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Simple deterministic models are still at the core of theoretical epidemiology despite the increasing evidence

for the importance of contact networks underlying transmission at the individual level. These mean-field or

‘compartmental’ models based on homogeneous mixing have made, and continue to make, important

contributions to the epidemiology and the ecology of infectious diseases but fail to reproduce many of the

features observed for disease spread in contact networks. In this work, we show that it is possible to

incorporate the important effects of network structure on disease spread with a mean-field model derived

from individual level considerations. We propose that the fundamental number known as the basic

reproductive number of the disease, R0, which is typically derived as a threshold quantity, be used instead

as a central parameter to construct the model from. We show that reliable estimates of individual level

parameters can replace a detailed knowledge of network structure, which in general may be difficult to

obtain. We illustrate the proposed model with small world networks and the classical example of

susceptible–infected–recovered (SIR) epidemics.
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basic reproductive number
1. INTRODUCTION
Contact networks are increasingly recognized as central to

the dynamics of infectious diseases and other transmission

phenomena (Lloyd & May 2001; Barabási 2002; Newman

et al. 2006). As a consequence of contact network structure,

the vast majority of populations are heterogeneously mixed

and therefore standard mass-action assumptions do not

apply to the description of epidemic spread. Results on

disease spread in networks have in fact challenged the still

widely used formalism of epidemiological models based on

the Kermack and McKendrik equations (1927; e.g. Morris

1995;May&Lloyd 2001; Eames&Keeling 2002;Newman

2002). These deterministic equations and their many

descendants are known as ‘mean-field’, ‘compartmental’

or ‘mass-action’models because they assume homogeneous

mixing; every individual is in weak contact with any other in

the population (Anderson &May 1992). However, in large

populations, individuals typically contact only a small,

clustered, subpopulation and the local correlations that

result from transmission in such structured networks are not

well captured by standard mean-field models (Keeling

1999a,b).

Despite this clear departure from homogeneous

mixing, numerous contributions have been made by

theory based on this assumption (see Anderson & May

1992; Smith et al. 2005). The simplicity of the resulting

equations makes them both appealing and analytically

tractable. Elegant extensions of the theory have been

developed to address heterogeneous mixing within
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populations (or communities of species), by considering

multiple host subgroups and a transmission matrix

specifying ‘who acquires infection from whom’ (the

WAIFW matrix; Anderson & May 1984; Schenzle

1984; Diekmann et al. 1990; Dobson 2004). In this

framework, however, transmission within subgroups

remains homogeneous. At a further extreme, trans-

mission can be followed at the level of individuals in a

contact network as a stochastic process. Network

models add realism on the structure of contacts, but

empirical information to completely describe the

transmission pathways is often difficult if not impossible

to obtain. Similar trade-offs are evident in models for

transmission processes other than disease, including the

spread of behaviour, rumours and computer viruses,

and for the dynamics of ecological systems involving

individual interactions. Owing to this trade-off, the

proliferation in ecology and epidemiology of individual-

based models has been accompanied by parallel and

on-going efforts to develop simplifications that approxi-

mate the dynamics of complex systems at aggregated

levels (e.g. Bolker & Pacala 1997; Levin & Pacala 1997;

Keeling 1999a,b; Iwasa 2000; Law & Dieckmann 2000;

Pascual 2005). For example, the empirical concept of a

minimum effective neighbourhood has been developed

to assess the importance of local correlations and

demographic stochasticity, and the related performance

of mean-field models in the invasion dynamics of

epidemics (Keeling & Grenfell 2000).

In this work, we show that it is possible to approximate

the main features of disease spread in networks with

simple mean-field models by constructing the trans-

mission rate from individual level parameters to implicitly
This journal is q 2006 The Royal Society
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include some effects of network structure on disease

dynamics. Specifically, we propose that the basic repro-

ductive number R0, which is typically derived from the

model, be considered instead as a fundamental parameter

to construct the equations from. We illustrate this idea

with SIR dynamics (for susceptible–infected–recovered

individuals) in a population of constant size for both

(Poisson) random and small-world networks. A derivation

of R0 for small-world networks is also presented. We end

by asking how much information on the network itself is

required to parameterize the proposed mean-field model

and to capture main features of epidemic spread.

Heterogeneous mixing does not appear to necessarily

require detailed network models.
0 5 10 15 20 25 30 35 40
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Figure 1. Comparison of the population dynamics of (a)
susceptible and (b) infected proportions for the stochastic
model of transmission in a Poisson random network and two
mean-field models. The blue lines correspond to a stochastic
simulation (with a total number of individuals NZ90 000, a
probability of transmission per contact per unit of time tZ1,
and a mortality rate mZ0.05). The solution of the standard
mean-field model 3.1 is in red and that of the modified mean-
fieldmodel 3.2–3.5 is in green (natural logarithmswere used).
2. NETWORKS MODELS
In a network model, each of the N individuals in the

population is represented by a vertex. Edges connecting a

pair of vertices represent a contact between individuals.

The number of edges of a given vertex is known as its

degree. The network structure is described by the

adjacency matrix Aij whose entries are 1 if individual i is

in contact with individual j and 0 otherwise. Here, we

consider bi-directional edges and therefore the adjacency

matrix is symmetrical.

We simulateSIR stochastic epidemics in static networks.

Two network structures are considered: Poisson (random)

networks and small-world networks. The probability of

disease transmission along an edge during an interval dt is

PðS/I ; dtÞZ1KexpðKtdtÞ where t is the probability of

transmission per contact per unit of time. To incorporate

demography and maintain a constant population size and

network structure, individuals ‘die’ at rate m and are

instantly replaced by susceptible individuals with the same

contacts. The infectious period is assumed exponentially

distributed with mean 1/g. We also assume that the disease

does not increase the mortality and therefore the removal

rate is gZrCm in which r is the recovery rate. All the rates

considered in this work aremeasured in units of the inverse

of the recovery rate (i.e. we set rK1Z1) and are therefore

non-dimensional. The population is composed of S, I and

R subpopulations of susceptible, infectious and recovered

individuals, respectively.
3. MEAN-FIELD MODELS FOR RANDOM NET-
WORKS: BEYOND HOMOGENEOUS MIXING
(a) Standard mean-field models

In a network of size N with homogeneous mixing, all the

individuals are in ‘weak’ contact with each other. Thus,

the degree of each individual is NK1. On an average,

infections are produced at the rate tSI and therefore, the

mean of the infected population evolves according to the

ordinary differential equation dI=dtZ ðtSKgÞI. For large

values of N, the threshold parameter Nt/g (derived from

the equations of the model) coincides with the basic

reproductive number (see electronic supplementary

material) and at equilibrium the average susceptible

proportion satisfies hS/N iZ1/R0, as expected. The mean-

field model for networks with homogeneous mixing is

therefore a mass-action model. However, homogeneous

mixing may be realistic only for small populations. More

typically, an average individual is in contact only with a

small fraction of the population, and the mean of the
Proc. R. Soc. B (2007)
degree distribution, n, is much smaller than the popu-

lation size N (Keeling & Grenfell 2000; Newman 2002;

Meyers et al. 2005).

In random networks (Erdős & Rényi; e.g. Bollobás

1995), the degree distribution is Poisson with mean n.

Since an average infectious individual is in contact with n

individuals (a random sample from the total population;

see electronic supplementary material) but only the

fraction S/N is susceptible, the average rate of infection

becomes nt(S/N )I and the mean-field model is given by

dI

dt
Z nt

S

N
Kg

� �
I ; ð3:1Þ

which, by construction, reproduces the initial rate of

disease spread (Keeling & Grenfell 2000). However,

the threshold parameter derived from this model is nt/g

which does not coincide with the basic reproductive number

R0Znt/(tCg) (Andersson 1997; Aparicio et al. 2000;

Diekmann &Heesterbeek 2000). In fact, according to this

model, an average infectious individual may produce as

many as nt/g secondary infections which may exceed the

maximum number of available susceptible contacts, n. On

the other hand, owing to the random nature of the

network, it is expected that at equilibrium hS/N iZ1/R0, a

fact that is confirmed by the stochastic simulations. Thus,

this standard mean-field model fails to reproduce

equilibrium values (figure 1) and the epidemic threshold

parameter derived from its equations is not the basic

reproductive number corresponding to the epidemiologi-

cal setting. These failures are a direct consequence of the

fact that n/N.

(b) A modified mean-field model constructed from

individual-level parameters

Although the standard mean-field model fails to capture

the course of epidemics in random networks, we expect

given this randomness that some mean-field model may
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successfully describe the average epidemic evolution.Next,

we present a derivation of a mean-field model that takes

into account implicitly the influence of network contact

structure on disease spread. Key information on this

influence is contained in the basic reproductive number.

The basic reproductive number is usually defined as the

number of secondary cases produced by an average

infectious individual placed in a completely susceptible

population. This definition implicitly assumes homoge-

neously mixed populations. However, for other contact

network structures, it does not incorporate the effect of

local contact structure on the initial spread of the disease.

An alternative definition is to consider the number of cases

produced by an average infective at the beginning of the

epidemic, i.e. when the depletion of susceptibles is

negligible, but many generations of infectives have

occurred, in order to ‘wash out’ the effect of initial

conditions (e.g. Diekmann & Heesterbeek 2000, pp.

73–76). For the cases considered in this work, this last

definition leads to rather complex computations for the

basic reproductive number. As a useful alternative, we

considered here an intermediate situation: the basic

reproductive number was defined as the number of

secondary cases produced by an average infectious

individual in the second generation (Andersson 1997;

Aparicio et al. 2000). This quantity can differ significantly

from the first generation calculation for contact networks,

particularly for small n and for networks with high

clustering. The value of R0 estimated in the second

generation better approximates the number of new cases

produced per case at the beginning of an epidemic. This

basic reproductive number can be computed from

individual level considerations (e.g. Aparicio et al. 2000;

Diekmann & Heestebeek 2000; Keeling & Grenfell 2000)

and its expression will depend on the local structure of

contacts and other individual level parameters, such as

infectiousness and the distribution of the infectious period.

For example, in Poisson random networks with

exponentially distributed infectious periods, the basic

reproductive number is R0Znt=ðtCgÞ (Andersson

1997; Dieckmann &Heesterbeek 2000; see also electronic

supplementary material). We propose a mean-field model

whose central feature is a transmission rate built from this

basic reproductive number instead of the phenomenolo-

gical parameter, bZnt.

At the beginning of the epidemic, an average infectious

individual will produce R0 new infections during a mean

effective infectious period (te) which is shorter than the

mean infectious period, 1/g. To approximate this pattern,

we split the mean infectious period into two contributions

1=gZ1=geC1=g where teh1/ge. Infectious individuals

produce infections only during the effective infectious

period, 1/ge, remaining the rest of their infectious life (1/g)

‘inactive’. These individuals are still infected but owing to

the stochasticity of the transmission process, the last

infection they produce always occurs before complete

recovery. In addition, infected individuals can deplete

their local pool of susceptibles and no longer be able to

transmit the disease. As the epidemic progresses, the

number of infections caused by each infectious individual

is reduced by the susceptible fraction because the cluster

of contacts of any individual is a random sample of the

population. Thus, an average infectious individual will
Proc. R. Soc. B (2007)
produce R0(S/N ) infections during a period 1/ge and will

remain ‘inactive’ during a period 1/g.

The evolution of the active infectious population I is

now given by dI=dtZgeR0ðS=NÞKgeIZgeðR0ðS=NÞK1ÞI.

Individuals leaving the active class I are still infected and

may be moved to a new class Y defined as containing

infected but ‘no longer infectious’ individuals. The mean-

field model becomes

dS

dt
ZmNKgeR0

S

N
IKmS; ð3:2Þ

dI

dt
Zge R0

S

N
K1

� �
I ; ð3:3Þ

dY

dt
Z ðgeKmÞIKðgCmÞY ; ð3:4Þ

dR

dt
Z gYKmR: ð3:5Þ

The threshold parameter of this model is R0 and at

equilibrium hS/N iZ1/R0. Neither of these two key

properties depends on the value of ge which only affects

the transients. Here, we choose geZtCg in order to

reproduce the initial rate of disease spread. Figure 1 shows

the excellent agreement of the model with the time course

of the stochastic simulations.

Owing to the random structure of these networks, we

expected an appropriately defined mean-field model to

work well. A more challenging case is considered next

using small-world networks, for which local structure

exists and individual contacts are no longer a random

sample of the population.
4. NETWORKS WITH HIGH CLUSTERING
A drawback of Poisson random networks as models of

social networks is their low clustering coefficient. Small-

world networks (Watts & Strogatz 1998) have become a

popular toy model for social networks because they exhibit

both a high clustering coefficient,C, and a short mean path

length, L. Thus, C corresponds to the probability that two

neighbours of a node are themselves connected, while L is

the average shortest distance between the two nodes in the

network. We specifically consider small-world networks of

mean degree nZ8. The clustering coefficient and mean

path length are determined by the disorder parameter (f).

When fZ0, the ordered network is a regular network

where each individual is in contact with its eight nearest

neighbours. The disorder parameter specifies the prob-

ability that an individual has a long-distance contact, i.e. a

contact which is not among its local neighbours. We

constructed the small-world networks (0!f!1) using the

algorithm of Watts & Strogatz (1998). In our implemen-

tation, the regular network (fZ0) is a two-dimensional

lattice on a torus (see Roy & Pascual 2006 for details), a

choice motivated by the spatial nature of local interactions

in epidemiology. In the stochastic simulations, we consider

a disorder parameter fZ0.1 for which the network is in the

small-world regime (with a high C of approximately 0.75

but a short L of 0.08, both normalized by their respective

values for fZ0 when the network is regular).

Next, we derive an expression for R0 for small-world

networks (see further details in the electronic supple-

mentary material) and examine whether the resulting
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Figure 2. Comparison of the population dynamics of (a, c) infected and (b, d ) susceptible proportions for twomean-field models
and the stochastic model of transmission in a small-world network. Two different values of the transmission parameter
were used: (a, b) tZ1 and (c, d ) tZ0.25. A set of stochastic simulations are shown in blue (with network parameters fZ0.1 and
NZ90 000). Solutions for the standard mean-field model 3.1 are shown in red and those for the modified mean-field model
3.2–3.5 are shown in green (mZ0.05, rZ1, gZrCm).
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mean-field system approximates the stochastic dynamics

of the disease. For fO0, an average individual has n

contacts of which i%nmay be long-distance contacts with

probability approximately given by

Pði;fÞZ
n

i

 !
ð1KfÞnKifi : ð4:1Þ

At the beginning of the epidemic, infected long-distance

contacts may themselves produce R0rdm infections on

average (and we make the approximation that R0rdmZnr).

Consider now a source case with exactly i long-distance

contacts that produce a secondary case. This secondary

case may be one of its i long-distance contacts with

probability i/n or one of its local contacts with probability

(nKi )/n. In the first case, the secondary infection will

produce, on average, R0rdm ternary cases. In the second,

the secondary infection may have j long-distance contacts

with probability approximately given by P( j,f). This

secondary case will therefore produce, on an average,

(nKj )R0sp/n infections among its local contacts and

jR0rdm/n among its long-distance contacts, where R0sp

denotes the basic reproductive number of the regular

ordered network. By averaging the over all values

of j, we obtain the expected number of infections

produced by a secondary case which is itself a local

contact of a source case with exactly i long-distance

contacts: R0avðfÞZ
Pn

jZ0 Pð j;fÞ½ðnKjÞR0spC jR0rdm�=n.

Finally, averaging for all the values of i, we obtain the

following expression for the number of infections caused by

an infected in the second generation

R0swðfÞZ
Xn
iZ0

Pði;fÞ½ðnKi ÞR0av C iR0rdm�=n; ð4:2Þ

where rZt/(tCg) is the probability of transmission per

case and the expression of R0sp used to calculated

equation (4.2) is (see electronic supplementary material
Proc. R. Soc. B (2007)
for details):

R0sp Z
1

2
r 7K6rC

4

1Cr
C

3

1C2r

� �
: ð4:3Þ

The values obtained with equation (4.2) are in excellent

agreement with empirical estimates of the basic repro-

ductive number obtained from simulations (see Fig. 3 in

the electronic supplementary material).

A high clustering coefficient greatly decreases the initial

rate of disease spread but has a much less noticeable effect

on equilibrium values. Two representative cases are shown

in figure 2 for two different values of the transmission

parameter, t. For both the cases,model (3.2–3.5) performs

much better than the standard mean-field model (3.1)

which greatly overestimates the initial rate of disease spread

because it ignores the local structure of the contacts

(figure 2). This last deficiency could be corrected by

defining an effective neighbourhood as nehR0sw/r.

However, even with this correction, the threshold for this

model would always overestimate the basic reproductive

number, because net=gZR0swðgCtÞ=gOR0sw. The

modified mean-field model approximates both the initial

growth, the turning point and the trough of the first

epidemic, as well as the equilibrium level of susceptibles.

These results are robust across a range of parameters of the

stochastic simulations (see Fig. 4 in the electronic

supplementary material). The model cannot, however,

completely reproduce the exact phase and amplitude of the

decaying oscillations to equilibrium.
5. HOW MUCH DO WE NEED TO KNOW ABOUT
THE NETWORKS? EMPIRICAL
PARAMETERIZATION
A detailed knowledge of complete network structure,

including the type of network and the mean number of

contacts, allowed us to compute an appropriate expression
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Figure 3. Comparisonof the time course of incidence for the stochastic diseasemodel in a small-worldnetwork and twomean-field
models parameterized from the initial phase of the first epidemic. Two different values of the transmission parameter are shown
((a) tZ1 and (b) tZ0.25). The blue lines correspond to the stochastic network simulations (fZ0.1, NZ90 000, mZ0.05).
Weestimated l from the initial phase of exponential growthof the realizations.Fromthese values,weobtained the effective number
of neighbours, netZ l̂C1, and the reproductive numberR0Z l̂=ðtCgÞC1, which in turnwere used to parameterize the standard
mean-field model 3.1 corrected with an effective number of neighbours (in red), and the modified mean-field model 3.2–3.5 (in
green; see also section 2 in the electronic supplementary material). Natural logarithms were used.
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for the basic reproductive numberR0 and to construct from

this quantity mean-field models that capture many of the

main population-level features of the dynamics even for

highly clustered networks. Unfortunately, in practice, such

knowledge is not typically available, especially at the start of

an epidemic. We therefore ask next howmuch information

is required on the network itself to parameterize themodel.

We take the view that R0 when the network of contacts is

unknown is an empirical parameter to be estimated.

The variable usually measured during the course of an

epidemic is the number of new cases (reported) per unit of

time, known as the incidence of the disease. We simulate

the evolution of the incidence using the network model for

different network structures. Typically, at the beginning of

the epidemic, the incidence undergoes a phase of

exponential growth whose parameter, l, can be estimated

from the linear regression of the logarithm of incidence

versus time. The modified mean-field model for that

initial phase can be written as dI =dtZ ðtCgÞðR0K1ÞI.

It follows that R0 can be estimated from the relation

ðtCgÞðR0K1ÞZl if g and t are assumed to be known (see

electronic supplementary material for details). We also

consider the case of the standard mean-field model

because when the average number of contacts is unknown,

its version (equation (3.1)) can be improved by introdu-

cing the effective number of contacts, ne (see also the

definition of a minimum effective neighbourhood in

Keeling & Grenfell 2000) which may be estimated from

the initial growth rate of the incidence. Specifically, the

standard mean-field model becomes dI=dtZ ðnetKgÞI

where netmay be estimated from the relation netKgZl if

the value of g is assumed to be known.

We simulated epidemics for a small-world network of

90 000 individuals and an initial infected population of

size 9withfZ0.1 andmZ0.05 (in all the cases rZgKmZ1).

For tZ0.25, the expected basic reproductive number

(from equation (4.2) using the empirical estimation for

R0sp; see electronic supplementary material) is 1.26 while

for tZ1, it increases to 2.46. In the first case, the initial
Proc. R. Soc. B (2007)
spread is greatly influenced by stochasticity while in the

second, epidemics are almost deterministic (figure 3). With

R0 and ne, respectively, estimated from the initial phase of

exponential growth, both the mean-field models provide a

good approximation to the time course of the disease for the

first peak of the transients and for the average long-term

incidence. The modified mean-field model (3.2–3.5)

also captures the trough of the decaying epidemic (figure 3,

tZ1). It is worth noticing that although the standardmean-

field with an effective number of contacts works well when

compared with the temporal course of the incidence, it still

fails in an important way: the basic reproductive number

resulting from the fitted equation overestimates its real

value, more significantly for larger values of t. This problem

does not occur for the modified mean field. The following

calculations demonstrate this point.

We randomly selected 10 simulations undergoing an

initial phase of exponential growth for both values of t.

From the estimated means and standard errors for l̂, we

obtained the following estimates for tne and R0, respect-

ively: ctneZ1:17, cR0Z1:14 (for tZ0.25) and ctneZ4:34,cR0Z2:48 (for tZ1). For tZ0.25, R0wnet/g, and there is

little difference between both mean-field models. The

threshold values of 1.12 and 1.14 are close to the expected

value of R0Z1.26. For tZ1, the threshold of the standard

mean-field model ðctne =gZ4:13Þ overestimates the empiri-

cal value of R0Z2.46, while the estimation obtained with

the modified mean-field model is still in excellent

agreement ðcR0Z2:48Þ.
6. DISCUSSION
The standard mean-field models are still at the core of

theoretical epidemiology and ecology. In the epidemiolo-

gical models, the fundamental parameter R0, the basic

reproductive number of infectious diseases, plays a central

role as an invasion threshold, of critical relevance to assess

control measures. It is a standard procedure to derive

expressions for the basic reproductive number, R0, from

these models. Here, we have proposed to reverse the



510 J. P. Aparicio & M. Pascual Building epidemiological models from R0
perspective on this key epidemiological quantity

(in particular, when the fundamental assumption of

these models, homogeneous mixing, does not hold): the

basic reproductive number becomes a parameter from

which a mean-field type model can be formulated. The

resulting ‘modified’ mean-field model captures implicitly

some important effects of heterogeneous mixing in contact

networks, providing a better approximation to the

population-level time course of the disease than the

standard mean-field formulation. Thus, it is possible to

use simple models to capture the temporal course of

epidemics, even though transmission among individuals

may occur in a complex network of contacts (see also

Keeling & Grenfell 2000; Keeling 2005).

Of course, there are particular features of the dynamics

that cannot be completely recovered with such a simple

model, including the exact phase and amplitude of

the transient cycles following the first epidemic and

other oscillatory phenomena that result from spatial

processes in networks (e.g. Roy & Pascual 2005; Verdasca

et al. 2005). Evolutionary outcomes of network structure

(e.g. Van Baalen 2002) will also require an explicit

treatment of individual contacts. The applicability of the

proposed approach is also dependent on spatial scale. One

type of network has recently been proposed in which

individuals belong to a nested hierarchy of levels, with

random mixing applying within groups at the lowest level

(Watts et al. 2005). Clearly, for such a network, when the

deviations from random mixing involve transmission

across levels of the hierarchy representing large spatial

scales, our model would not apply. However, it would

provide the basis to model transmission at the different

levels of the hierarchy with a mass-action model, even

when random mixing at that level is not warranted.

Similarly, the model could be applied at the level of cities

or schools as a building block of more complex

formulations that explicitly represent the spatial network

underlying disease propagation over larger geographical

areas (Grenfell et al. 2001).

It has been shown before that individual level consider-

ations, such as local structure and the number of contacts

per individual, explain the discrepancy between the real

value of R0 and standard estimates obtained at the

population level from mean-field models (e.g. Keeling &

Grenfell 2000). Our approach further underscores that the

concept of basic reproductive number is model indepen-

dent. Given an epidemiological setting, the basic repro-

ductive number must provide the threshold parameter of

any satisfactory model, but the reciprocal is not necessarily

true. In somemodels, thederived threshold parameter does

not provide R0. We have provided an example of this

discrepancy when the individual-level effects are incorpor-

ated into a mean-field population model only through an

effective neighbourhood size.

Another type of approximation for disease dynamics in

networks has been proposed in the literature to account for

individual-level effects, based onmoment closure methods

(or pair approximations; e.g. Keeling et al. 1997; Keeling

1999a,b; Eames & Keeling 2002). The resulting system

has higher dimensionality than mean-field models, with

equations not only for mean quantities but also for

second-order moments (variances and covariances).

Most of the disease applications are for networks with

low clustering. Here, we focus on networks with high
Proc. R. Soc. B (2007)
clustering and on approximations more closely related to

the lower dimensional systems typical of epidemiological

models. The next step is to consider other types of

networks, including those related to the recently empha-

sized notion of superspreaders for which there is a skewed

distribution of individual infectiousness (Galvani & May

2005; Lloyd-Smith et al. 2005).

At the beginning of the epidemic, an average infectious

individual will produce R0 infections. As the epidemic

progresses, this number is reduced because some of the

contacts are already recovered (or infected). For a Poisson

random network, this susceptible fraction is simply the

population fraction S/N. For small-world networks,

however, local processes are dominant and, therefore, the

local susceptible fraction is in general different from the

population fraction S/N. Most of the secondary cases will

compete for many of the same susceptible contacts, while

the few long-distance contacts infected will find almost

completely susceptible neighbourhoods. In other words,

epidemics in random and small-world networks are

different even if their basic reproductive numbers are the

same. In the extreme of a highly spatial network, the

proposed model always predicts an initial phase of

epidemic exponential growth which is not usually

observed. However, even for small values of the disorder

parameter, small-world networks exhibit an almost expo-

nential growth phase (figure 3) and in such cases, the

proposed model performs well. Further refinements of the

functional form of transmission are possible that would

capture the decrease in the availability of susceptibles. One

possible candidate is a hybrid form that combines the use of

R0 proposed here with the use of an empirical exponent on

the susceptible fraction, previously proposed to modify the

transmission rate at the population level (e.g. Severo 1969;

Liu et al. 1987; Pascual et al. 2002; Roy & Pascual 2005).

The effect of a local depletion in susceptibles is at the

source of the discrepancy we see, for example, in the

growth rate of the epidemic predicted by the modified

mean-fieldmodel and the stochastic simulations in figure 2

(b,d ). After a similar initial phase, the growth rate of the

stochastic simulation is slower. This effect is more

pronounced for low values of the transmission rate, t,

because the neighbourhoods of infected individuals are

most affected by the formation of clusters of recovery

(figure 4). By contrast, for high t, the epidemic builds up

as fronts of infection propagate through a sea of

susceptibles (figure 4).

Another refinement of the proposed model concerns

the new class Y introduced for individuals that are still

infected but no longer contribute to new infections. For

simplicity, we have considered that the time individuals

remain in this new class is exponentially distributed.

Further theoretical work is warranted on the shape of this

distribution and its effects on transient cycles. While it is

theoretically possible to consider a more flexible distri-

bution (like the gamma distribution used in epidemiology

for the recovery process; Lloyd 2001), the empirical

parameterization of the model from individual measure-

ments would be more difficult.

The class Y takes into account the fact that an average

infectious individual produces all infections in a timewhich

is shorter than his infectious period. However, there is no

physical distinction between the individuals in classes I and

Y. We chose to include this class because it allowed us to



(a) (b)

Figure 4. Snapshots of the spatial grid for the stochastic model with the small-world network, for two different values of t ((a)
tZ0.25 and (b) tZ1). The red, blue and black sites correspond to infected, recovered and susceptible individuals, respectively.
For initial conditions including a few foci of infection in a completely susceptible population, clusters develop quickly, after a
short initial spread that appears exponential. For (a) the lower transmission rates, the clusters interfere most with the further
propagation of the disease as most infected individuals are in close contact with recovered and other infected individuals. This
difference is apparent by comparing the clusters of infection for the two transmission parameters.
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compare model solutions with stochastic realizations.

However, neither S nor I are typically measured in the

course of an epidemic; only the number of new cases

(incidence) is available. Therefore, for practical purposes

like predicting the incidence or the size of epidemics, the

classYdoesnot play a role. Inotherwords,wemayconsider

theY individuals as recovered. In this case,model (3.2–3.5)

reduces to a SIRmodel in which the infectious individuals

are removed at a higher rate than the inverse of their mean

infectious period g, with a transmission rate given by the

basic reproductive rate of the system, geR0(S/N). The

expression of R0 encapsulates our knowledge about

the transmission process and includes implicitly the effects

of contact network structure on transmission.

While network structure has a profound effect ondisease

spread, such structure is usually unknown and often

unlikely to be completely elucidated. When complete

knowledge of the network is not available but its degree

distribution is known, a series of important probabilistic

quantities characterizing epidemic behaviour can be

obtained (Newman 2002; Meyers et al. 2005).

This approachdoes not provide, however, a set of (ordinary

differential) equations for predicting the time course of the

disease. In a complementary approach,wehave shownhere

that at least for the case considered, SIR dynamics in static

small-world networks with exponentially distributed

infectious periods, such a model is plausible without

knowledge of either the degree distribution or any other

aspect of network structure. Empirical parameterization of

the model using data for the beginning of the epidemic is

sufficient to accurately predict themain features of the time

course of the epidemic, when reliable estimates of the

individual level parameters are available. Future work

should consider other types of networks, including non-

static ones and other individual-based models of disease

dynamics. Data on known networks and specific diseases

can be used to further evaluate the forecasting ability of the

proposed model. Extensions of similar ideas to other types

of systems involving individual interactions in ecology are

also possible.
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