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Abstract
Adaptive plasticity allows populations to adjust rapidly to environmental change. If this is useful
only rarely, plasticity may undergo mutational degradation and be lost from a population. We
consider a population of constant size N undergoing loss of plasticity at functional mutation rate m
and with selective advantage s associated with loss. Environmental change events occur at rate θ per
generation, killing all individuals that lack plasticity. The expected time until loss of plasticity in a
fluctuating environment is always at least τ̄, the expected time until loss of plasticity in a static
environment. When mN > 1 and Nθ >> 1, we find that plasticity will be maintained for an average
of at least 108 generations in a single population provided τ̄ > 18/θ. In a metapopulation, plasticity
is retained under the more lenient condition τ̄ > 1.3/θ, irrespective of mN, for a modest number of
demes. We calculate both exact and approximate solutions for τ̄ and find that it is linearly dependent
on only the logarithm of N, and so surprisingly, both the population size and the number of demes
in the metapopulation make little difference to the retention of plasticity. Instead, τ̄ is dominated by
the term 1/(m + s/2).
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Some traits may be strongly adaptive, but only on very rare occasions. This is typically true
for plastic traits that are expressed only when the need arises. Such traits are particularly
common in microbes, and there has been much interest recently in phenotypic switching
behaviors as a response to novel and hostile environments (Hallet 2001; Henderson et al.
1999). Examples of potentially adaptive phenotypic switching include pili expression in
bacteria (Abraham et al. 1985), phage growth limitation machinery (Sumby and Smith 2003),
bacterial persistence (Balaban et al. 2004; Kussell and Leibler 2005), the yeast prion [PSI+]
(Masel 2005; Masel and Bergman 2003; True and Lindquist 2000), sporulation, and biofilm
formation. Adaptive phenotypic plasticity is also common in multicellular organisms (West-
Eberhard 2003).

The ability to undergo phenotypic switching is a complex trait in the sense that it is easy to
lose by mutation but hard to gain back. Although the trait may be strongly adaptive under
certain circumstances, these circumstances arise only rarely. The trait may be eroded and lost
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through mutational degradation during the potentially long gaps between times when the trait
is needed. This is not an issue in an infinite population, in which traits are never lost, but instead
only become vanishingly rare. In a finite population, however, with restoration through
compensatory mutation too rare to be significant, all complex but rarely needed traits will
eventually be lost, given infinite time. What then accounts for their observed persistence? Here
we develop an approach based on Markov models of finite populations to find the parameter
range required for the expected time until trait loss to be sufficiently large (taken arbitrarily as
> 108 generations) so that trait loss is effectively negligible on evolutionary time scales.

Mathematical Model and Results
Trait Loss from a Single Population

Overall approach—Consider, for mathematical simplicity, a haploid population of size N
under the Moran model: i.e., at each time step, one individual is chosen at random to reproduce,
and one to die. One generation consists of N time steps of the Moran model, and so as N gets
larger, the length of a time step decreases. The plasticity trait is subject to mutational loss at
rate m per replication. Note that a complex trait may be lost through mutations at a range of
loci, and so the functional mutation rate m may be considerably higher than a point mutation
rate or even than a per-gene mutation rate. A constant rate of mutational loss assumes that
epistatic effects are not important in this context. This is consistent with data showing that an
additional mutation has either the same (Elena 1999; Elena and Lenski 1997; Peters and
Keightley 2000; West et al. 1998; Wloch et al. 2001) or a very similar (Azevedo et al. 2006;
Bloom et al. 2005) effect in a mutationally loaded genetic background as it does in a wild-type
background. Mutational loss may be accelerated by a selective advantage of loss s, when there
is a metabolic or other cost to maintaining the trait, although we can also set the cost s = 0.
Using this Moran model with mutation, selection and drift, we calculate in Online Appendix
A the mean time τ̄ for all individuals in the population to lose the trait in a static environment,
given that they all have the trait initially. To avoid confusion with the time until trait loss in a
fluctuating environment, we refer to the time τ as the sojourn time, although it should be noted
that this time includes the waiting time for the appearance of a mutant lacking the trait, and
also accounts for possible acceleration of trait loss due to the independent appearance of
multiple mutants lacking the traits as part of a “soft sweep” (Hermisson and Pennings 2005).

Assume that environmental change events making the trait useful occur at rate θ, and occur
according to a Poisson process. Assume that these events purge the population of all individuals
not carrying the trait. The extreme nature of this assumption will be addressed later in this
paper. Trait loss occurs if the waiting time until the next event is longer than the sojourn time
τ. Both of these are stochastic. As a Poisson process, the waiting time until the next event has
an exponential distribution. No analytical expression exists for the probability distribution of
the sojourn time (Ewens 2004), and so we calculate two tractable extreme cases, corresponding
to very large and very small populations. Results for populations of intermediate size should
fall in between these two extreme scenarios. We verify this by computing expected times until
trait loss numerically, which can be done without explicitly computing the distribution of
sojourn times (see Online Appendix B).

Large population approximation—In the first scenario, we assume that populations are
large so that mN >> 1. In this case, sojourn times are highly deterministic, and we approximate
variance in the sojourn time τ as zero (see Online Appendix A). The constant sojourn time τ =
τ̄ can be calculated as described in Online Appendix A as a function of N, m and s. Since the
waiting time until the next environmental change event has an exponential distribution, the
probability that environmental change occurs before trait loss is then given by
∫0
τ̄θe−tθdt = 1 − e−θτ̄, purging the population of all genotypes that have lost the trait. The
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mean number of times this happens in succession is then (1 − e−θτ̄)/ e−θτ̄. The mean interval
between environmental change events, given that trait loss does not occur, is

∫0τ̄tθe−tθdt
1 − e−θτ̄

= e−θτ̄(e θτ̄ − 1 − θτ̄)
θ(1 − e−θτ̄) .

The expected waiting time until trait loss occurs is given by the number of times that
environmental change occurs before trait loss multiplied by the mean interval time until
environmental change on each of these occasions, plus the sojourn time following the last of
these events, in which trait loss is not interrupted by environmental change. This can be
expressed as

e θτ̄ − 1 − θτ̄
θ + τ̄ = e θτ̄ − 1

θ generations. (1)

For a rarely used trait to be maintained, this number needs to be very large. For very small
values of θ, Eq. (1) gives approximately τ̄, which is unlikely to be sufficient for trait retention.
For larger values of θ, Eq. (1) increases approximately exponentially with τ̄. We now ask for
what parameter range is the waiting time until trait loss, as given by Eq. (1), greater than some
large number of generations, taken here arbitrarily as 108. The exponentially steep character
of Eq. (1) means that the precise arbitrary choice of 108 matters very little. For trait loss to take
longer than 108 generations, we need

τ̄ > ln (108θ + 1)/ θ. (2)

The behavior of the cutoff value of τ̄ is shown in Figure 1. For sufficiently large values of θ,
this means that we need τ̄> ln(108)/θ ≈ 18/θ. This captures the fact that environmental change
must frequently interrupt trait loss. As environmental change gets rarer and θ approaches the
seemingly unrealistic value of 10−8, this requirement is relaxed in the direction of the looser
requirement τ̄ > Minimum(108, 1/θ).

Small population approximation—In the second limiting scenario, we assume that
populations are small so that mN << 1. In this case the expected sojourn time has two
components: the expected waiting time until the first mutation destined for fixation, equal to
1/m for the neutral case, and the expected subsequent time required for fixation, equal to N −
1 in the neutral case. For mN << 1, the former component dominates.

Mutations destined for fixation appear according to a Poisson process. When N is sufficiently
small, we can make the approximation that environmental change never interferes with the
subsequent fixation process. Since the mean sojourn time of a neutral mutant destined for
fixation is N − 1, a sufficient condition for this approximation to be accurate is θN << 1. When
selection is also present, this condition is relaxed further.

With the small population size approximation, trait loss events now occur at random points in
time according to the same Poisson process that governs the appearance of mutations destined
for fixation. In this case, the expected time until trait loss is independent of the environmental
change rate and is given by τ̄, and so we need τ̄ > 108. The waiting time until the next trait loss
event has an exponential distribution with mean τ̄.

Mean sojourn time for populations of any size—To interpret the approximate results
for mN >> 1 and mN << 1, we need to know the value of τ̄. Exact formulae to calculate τ̄ are
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derived in Online Appendix A. In addition, the following approximate formula is derived as
Eq. A5

τ̄approx ≈ 1
mN pfix

+ { ln ((m + s)N ) + γ
m + s /2 if ln ((m + s)N ) > 0

N − 1 otherwise
} (3)

where pfix is the probability that a mutation present in a single individual will go on to become
fixed and γ is Euler’s constant, with numerical value 0.577216. In Figures 2A and 2B, we show
how τ̄ depends on N, m and s, and in Figure 2C we see that the approximation is good over a
wide range of parameter values. We see different behavior of τ̄ in two distinct ranges for N.
For small N with mN < 1, the sojourn time is dominated by the waiting time 1/(mNpfix) until
the appearance of the first mutant destined for fixation. For small enough N with sN << 1, this
simplifies to 1/m. As N increases within the mN < 1 parameter range, then if s > m, pfix increases
with N as selection becomes more effective, and so sojourn times decrease with N. If s < m,
then the second parameter range begins before this effect becomes appreciable.

In the second parameter range of larger N with mN > 1, the sojourn time is dominated by the
spread of mutations through the population, rather than by the time until the arrival of the first
mutation. This arrests any decline in τ̄ in the first parameter range, and subsequently leads to
a gentle increase in the sojourn time with N.

What sets the sojourn time in this second parameter range? Under neutral drift, conditional on
fixation, the total sojourn time is equal to N − 1 generations. Both selection and recurrent
mutation as part of a “soft sweep” (Hermisson and Pennings 2005) can substantially accelerate
this sojourn time, however. We see in Eq. 3 that for mN > 1 and/or sN > 1, this acceleration
can be captured by the term ln ((m + s)N ) + γ

m + s / 2 . Note that this term depends only weakly on N,
and is largely set by the value of 1/(m + s/2). If instead we have both mN << 1 and sN << 1,
then we have τ̄ ≈ 1/m.

Comparison to exact solution—In Online Appendix B, we describe a method for
calculating the mean time until trait loss that avoids the need for the approximations mN >> 1
or mN << 1. This method is shown schematically in Figure 3. In Figure 4 we test the conditions
under which our previous approximations break down. We see that our large population size
approximation (given by Eq. 2 and approximated still further in Figure 1 as τ̄ > 18/θ) is
sufficient whenever mN > 1 and N >> 1/θ. Our small population size approximation (the
requirement that τ̄ > 108) is always sufficient and is necessary whenever N < 1/θ. A smooth
transition between the two approximate requirements is seen for intermediate values of N.

Requirement to avoid trait loss—To integrate the calculations for τ̄ with the requirements
on τ̄ for trait loss to be avoided, note from Figure 4 that we need τ̄ > 18/θ for large N, τ̄ >
108 for small N, and an intermediate requirement strongly dependent on the relationship
between τ̄ and 1/θ for intermediate values of N. τ̄ is dominated by the term ln ((m + s)N ) + γ

m + s / 2
in Eq. 3, particularly the denominator term 1/(m + s/2). In other words, to avoid trait loss, the
sum of the mutation and selection coefficients must be small relative to the rate of
environmental change, with the population size modifying the precise interpretation of “small”.
When both mN << 1 and sN << 1, the relevant approximation for τ̄ becomes simply 1/m.

Trait Loss from a Metapopulation
Consider a metapopulation in which environmental change occurs independently in each deme.
In this scenario, one deme may not encounter environmental change for a long period, and
therefore undergo trait loss. When the environment finally does change, this deme goes extinct.
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The extinct deme may, however, be recolonized by a different deme, which might, by chance,
have experienced the event more regularly and hence maintained the trait. This rescue
phenomenon may lead to persistence of the rarely used trait under a wider range of
circumstances. In other cases, the extinct deme may be recolonized by a deme that lacks the
trait: we assume that environmental change events represent an episode of selection, rather
than permanent change.

We treat the metapopulation as a Markov process with j out of n demes lacking the trait.
Environmental change events occur independently at rate θ in each of the n demes, for a total
rate of nθ. When an environmental change event occurs in a deme that lacks the trait, then it
is destroyed and recolonized from another deme chosen at random. This can sometimes lead
to a decrease in the number of demes lacking the trait j; j can also increase due to trait loss
events within demes.

We consider two limiting cases. In the first, populations are small, trait loss occurs according
to a Poisson process and τ therefore has an exponential distribution. In the second, populations
are large, and hence τ is constant. These two limiting cases are treated mathematically in Online
Appendices C and D, respectively. Both approximate analytic and exact simulated results are
calculated when τ is fixed as a constant.

In Figure 5A we plot the minimum number of demes needed to maintain the trait for an average
of 108 generations, given τ̄ and θ. We see from the steep shape of the curves that beyond a
very modest number of demes, the precise number of demes is not important. In Figure 5B we
see that a trait can be maintained in a metapopulation of modest size so long as τ̄ > 1.3/θ. This
expands the criterion τ̄ > 18/θ for trait retention in a single population around 15-fold in a
metapopulation, and perhaps slightly more for large population sizes with exponentially-
distributed τ.

Complete vs. Partial Purging by Environmental Change
To generate these results, we have assumed that when environmental change occurs, every last
individual that lacks the trait is purged from the population. In a single population, the extreme
nature of this assumption is primarily a mathematical convenience. Recurrent mutation means
that individuals lacking the trait will in any case swiftly reappear, and so it isn’t likely to matter
whether all individuals without the trait are purged, or whether it is simply most that are purged.

In the metapopulation model, complete purging causes demes that lack the trait to go extinct,
and hence creates opportunities for new trait-bearing demes to be created through colonization.
The results of the model should be robust so long as environmental change causes a highly
elevated probability of deme replacement. For example, pathogens encounter a fluctuating
environment with frequent “adapt or die” dynamics. Under these circumstances, all demes turn
over as the environment keeps shifting, and the model is a good description.

Quantitative Roles of Mutation and Selection in Trait Loss
Note the partial symmetry between parameters m and s in Eq. (3). This symmetry is weakest
for small populations: when both mN << 1 and sN << 1, then m and N alone set the value of
τ̄, irrespective of whether m > s. For large populations with both mN >> 1 and sN >> 1, the
symmetry is not obvious a priori: in particular, m will have a larger effect than s when
individuals lacking the trait are rare. Nevertheless, the close fit shown in Figure 2 between the
exact and approximate solutions shows the effects of m and s are close to symmetric in practice
in large populations.

This symmetry means that in larger populations with mN > 1 and/or sN > 1, trait loss is primarily
driven by the larger of s and m. Mutation rates are normally thought of as small, but note that
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the parameter m refers to the functional mutation rate, which may be the sum of many possible
mutations over multiple genes. Data on functional mutation rates is sparse, but one study on
loss of sporulation ability in Bacillus subtilis gives m = 0.0003 in non-mutator strains (J. Masel
and H. Maughan, manuscript submitted). Data on gene deletions in yeast suggests that in most
cases s < 0.005 (Sliwa and Korona 2005).

Mutational degradation of the ability to switch between adaptively plastic phenotypes may
occur through damage to the switching mechanism itself, or it may cause the switch to reveal
lethal variation that was hidden in the “off” state (Masel 2006). Either way, the ability to switch
is effectively eroded. In the former case, there is likely to be a selective advantage to trait loss,
as inappropriate switching events are minimized. In the latter case, however, there is unlikely
to be a selective advantage to trait loss, and there may even be a slightly selective penalty.

Note that if estimates or bounds on m and s are available, we can infer the minimum rate θ of
environmental change required to explain the fact that an observed adaptively plastic trait
persists. For example, the yeast prion [PSI+] appears spontaneously at a rate of about 10−7 to
10−5 per replication (Liu and Lindquist 1999; Lund and Cox 1981; Nakayashiki et al. 2001),
and is likely deleterious on these occasions (Nakayashiki et al. 2005). Yeast have effective
population size Ne ≈ 108 (Lynch and Conery 2003; Wagner 2005). If we assume a mutational
degradation rate m < 0.0003 and selection s < 10−6 against inappropriate appearance of the
prion, then for the ability to form prions to persist, we need τ̄ > 1.3/θ. Using our bounds, we
calculate τ̄ > τ̄ (N = 108 ;m = 0.0003;s = 10−6) = 36200 generations according to the exact
methods given in Equations A1 and A2, yielding the condition θ > 3.6 × 10−5 as sufficient for
persistence. This value of θ corresponds to environmental changes that favor the trait occurring
every 1/θ = 28000 generations, on average. With such a low value of θ needed, the inability to
catch [PSI+] “in the act” (Nakayashiki et al. 2005) is insufficient evidence that rare selection
events are not responsible for the maintenance of the ability to form [PSI+].

Different Forms of Weak Selection
How does strong but rarely applied selection compare to constant but weak selection in the
context of trait loss? Weakly advantageous selection for trait retention can be represented in
our model by setting s to a negative value. To obtain a comparable scenario with constant weak
selection, we take the strong, rare selection studied here so far and “spread it out” over time
by setting s equal to −θ, and then calculating the sojourn time for a single population with no
environmental change.

This case of positive selection and mutational degradation as opposing forces has been
described in detail elsewhere, in work showing that trait loss can sometimes be so rapid that it
occurs even before a novel sequence has fixed in the population (Berg and Kurland 2002). For
trait retention rather than fixation (i.e. expected time until trait loss > 108), we find,
unsurprisingly, that we need −s > m, i.e., selection must be stronger than mutation. This
criterion is similar to the corresponding criterion for rarely used traits. A second, additional
criterion for constant weak selection, however, is that we need −s > 1/N. Considering a
metapopulation rather than a single population does not significantly weaken this second
criterion, which is based on the population size within a deme.

This criterion has no correspondent in the case of a rarely used trait. In other words, rarely
applied but strong selection to a modest number of small demes can be effective even when
the same selective force, made constant by being averaged out, is not effective. This is because
the total frequency of selective events in a metapopulation is given by nθ and hence scales
linearly with the total population size of the metapopulation, while with constant selection the
sojourn time scales only very weakly with the logarithm of N. For this reason, the population
size makes surprisingly little difference to the retention of a rarely used trait.
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Population Extinction
If the trait is lost, will this cause population extinction? As the model is formulated so far,
recolonization of lost demes is instant. Even once all demes have lost the trait, demes go extinct
one at a time, since environmental change is not synchronized. Rapid recolonization follows
each deme loss event, and so population extinction will never occur in a metapopulation.

Relaxing this, let β be the rate at which a deme sends out emigrants, and so the number of
migrants able to settle is βk, where k is the number of demes occupied out of a maximum of
n. The probability that a migrant settles in an empty deme and is therefore able to colonize it
is (1 − k/n), and so the total rate of recolonization is βk(1 − k/n). Now the criterion for population
persistence is β > θ according to the standard criterion for persistence in a deterministic Levins’
model (Levins 1969). In a stochastic setting, this criterion remains sound for modest minimum
values of n (Gurney and Nisbet (1978); reviewed by Hanski et al. (1996); see Alonso and
McKane (2002) for extension to mainland-island metapopulations).

Previous work studied trait loss within demes as well as deme extinction, and calculated the
proportion of remaining demes that retain the trait (Wagner 2003). The conclusions were in
agreement with results for infinite populations (Wagner 2003). Although this work allowed
for the extinction of individual demes, it did not allow for the extinction either of the trait within
the metapopulation or for the extinction of the metapopulation itself (Wagner 2003).

Here we have taken treatment of extinction further by explicitly including extinction processes
at the metapopulation level. We have calculated the parameter regime required for negligibly
slow processes both of trait loss within an entire metapopulation and of extinction of the
metapopulation itself.

Discussion
Data on mutational degradation

Here we have considered whether mutational degradation can be a powerful enough force to
override the selective benefits of a rarely needed trait. Mutational degradation of a complex
switching trait is likely to occur at a much higher rate than its restoration by compensatory
mutations. In practice, mutational degradation of sporulation has been observed in the
laboratory in as few as 4200 to 6000 generations (H. Maughan, J. Masel, C.W. Birky and W.L.
Nicholson, manuscript in preparation). This is consistent with observations from natural
populations of bacteria where studies of whole bacterial genomes support the notion that traits
are frequently lost throughout evolutionary time, especially in species that have colonized
relatively constant environments (reviewed in Bentley and Parkhill (2004)).

The relationship between environmental change and functional degradation is also supported
by genome size data. In bacteria, genome size is a good indicator of the frequency of
environmental change because more genes are needed to deal with the various environments
that are encountered. Genomes of soil bacteria, which encounter frequent environmental
change, are notoriously large, while genomes of obligate endosymbiotic bacteria, which live
in a comparatively static host environment, are invariably small (reviewed in Bentley and
Parkhill (2004)). Genome degradation under such static environments is likely due to deletional
biases in bacterial genomes (Mira et al. 2001), where genes that are not under selection are
degraded and ultimately lost from the genome.

Persistence across time vs. space
Here we have considered the question of whether the ability to switch between alternative
strategies can be maintained in the face of mutational degradation. Our results can be
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interpreted as a statement of the parameter range for which retained alternative strategies persist
in a spatial and/or a temporal context (Venable and Lawlor 1980). When a rarely used trait is
retained in a single population, this constitutes persistence across time. This occurs when τ̄ >
18/θ for mN > 1 and Nθ >> 1 or else τ̄ > 108. When a rarely used trait is retained only in the
context of a metapopulation, this constitutes persistence over time that relies on interaction
with persistence across space. This occurs when the above condition is not met, but τ̄ > 1.3/
θ. When the trait is lost, but the population nevertheless persists within a metapopulation
context, this corresponds to persistence across space alone. This occurs when τ̄ < 1.3/θ and β
>θ. Finally, when none of these apply, the population goes extinct.

Tradeoffs
Evolutionary biology is often about identifying the appropriate tradeoff(s). Switching
phenomena have been seen as a tradeoff between inappropriate switching, failing to switch
when necessary, and the metabolic costs of sensing when to switch (Kussell and Leibler
2005). This falls in the most common evolutionary biology tradition of identifying tradeoffs
between selection for the benefits of a trait vs. selection against the costs, with a solution found
using geometric mean fitness calculations. Another well understood form of tradeoff is between
selection for benefits vs. stochasticity associated with genetic drift in a finite population. The
well-known solution to this tradeoff is that selection is stronger than chance so long as s > 1/
N.

Here we have solved for another distinct tradeoff: that associated with stochasticity in the
timing of events rather than stochasticity associated with the finiteness of a population. This
is relevant for recent models of switching phenomena that have emphasized precisely these
very rare environmental shifts, such that the dynamics of allele frequencies following an
environmental change are rapid relative to the intervals between environmental changes
(Kussell and Leibler 2005; Masel 2005; Masel and Bergman 2003).

We have analyzed the tradeoff between selection for benefits vs. irreversible drift in the long
intervals between rare selection events. We have found that the results depend surprisingly
little on the population size, but instead depend on the relative magnitude of mutation and
selection coefficients eroding the adaptively plastic trait vs. the frequency of environmental
change events that cause the benefits of the trait to be selected. Note that although the population
size does not appear explicitly in this condition, it nevertheless applies only to a finite
population. This is because extinction of alleles never occurs in a truly infinite population. In
practice, however, the sojourn time until extinction depends only mildly on the population size,
and so no population is ever large enough to be accurately approximated as infinite.

Acknowledgements

We thank Joachim Hermisson, Michael Nachman, Larry Venable, two anonymous reviewers and the associate editor
John McNamara for helpful discussions and constructive comments. J.M. was supported by the BIO5 Institute at the
University of Arizona and NIH grant GM076041. H.M. was supported by funds from the Department of Ecology &
Evolutionary Biology at the University of Arizona.

References
Abraham JM, Freitag CS, Clements JR, Eisenstein BI. An invertible element of DNA controls phase

variation of type-1 fimbriae of Escherichia coli. Proceedings of the National Academy of Sciences of
the United States of America 1985;82:5724–5727. [PubMed: 2863818]

Alonso D, McKane A. Extinction dynamics in mainland-island metapopulations: an N-patch stochastic
model. Bulletin of Mathematical Biology 2002;64:913–958. [PubMed: 12391862]

Azevedo RBR, Lohaus R, Srinivasan S, Dang KK, Burch CL. Sexual reproduction selects for robustness
and negative epistasis in artificial gene networks. Nature 2006;440:87. [PubMed: 16511495]

Masel et al. Page 8

Am Nat. Author manuscript; available in PMC 2007 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch.
Science 2004;305:1622–1625. [PubMed: 15308767]

Bentley SD, Parkhill J. Comparative genomic structure of prokaryotes. Annual Review of Genetics
2004;38:771–792.

Berg OG, Kurland CG. Evolution of microbial genomes: sequence acquisition and loss. Molecular
Biology and Evolution 2002;19:2265–2276. [PubMed: 12446817]

Bloom JD, Silberg JJ, Wilke CO, Drummond DA, Adami C, Arnold FH. Thermodynamic prediction of
protein neutrality. PNAS 2005;102:606–611. [PubMed: 15644440]

Elena SF. Little evidence for synergism among deleterious mutations in a nonsegmented RNA virus.
Journal of Molecular Evolution 1999;49:703–707. [PubMed: 10552052]

Elena SF, Lenski RE. Test of synergistic interactions among deleterious mutations in bacteria. Nature
1997;390:395–398. [PubMed: 9389477]

Ewens, WJ. Theoretical Introduction: Interdisciplinary Applied Mathematics. New York: Springer-
Verlag; 2004. Mathematical Population Genetics I.

Golub, GH.; van Loan, CF. Matrix Computations. Baltimore: John Hopkins University Press; 1996.
Gurney WSC, Nisbet RM. Single-species population fluctuations in patchy environments. American

Naturalist 1978;112:1075–1090.
Hallet B. Playing Dr Jekyll and Mr Hyde: combined mechanisms of phase variation in bacteria. Current

Opinion in Microbiology 2001;4:570–581. [PubMed: 11587935]
Hanski I, Moilanen A, Gyllenberg M. Minimum viable metapopulation size. American Naturalist

1996;147:527–541.
Henderson IR, Owen P, Nataro JP. Molecular switches - the ON and OFF of bacterial phase variation.

Molecular Microbiology 1999;33:919–932. [PubMed: 10476027]
Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing

genetic variation. Genetics 2005;169:2335–2352. [PubMed: 15716498]
Kussell E, Leibler S. Phenotypic diversity, population growth, and information in fluctuating

environments. Science 2005;309:2075–2078. [PubMed: 16123265]
Levins R. Some demographic and genetic consequences of environmental heterogeneity for biological

control. Bulletin of the Entomology Society of America 1969;71:237–240.
Liu JJ, Lindquist S. Oligopeptide-repeat expansions modulate ‘protein-only’ inheritance in yeast. Nature

1999;400:573–576. [PubMed: 10448860]
Lund PM, Cox BS. Reversion analysis of [psi−] mutations in Saccharomyces cerevisiae. Genetical

Research 1981;37:173–182. [PubMed: 7021322]
Lynch M, Conery JS. The origins of genome complexity. Science 2003;302:1401–1404. [PubMed:

14631042]
Masel J. Evolutionary capacitance may be favored by natural selection. Genetics 2005;170:1359–1371.

[PubMed: 15911577]
— Cryptic genetic variation is enriched for potential adaptations. Genetics 2006;172:1985–1991.

[PubMed: 16387877]
Masel J, Bergman A. The evolution of the evolvability properties of the yeast prion [PSI+]. Evolution

2003;57:1498–1512. [PubMed: 12940355]
Mira A, Ochman H, Moran NA. Deletional bias and the evolution of bacterial genomes. Trends in

Genetics 2001;17:589–596. [PubMed: 11585665]
Nakayashiki T, Ebihara K, Bannai H, Nakamura Y. Yeast [PSI+] “prions” that are crosstransmissible

and susceptible beyond a species barrier through a quasi-prion state. Molecular Cell 2001;7:1121–
1130. [PubMed: 11430816]

Nakayashiki T, Kurtzman CP, Edskes HK, Wickner RB. Yeast prions [URE3] and [PSI+] are diseases.
PNAS 2005;102:10575–10580. [PubMed: 16024723]

Peters AD, Keightley PD. A test for epistasis among induced mutations in Caenorhabditis elegans.
Genetics 2000;156:1635–1647. [PubMed: 11102363]

Sliwa P, Korona R. Loss of dispensable genes is not adaptive in yeast. PNAS 2005;102:17670–17674.
[PubMed: 16314574]

Masel et al. Page 9

Am Nat. Author manuscript; available in PMC 2007 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Sumby P, Smith MCM. Phase variation in the phage growth limitation system of Streptomyces
coelicolor A3(2). Journal of Bacteriology 2003;185:4558–4563. [PubMed: 12867465]

True HL, Lindquist SL. A yeast prion provides a mechanism for genetic variation and phenotypic
diversity. Nature 2000;407:477–483. [PubMed: 11028992]

Venable DL, Lawlor L. Delayed germination and dispersal in desert annuals - escape in space and time.
Oecologia 1980;46:272–282.

Wagner A. Risk management in biological evolution. Journal of Theoretical Biology 2003;225:45–57.
[PubMed: 14559058]

— Energy constraints on the evolution of gene expression. Molecular Biology And Evolution
2005;22:1365–1374. [PubMed: 15758206]

West-Eberhard, MJ. Developmental plasticity and evolution. Oxford: Oxford University Press; 2003.
West SA, Peters AD, Barton NH. Testing for epistasis between deleterious mutations. Genetics

1998;149:435–444. [PubMed: 9584115]
Wloch DM, Borts RH, Korona R. Epistatic interactions of spontaneous mutations in haploid strains of

the yeast Saccharomyces cerevisiae. Journal of Evolutionary Biology 2001;14:310–316.

MATHEMATICAL APPENDICES: ONLINE APPENDIX A Sojourn Time τ within
a Deme

Mean Sojourn Time
Consider a population of size N that has the trait. Mutants that lack the trait appear at rate m
per replication, with a negligible back mutation rate. At a given a point in time there are N −
i individuals with and i individuals without the trait, and we denote these types plastic+ and
plastic− respectively. At each time step, one individual is chosen at random to reproduce, and
one to die, where plastic− individuals have a selective advantage s in reproduction. The
probability that the new individual is plastic− is therefore given by

i(1 + s) + (N − i)m
N + is .

The probability that the next individual chosen to die is plastic− is given by i / N. The probability
that the number of plastic− variants increases from i by one is then given by the probability
that a plastic− individual is produced by reproduction while a plastic+ individual is chosen to
die:

λi =
(i(1 + s) + (N − i)m)(N − i)

(N + is)N .

The probability that the number of plastic− variants decreases from i by one is given by the
probability that a plastic+ individual is produced by reproduction while a plastic− individual
is chosen to die:

μi =
(N − i)(1 − m)i

(N + is)N .

The ratio is given as

ρ j =
μ j
λ j

= (1 − m) j
j(1 + s) + (N − j)m .

Then the mean sojourn time τ̄0i during which there are i plastic− individuals, given that there
are none initially, is given by Ewens (2004) Eq. 2.161
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τ̄0i =
1 + ∑

k=0

N−i−2
∏

j=i+1

N−1−k
ρ j

λi
, i = 0, … , N − 1

=

1 + ∑
k=0

N−i−2 ( 1 − m
1 − m + s )N−1−k−i (N − 1 − k) ! Γ(i + 1 + mN

1 − m + s )
i ! Γ(N − k + mN

1 − m + s )
Nλi

(A1)

where Γ is the gamma function and the unit of time is 1 generation, corresponding to N rounds
in the Moran model, each of which involve a single death and a single reproduction. The mean
total sojourn time before all individuals are plastic−, given an initial population of pure
plastic+, is

τ̄0 = ∑
i=0

N−1
τ̄0i. (A2)

When N is large, the summations in Eqs. A1 and A2 are performed by interpolation using an
adaptive algorithm.

Equation (A2) can be used to calculate the mean sojourn time exactly for arbitrary values of
m, s and N. In certain circumstances, much simpler, more intuitive approximations are
available. When s = 0, we have from Ewens (2004) Eq. 9.11

τ̄0 = N (N + mN
1 − m ) ∑j=1

N 1

j( j + mN
1 − m − 1)

.

When mN >> 0 and m << 1, this is well approximated by

τ̄0 ≈ ln (mN ) + γ
m (A3)

where γ is Euler’s constant, with numerical value 0.577216. When selection dominates the
sojourn time, i.e. s >> m and mN >> 1, we have a second limiting case from Hermisson and
Pennings (2005) Eq. (A17)

τ̄0 ≈ 2 ln (sN ) + γ
s . (A4)

Based on Equations A3 and A4, we therefore attempted to fit the approximate solution

τ̄approx ≈ 1
mN pfix

+ { ln ((m + s)N ) + γ
m + s/ 2 if ln ((m + s)N ) > 0

N − 1 otherwise
} (A5)

where p fix is the probability of fixation, beginning with a single plastic− mutant and not
returning to having zero mutants. The first term captures the expected waiting time until the
appearance of the first mutant destined for fixation and hence the behavior of the system when
mN << 1. The second term captures the expected sojourn time once such a mutant has appeared
both in the limiting case of mN >> 1 and/or sN >> 1 and in the neutral limiting case of mN <<
1 and sN << 1. From Ewens (2004) Eq. 2.158, we have
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pfix = 1

1 + ∑
k=1

N−1
∏
j=1

k
ρ j

.

We see in Figure 2 that the approximation given in Eq. (A5) performs reasonably well in
practice. For s < m, the exact and approximate solutions converge very quickly for large N.
For s > m the approximation was good, but retained systematic biases. For some parameter
combinations, a denominator of (m + s) performed better than that of (m + s/2) given in Eq.
(A5), but overall the latter seemed to give a closer approximation for a greater range of the
parameter space.

Variance in Sojourn Time
From Ewens (2004) Eq. 2.145, the variance of the sojourn time, given an initial state of zero,
is equal to

σ0
2 = 2 ∑

j=1

N−1
τ̄0 jτ̄ j − τ̄0 − (τ̄0)

2. (A6)

As a generalization of Eq. (A1), the mean sojourn time τ̄ ji during which there are i plastic−

individuals, given that there are j initially, can also be derived from Ewens (2004) Eq. 2.161,
and used to calculate τ̄ j and hence Eq. (A6). These calculations were performed (data not
shown) and numerically confirmed that the variance in the sojourn time is negligible for mN
>> 1, hence justifying our assumption of fixed τ = τ̄ in this case. Since increasingly large values
of N yield many more time steps in the Moran model, but only slight increases in τ̄ measured
in generations, the variance scales approximately with the average of an increasing number of
random waiting times. The law of large numbers therefore applies, making the total sojourn
time highly deterministic.

ONLINE APPENDIX B Exact solution for a single population
Consider states Ei and E′i for i = 0, …, N, where i represents the number of individuals lacking
the trait, and E and E′ represent the original and the new environment, respectively. We define
a Markov chain on this state space as follows: For 0 ≤ i < N, from state Ei the chain moves to
state E′i with probability 1 − e−θ/N (corresponding to an environmental change), moves to state
Ei−1 with probability e−θ/N λi, moves to state Ei+1 with probability e−θ/N μi, and remains in state
Ei otherwise. State EN is an absorbing state, corresponding to trait loss. From state E′i, the chain
moves to state E′i−1 with probability 1, unless i = 0, in which case it moves to state E0 with
probability 1. Figure 3 shows the states and the allowable transitions between them.

Let p(X, Y) denote the probability of moving from state X to state Y in one step of the Markov
chain, which corresponds to 1/N generation. Then the expected number of generations until
trait loss starting from state X, which we denote f(X), is the solution to the following systems
of 2N + 1 linear equations (see e.g. Ewens (2004), section 2.1.2):

f (x) =∑
Y

p(X , Y ) f (Y ) + 1/ N for X ≠ EN

f (EN ) = 0

If we order the states E0, E′0, E1, E′1, ..., EN − 1, E′N − 1, EN, then this system of equations is
pentadiagonal, so can be solved directly with requirements in memory and computational time
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of order N (see e.g. Golub and Van Loan (1996), section 4.3). The expected time until trait loss
is given by f(E0). This reduces to the expected sojourn time τ̄0 of Eq. A2 when θ = 0.

Note that this formulation differs slightly from the formulation introduced earlier, in which the
system jumps immediately to state E0 following an environmental change. This formulation
captures the time required for the population to regrow after ill-adapted individuals lacking the
trait die following environmental change. The resulting difference in the time until trait loss is
less than a single generation per environmental change event. But note that the solution to the
modified system of equations

f (x) =∑
Y

p(X , Y ) f (Y ) + 1 / N for X ∈ {E0, … , EN−1}
f (x) =∑

Y
p(X , Y ) f (Y ) for X ∈ {E0′, … , EN−1

′ }
f (EN ) = 0

gives the expected time until trait loss in the case where the state immediately jumps to E0
following an environmental change, while retaining the pentadiagonal structure. For
consistency with the approximate solution, the calculations shown in Figure 4 use this modified
system, although in practice it makes very little difference.

ONLINE APPENDIX C Metapopulations with Exponentially-Distributed
Sojourn Times within Demes

Consider a metapopulation of n demes that initially bear the trait. At a given a point in time
there are n − j demes with and j demes without the trait. Each time step is an environmental
change event or a trait loss, whichever occurs first. The probability that the number of demes
without the trait increases by one is given by the probability that in the next time step a deme
with the trait undergoes a trait loss event

Λ j =
1/ τ̄

1 / τ̄ + θ
n − j
n .

Note that in this Section we have mN << 1, and can therefore make the approximation that the
sojourn time is dominated by time waiting for a mutation destined for fixation. This means that
at a given moment in time, we can make the approximation that all individuals in trait-bearing
demes bear the trait. We therefore take the probability that the number of demes without the
trait decreases by one as the probability that in the next time step a deme without the trait
undergoes an event and is recolonized by a deme that bears the trait

M j =
θ

1/ τ̄ + θ
j(n − j)

n 2 .

We now have the ratio

P j =
M j
Λ j

= θjτ̄
n .

Then the mean sojourn time T̄0 j during which there are j demes without the trait, given that
all demes initially have the trait, is given by Ewens (2004) Eq. 2.161
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T̄0 j =
1 + ∑

k=0

n−j−2
∏

x=j+1

n−1−k
Px

Λi

= n(1 + θτ̄)
n − j (1 + ∑

k=0

n−j−2 (n − k − 1)!
j ! P1

n− j−k−1), j = 0, … , n − 1

(C1)

where the unit of time is 1 time step in the Markov process, which corresponds to an
environmental change event or a potential trait loss, whichever occurs first, with combined rate
n(1/ τ̄ + θ) events per generation. The total sojourn time before all demes lose the trait, given
that all initially bear it, is

T̄0 = ∑
j=0

n−1
T̄0 j. (C2)

When n is large, the summations in Eqs. C1 and C2 are performed by interpolation using an
adaptive algorithm.

ONLINE APPENDIX D Metapopulations with Fixed Sojourn Times within
Demes

Approximate Solution
Fixed sojourn times are more difficult to capture within a Markov model, since although the
environmental change events follow a Markov process, trait loss events do not. As an
approximation, each time environmental change occurs, we check whether trait loss will occur
before the next environmental change event in that deme. If so, we then approximate trait loss
as rapid for all but the last deme to undergo trait loss. We make adjustments at the beginning
and the end of the Markov process used for the analytical model. At the beginning, we check
all n demes bearing the trait, to see if they lose it before they have their first environmental
change event. At the end, we consider the additional time for the last deme to lose the trait.
Now our quantity of interest, instead of being T̄0, is

T̄ =
∑
i=0

n−1 (ni )e −θτ̄i(1 − e−θτ̄)
n−i

T̄i
nθ + τ̄ (D1)

where the unit of time is generations, and the denominator corrects for the fact that in this
Markov process, each time step is an environmental change event. We now go on to calculate
the sojourn time T̄i before all demes lose the trait, given that i demes initially lack it. The
probability that the number of demes without the trait increases by one is given by the
probability that a deme with the trait undergoes an environmental change event, and is destined
to lose the trait before the next event in that deme:

Λ j = e−θτ̄ n − j
n .

The probability that the number of demes without the trait decreases by one is given by the
probability that a deme without the trait undergoes an event and is recolonized by a deme that
bears the trait, multiplied by the probability that the newly colonized deme is not destined to
lose the trait before the next event in that deme:
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M j =
j(n − j)

n 2 (1 − e−θτ̄)

Note that this is an approximation. On the one hand, not all colonizing individuals from a trait-
bearing deme are trait-bearing individuals, making M an overestimate. On the other hand, some
recolonization may come from demes that are destined to lose the trait before their deme
encounters an event, but they have not yet lost the trait when another deme encounters an event.
This makes M an underestimate. The model was verified by numerical simulations to test the
effects of these two factors, as described in the section below. Figure 5 shows fairly good
agreement between the analytical model and the simulations, suggesting that the two effects
largely cancel each other out.

Now the mean sojourn time T̄ij during which there are j demes without the trait, given that i
demes initially lack it, is given by Ewens (2004) Eq. 2.161

T̄ij = { ∏
x=j

i−1 Mx+1
Λx

= ∏
x=j

i−1 x(n − x − 1)
n(n − x) (e θτ̄ − 1)T̄ ii =

(n − i)i !
(n − j) j ! ( e θτ̄ − 1

n )i− j
T̄ ii j = 0, 1, … , i − 1

1 + ∑
k=0

n−j−2
∏

x=j+1

n−1−k Mx
Λx

Λ j
= neθτ̄

n − j (1 + ∑
k=0

n−j−2 (n − k − 1)!
j ! ( e θτ̄ − 1

n )n− j−k−1), j = i, i + 1, … , n − 1
} (D2)

where the unit of time is 1 step in the Markov process, which corresponds to one environmental
change event, with rate n θ events per generation. The total sojourn time before all demes lose
the trait, given that i demes initially lack it, is

T̄i = ∑
j=0

n−1
T̄ij. (D3)

When n is large, the summations in Eqs. D1, D2 and D3 are performed by interpolation using
an adaptive algorithm.

Simulated Exact Solution
We performed simulations according to the following algorithm. Initialize time t = 0 and set
up n demes with both trait-bearing status and the value x1 = x2 = … = xn = τ̄ to specify the time
at which they are due to undergo trait loss. Sample the time of the next environmental change
event from the exponential distribution with mean 1/n θ. Increment t and switch any deme j
for which xj < t to trait-loss status. Choose a new deme j at random to undergo the environmental
change event. If deme j bears the trait, reset xj to t + τ̄. If deme j lacks the trait, we assume that
it is destroyed, and choose a second deme i at random to recolonize it. If deme i bears the trait,
reset xj to xi: this assumes that recolonization involves a representative sample of the colonizing
population, rather than a single individual. Then repeat this procedure for the next
environmental change event, stopping when all demes lack the trait.

Calculating the minimum number of demes needed for the mean sojourn time to be less than
108 generations is computationally expensive, since it is difficult to find an algorithm that
avoids calculating very long sojourn times greatly in excess of 108 generations. We truncated
our simulations at 108, and found a minimum deme number according to how often simulations
were truncated. When the trait was lost, we incremented the deme number by 1, and when the
simulation was truncated since the trait was not lost, we decremented the deme number by 1.
We then calculated the average deme number sampled by this procedure over a large number
of iterations.
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Figure 1.
Minimum sojourn time required in order for trait loss in a single population to take an average
of at least 108 generations in the large N (fixed τ) case, shown as a function of the frequency
θ with which environmental change purges the population of all individuals that have lost the
trait. For large values of θ, the trait is retained so long as τ̄ > ln(108)/θ ≈ 18/θ. For small values
of θ, this requirement is gradually weakened towards τ̄ > Minimum(108, 1/θ).
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Figure 2.
The mean sojourn time τ̄ as a function of the population size N, the mutation rate m and the
selection coefficient s, as calculated exactly by Eqs. A1 and A2 and approximately by Eq. 3.
A and B. We see different behavior of τ̄ depending on whether mN < 1 or mN > 1. C. The
approximate formula is reasonably accurate for a wide range of parameter values. Calculations
shown were performed with N = 106.
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Figure 3.
State space of the Markov chain used for exactly computing the expected time until trait loss
in a single population. States Ei and E′i represent populations in which i of the N individuals
lack the trait, in the original and new environments, respectively. Edges between states indicate
transitions that can happen in one step of the Markov chain, with probabilities given in Online
Appendix B. The chain begins in state E0, and the trait is lost when the chain first reaches state
EN .
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Figure 4.
Exact computations of the time until trait loss in a single population. For a given θ, the expected
time until trait loss depends not just on τ̄--- the expectation of the sojourn time τ --- but on the
distribution of τ. For each combination of θ, N, and m plotted above, s was chosen so that the
expected time until trait loss was exactly 108 generations (see Online Appendix B). The
corresponding value of τ̄ in shown on the vertical axes, computed as a function of N, m, and
s. A: θ is fixed at 10−4, and the values of s are explicitly shown. B: θ varies, but the values of
s are not explicitly shown; points for which the corresponding value of s is negative are not
shown, so some curves are truncated asθ decreases. Depending on θ, N, and m, τ̄ can range
from the lower bound of ln(108θ + 1)/θ to the upper bound of 108. Note that for fixed θ, the
mean sojourn time for which the expected time until trait loss is 108 generations tends to
increase as mN decreases, as N decreases, and as s decreases --- these are changes that tend to
increase the variance of the sojourn time relative to its mean.
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Figure 5.
Conditions for trait loss to take longer than 108 generations in a metapopulation. A. The
minimum number of demes needed as a function of τ̄ and θ. Eqs. C1 and C2 are used for
exponentially-distributed sojourn times, Eqs. D1, D2 and D3 for fixed sojourn times, and
simulations are performed as described in Online Appendix D. We see that there is little
difference between the large N (fixed τ) and small N (exponentially-distributed τ) curves, unless
the minimum number of demes is very small. B. By fitting a straight line of gradient −1 to the
curves shown, we calculate that the trait can be maintained with 100 demes so long as τ̄ > 1.3/
θ for exponentially distributed τ or τ̄ > 1/θ for fixed τ. The simulation results in part A suggest
that the true cutoff for exponentially distributed τ may also be closer to τ̄ > 1.3/θ, so this
conservative criterion is used throughout. This criterion is fairly insensitive to the precise

Masel et al. Page 20

Am Nat. Author manuscript; available in PMC 2007 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



number of demes: for example, for 50 demes, the criterion for exponentially-distributed τ is
τ̄ > 1.5/θ.
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