities for solving
previously intractable optimization problems.

evolutionary search � multiple objectives � optimization problems �
Pareto front

Evolutionary optimization is a subject of intense interest in
many fields of study, including computational chemistry,

biology, bioinformatics, economics, computational science, geo-
physics, and environmental science (1–8). The goal is to deter-
mine values for model parameters or state variables that provide
the best possible solution to a predefined cost or objective
function, or a set of optimal tradeoff values in the case of two or
more conflicting objectives. However, locating optimal solutions
often turns out to be painstakingly tedious, or even completely
beyond current or projected computational capacity (9).

Here, we consider a multiobjective minimization problem,
with n decision variables (parameters) and m objectives: y �
f(x) � ( f1(x) , . . . , fm(x)), where x denotes the decision vector,
and y is the objective space. We restrict attention to optimization
problems in which the parameter search space X, although
perhaps quite large, is bounded: x � (x1, . . . , xn) � X. The
presence of multiple objectives in an optimization problem gives
rise to a set of Pareto-optimal solutions, instead of a single
optimal solution (10, 11). A Pareto-optimal solution is one in
which one objective cannot be further improved without causing
a simultaneous degradation in at least one other objective. As
such, they represent globally optimal solutions to the tradeoff
problem.

Numerous approaches have been proposed to efficiently find
Pareto-optimal solutions for complex multiobjective optimiza-
tion problems (12–15). In particular, evolutionary algorithms
have emerged as the most powerful approach for solving search
and optimization problems involving multiple conflicting objec-
tives. Beyond their ability to search intractably large spaces for
multiple Pareto-optimal solutions, these algorithms are able to
maintain a diverse set of solutions and exploit similarities of

solutions by recombination. These attributes lead to efficient
convergence to the Pareto-optimal front in a single optimization
run (13). Of these, the nondominated sorted genetic algorithm
II (NSGA-II) (14) has received the most attention because of its
simplicity and demonstrated superiority over other methods.

Although the multiobjective optimization problem has been
studied quite extensively, current available evolutionary algo-
rithms typically implement a single algorithm for population
evolution. Reliance on a single biological model of natural
selection and adaptation presumes that a single method exists
that efficiently evolves a population of potential solutions
through the parameter space. However, existing theory and
numerical experiments have demonstrated that it is impossible to
develop a single algorithm for population evolution that is always
efficient for a diverse set of optimization problems (16).

In recent years, memetic algorithms (also called hybrid genetic
algorithms) have been proposed to increase the search efficiency
of population based optimization algorithms (17). These meth-
ods are inspired by models of adaptation in natural systems, and
use a genetic algorithm for global exploration of the search
space, combined with a local search heuristic for exploitation.
Memetic algorithms have shown to significantly speed up the
evolution toward the global optimal solution for a variety of
real-world optimization problems. However, our conjecture is
that a search procedure that adaptively changes the way it
generates offspring, based on the shape and local peculiarities of
the fitness landscape, will further improve the efficiency of
evolutionary search. This approach is likely to be productive
because the nature of the fitness landscape (objective functions
mapped out in the parameter space, also called the response
surface) often varies considerably between different optimiza-
tion problems, and dynamically changes en route to the global
optimal solutions.

Drawing inspiration from the field of ensemble weather
forecasting (18), we present an innovative procedure employing
genetically adaptive evolutionary optimization. The method
combines two concepts, simultaneous multimethod search, and
self-adaptive offspring creation, to ensure a fast, reliable, and
computationally efficient solution to multiobjective optimization
problems. We call this approach a multi-algorithm, genetically
adaptive multiobjective, or AMALGAM, method, to evoke the
image of a procedure that blends the attributes of the best
available individual optimization algorithms.

To successfully implement the AMALGAM method, three
questions need to be addressed. First, how can we best make
multiple algorithms meaningfully communicate with one an-
other, and share their information? Second, what is the most
effective method for adaptive offspring creation? Finally, which
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individual algorithms should be included? These issues will be
confronted below.

Materials and Methods
Our multimethod evolutionary optimization implements a pop-
ulation-based elitism search procedure to find a well distributed
set of Pareto solutions within a single optimization run. The basic
algorithm is presented in supporting information (SI) Fig. 4 (see
SI Text), and is described below.

The algorithm is initiated by using a random initial population
P0 of size N, generated by using Latin hypercube sampling. Then,

each parent is assigned a rank using the fast nondominated
sorting (FNS) algorithm (14). A population of offspring Qo, of
size N, is subsequently created by using the multimethod search
concept that lies at the heart of the AMALGAM method.
Instead of implementing a single operator for reproduction, we
simultaneously use k individual algorithms to generate the
offspring, Q0 � {Q0

1, . . . , Q0
k}. These algorithms each create a

prespecified number of offspring points, N � {Nt
1, . . . , Nt

k}, from
P0 using different adaptive procedures. After creation of the
offspring, a combined population R0 � P0 � Qo of size 2N is
created and R0 ranked using FNS. By comparing the current
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Fig. 1. Generated Pareto-optimal fronts after 25, 50, and 75 generations with the NSGA-II (squares), PSO (circles), AMS (�), DE (diamonds), and AMALGAM
(x) optimization algorithms for test problem ZDT4. This benchmark problem has 219 different local Pareto-optimal fronts in the search space, of which only one
corresponds to the global Pareto-optimal front. Combining the individual algorithms into a simultaneous multimethod search algorithm ensures a faster and
more reliable solution to multiobjective optimization problems.

Table 1. Number of function evaluations needed to achieve convergence, and values of the convergence metric
Y, and diversity measure � after 150 generations for the 10 different test functions considered in this study

Function

Number of function
evaluations*

After 150 generations

Convergence metric: Y Diversity metric: �

NSGA-II AMALGAM NSGA-II AMALGAM NSGA-II AMALGAM

ZDT1 5,920 840 0.0053 0.0011 0.34 0.33
ZDT2 7,680 1,240 0.0068 0.0009 0.36 0.35
ZDT3 5,100 1,090 0.0027 0.0010 0.56 0.55
ZDT4 13,050 (24)† 6,320 0.0523 0.0022 0.73 0.32
ZDT6 8,940 950 0.0504 0.0011 0.53 0.40
SCH 6,350 (25) 3,610 0.0036 0.0032 0.49 0.37
SCH2 12,000 (22) 3,320 0.0052 0.0041 0.69 0.52
FON 4,930 1,590 0.0026 0.0017 0.38 0.33
KUR 6,544 6,122 0.0108 0.0099 0.48 0.47
ROT N�C‡ 9,440 1.50 0.35 1.14 0.55

Results for the NSGA-II and AMALGAM methods are presented. Statistics represent averages over 30 optimization runs. A detailed
description of the various test problems and performance metrics appears in SI Text.
*Average number of function evaluations needed to result in a relative hypervolume smaller than 0.005.
†Number of runs that have failed to converge are shown in parentheses.
‡None of the 30 optimization runs have converged after 150 generations.

Vrugt and Robinson PNAS � January 16, 2007 � vol. 104 � no. 3 � 709

A
PP

LI
ED

M
A

TH
EM

A
TI

CS
EV

O
LU

TI
O

N

http://www.pnas.org/cgi/content/full/0610471104/DC1
http://www.pnas.org/cgi/content/full/0610471104/DC1


offspring with the previous generation, elitism is ensured be-
cause all previous nondominated members will always be in-
cluded in R (12–14). Finally, members for the next population P1

are chosen from subsequent nondominated fronts of R0 based on
their rank and crowding distance (14). The new population P1 is
then used to create offspring using the method described below,
and the aforementioned algorithmic steps are repeated until
convergence is achieved.

Our method for adaptive offspring creation is designed to favor
individual algorithms that exhibit the highest reproductive success.
To ensure that the ‘‘best’’ algorithms are weighted so that they con-
tribute the most offspring to the new population, we update
{Nt

1, . . . , Nt
k} according to Nt

i � N�(Pt
i /Nt�1

i )/�i�1
k (Pt

i/Nt�1
i ). The

term Pt
i/Nt�1

i is the ratio of the number of offspring points an
algorithm contributes to the new population, Pt

i, and the corre-
sponding number the algorithm created in the previous generation
(Nt�1

i ). The rest of the expression scales the reproductive success of
an individual algorithm to the combined success of all of the
algorithms. In this study, the minimum values for {Nt

1, . . . , Nt
k} were

set to 5, to avoid the possibility of inactivating algorithms that may
contribute to convergence in future generations.

The final issue is the decision of which individual algorithms
to include in the search. In principle, the AMALGAM method
is very flexible, and could accommodate any biological model for
population evolution. Here we implement the NSGA-II (14),
particle swarm optimization (PSO) (19), adaptive metropolis
search (AMS) (20), and differential evolution (DE) (21) algo-
rithms. These choices are based on the outcome of numerical
experiments demonstrating that these four commonly used
optimization methods are mutually consistent and complemen-
tary. A detailed description of the individual algorithms and
their algorithmic parameters is presented in SI Text.

We anticipate two advantages of the AMALGAM method.
First, by facilitating direct information exchange between indi-
vidual algorithms, the method merges the strengths of different
search strategies to increase the speed of evolution toward the
Pareto-optimal solutions. Second, by adaptively changing pref-
erence to individual search algorithms during the course of the
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Fig. 2. Illustration of the concept of self-adaptive offspring creation. (A) Evolution of the number of offspring points generated with the NSGA-II (squares),
PSO (circles), AMS (�), and DE (diamonds) algorithms within AMALGAM’s multimethod search as function of generation number for test problem ZDT4. (B) The
hypervolume convergence metric for AMALGAM and each algorithm used individually. These results illustrate the utility of individual search algorithms during
different stages of the optimization, and provide numerical evidence of Wolpert and Macready’s ‘‘No Free Lunch’’ theorem, showing that it is impossible to
develop a single search algorithm that will always be superior to any other algorithm (16).
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Fig. 3. Nondominated solutions found for test problem DTLZ6 (23) with NSGA-II and AMALGAM after 100,000 and 5,000 function evaluations, respectively.
(A) The dark line marks the true Pareto-optimal front. Although classical multiobjective methods have difficulty finding solutions on the Pareto front, the
AMALGAM method perfectly converges to the true solution set in far fewer function evaluations. (B) Self-adaptive offspring creation by varying the relative
importance of the individual algorithms during the optimization is the breakthrough that enables this improvement.
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optimization, the method should adapt quickly to the specific
difficulties and peculiarities of the optimization problem at hand.

We conducted a wide range of numerical experiments using a
set of well known multiobjective benchmark problems. SI Table
2 provides a detailed description and definition of the selected
test functions. These functions cover a diverse set of problem
features, including high-dimensionality, convexity, nonconvex-
ity, multimodality, isolated optima, nonuniformity, and interde-
pendence. For a given test, each optimization run was repeated
30 times using a population size of 100 points in combination
with 150 generations, and average results are reported.

Results and Discussion
To demonstrate the advantages of multimethod optimization,
consider Fig. 1, which shows the evolution of the nondomi-
nated fronts generated with the individual NSGA-II (squares),
PSO (circles), AMS (�) and DE (diamonds) algorithms, and
AMALGAM (x) method for test problem ZDT4. SI Movies 1
and 2 show this and another test problem (ROT). In each
snapshot during the evolution, the dark line depicts the
location of the true Pareto-optimal front. The results highlight
the advantages of adaptive multimethod evolutionary search.
After only 7,500 function evaluations, AMALGAM has pro-
gressed toward the true Pareto-optimal front, and has gener-
ated solutions that are far more evenly distributed along the
Pareto front than any of the individual algorithms.

This improved performance is quantified in Table 1, which
compares convergence statistics over 30 different optimization
runs for the NSGA-II and AMALGAM methods for all bench-
mark problems considered. The metrics, described in detail in SI
Text, measure the extent of convergence to a known set of
Pareto-optimal solutions (Y), and the uniformity (or spread) of
the solutions within this distribution (�). Smaller values for both
metrics indicate better performance.

The improvement of the AMALGAM method over the
NSGA-II algorithm is significant for all of the benchmark studies
considered. The results in Table 1 demonstrate that AMALGAM
is significantly more efficient in locating Pareto-optimal solutions
than the current state-of-the-art NSGA-II algorithm, with effi-
ciency gains approaching a factor 10 for the more complex, higher
dimensional problems (ZDT1-ZDT6 and ROT). The new method
even converges for the rotational problem (ROT) within 150
generations, indicating that our multimethod search can deal with
correlated decision variables that classical genetic mutation and
selection operators such as the NSGA-II algorithm have difficulty
handling.

Fig. 2 depicts AMALGAM’s evolution of the number of
offspring points of the individual algorithms for test problem
ZDT4 (Fig. 2 A). This plot illustrates why the multimethod
optimization exhibits superior performance. During the first part

of the optimization, the NSGA-II algorithm (squares) exhibits
the highest reproductive success, owing to the proficiency of its
classical genetic operators for crossover and mutation for global
optimization. However, after �20 generations, the utility of the
NSGA-II algorithm abruptly decreases in favor of (in sequential
order) the DE (diamonds), AMS (�), and PSO (circles) algo-
rithms. This combination of methods proves to be extremely
effective at increasing the diversity of solutions along the Pareto
front once the NSGA-II method does its initial work. This result
confirms our conjecture that an adaptive strategy of switching
algorithms to maintain efficiency during all stages of the opti-
mization will outperform any individual algorithm, and provides
strong support for the use of multimethod evolutionary search.
The performance of AMALGAM on the other benchmark
problems provides further justification for this conclusion.

Although two-objective problems provide a demonstration of the
advantages of multimethod evolutionary optimization, it is desir-
able to investigate the performance of the AMALGAM method
for higher dimensional problems. To this end, we examine the three
objective, 12 parameter test problem DTLZ6 described in ref. 22,
for which it is reported that existing evolutionary algorithms fail to
locate solutions on the true Pareto front. Fig. 3A presents the
theoretical Pareto-optimal curve and the optimization results for
the NSGA-II and AMALGAM methods after 50 generations. The
AMALGAM method locates the Pareto-optimal solution set in
�5,000 function evaluations, whereas the NSGA-II algorithm is
unable to exactly find the Pareto set, even after 100,000 iterations.
The evolution of the number of offspring points for the four
individual algorithms in AMALGAM (Fig. 3B) again illustrates the
virtue of genetically adaptive multimethod search.

The results presented herein illustrate that multimethod evo-
lutionary optimization with adaptive offspring creation is a
powerful new approach for solving complex optimization prob-
lems. This finding has some wider implications that go beyond
the multiobjective test problems studied here. First, within the
optimization and biological realm, our self-adaptive multim-
ethod search provides important new ways to study evolutionary
processes. Second, our results demonstrate that competition
between individual algorithms and adaptive offspring creation
dramatically improves the efficiency of evolutionary search.
Combined with anticipated increases in computational power,
the AMALGAM method should provide new opportunities for
solving previously intractable optimization problems. Our next
step is to apply AMALGAM to real world search and optimi-
zation problems.
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