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IKKb as a target for treatment of inflammation induced bone
loss
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The transcription factor nuclear factor (NF)-kB is well
recognised as a pivotal player in osteoclastogenesis and
inflammation induced bone loss. Here, the authors discuss
their recent results, obtained using a genetic approach in
mice, that indicate the importance of IKKb, and not IKKa, as
a transducer of signals from receptor activator of NF-kB
(RANK) to NF-kB. Ablation of IKKb results in lack of
osteoclastogenesis and unresponsiveness of IKKb deficient
mice to inflammation induced bone loss. In the need of a
more effective therapy for the treatment of inflammatory
diseases causing bone resorption, specific inhibition of IKKb
represents a logical alternative strategy to the current
therapies.

G
enerally, inflammation is a beneficial host response to
foreign challenge or tissue injury that leads ultimately
to restoration of tissue structure and function. In fact,

inflammation is an integral part of innate immunity.
However, prolonged inflammation that is not resolved ceases
to be beneficial and contributes to the pathogenesis of many
disease states.1 Excessive bone resorption is a major
pathological factor in chronic inflammatory diseases such
as periodontitis, osteoporosis, and arthritis, and it is now
clear that dysregulation of immune and inflammatory
responses is crucial for initiating the bone destruction
associated with these conditions.2 The bone-resorbing osteo-
clasts are known to play a pivotal role in focal bone erosion in
rheumatoid arthritis (RA)3 and in animal models of arthritis.4

Study of tissues obtained from the bone-pannus in RA
demonstrated the presence of multinucleated osteoclast-like
cells,3 5 and in situ hybridisation revealed that these cells
expressed mRNA for definitive osteoclast markers such as
tartrate resistant acid phosphatase (TRAP), cathepsin K, and
calcitonin receptor. In addition, electron microscopic analysis
of subchondral bone from damaged RA metacarpals con-
firmed the presence of resorption areas typical of osteoclast
activity.6 In normal bone physiology osteoclasts differentiate
from their haematopoietic precursors and their differentia-
tion is dramatically dependent on osteoblastic/stromal cells of
mesenchymal origin that provide a physical support for
nascent osteoclasts and produce several soluble and mem-
brane associated factors that stimulate the proliferation and/
or differentiation of haematopoietic osteoclast precursors.7

Imbalances between osteoclast and osteoblast activities can
arise from a variety of hormonal changes or perturbations of
inflammatory and growth factors, resulting in skeletal
abnormalities characterised by decreased (osteoporosis) or
increased (osteopetrosis) bone mass,7–9 and the focal net loss
of bone in sites of inflammation, as found in RA.3 In animal
models in which expression of key proinflammatory media-
tors has either been abolished through gene knockouts or
their activities modulated through genetic and biochemical

blockade, the decrease in the inflammatory response is
closely associated with reduction in the degree of bone and
cartilage destruction.10–13 Pettit and colleagues demonstrated
that arthritis can be induced in mice lacking osteoclasts (due
to the deletion of the key osteoclast differentiation factor,
receptor activator of nuclear factor (NF)-kB ligand
(RANKL)), although bone erosion does not occur.14 Similar
results were obtained in mice lacking the transcription factor
c-fos, which is also required for osteoclast maturation.12

Despite the development and progression of inflammation,
these mice were resistant to focal bone erosion as a result of
the absence of osteoclasts. Thus, interference with osteoclast
formation or maturation represents an attractive strategy for
the treatment and prevention of inflammation induced bone
loss, suggesting that blockade of RANKL signalling in
combination with an anti-inflammatory cytokine may have
effects on both bone erosion and inflammation.

THE RANKL–RANK SYSTEM IN PHYSIOLOGICAL
AND PATHOLOGICAL BONE REMODELLING
Two proteins crucial for osteoclast development and activa-
tion are RANK (receptor activator of NF-kB) and its ligand,
RANKL. RANKL is a member of the tumour necrosis factor
(TNF) family of cytokines and its expression is regulated by a
number of factors that induce bone resorption including
vitamin D3, glucocorticoids, interleukin (IL)-1, IL-6, and
TNFa.15–17 RANKL activates mature osteoclasts and directs
osteoclast differentiation from monocyte/macrophage pre-
cursors together with macrophage-colony stimulating factor
(M-CSF).17 18 The in vivo significance of the RANKL–RANK
signalling pathway has been verified by the observations that
ablation of either protein in mice results in severe osteo-
petrosis and a total lack of osteoclasts,19 20 whereas a
deficiency in osteoprotegerin (OPG) , which binds to RANK
preventing activation of RANK signalling, results in osteo-
porosis.21 A crucial target of RANKL signalling is transcription
factor NF-kB, a finding that implicates this transcription
factor in osteoclast differentiation. A critical role for NF-kB in
osteoclastogenesis is supported by the fact that gene specific
deletion of both its p50 and p52 subunits causes severe
osteopetrosis through the absence of osteoclasts.22 23 In
osteoclasts, RANK induces the activation of Akt, which is
blocked by the phosphatidylinositol 3 kinase (PI3K) inhibitor
LY294002.24 25 Furthermore, LY294002 reduces the RANK
mediated survival response of osteoclasts.25 The PI3K
inhibitor also displays a potent inhibitory effect on osteoclast
differentiation,24 which may result from a reduced survival of
osteoclast precursors during differentiation. Although direct
evidence for RANK activation of PI3K remains to be
demonstrated, it has been shown in osteoclasts that RANK
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activated the Src tyrosine kinase. The relevance of Src activity
to RANK signalling is underscored by the osteopetrotic
phenotype of mice deficient in Src.26 In Src deficient mice
osteoclast motility, and therefore bone resorption, are
prevented due to lack of association of Src with gelsolin,27

and thereby inhibiting formation of actin filaments and
downregulating the level of Pyk2 and c-Cbl.28 29

The RANKL–RANK system also represents a direct link
between synovial T cell infiltration and bone erosion in RA.
There is mounting evidence that T lymphocytes regulate
osteoclast formation in arthritis. The requirement for RANKL
in mediating osteoclast differentiation and function in
inflammatory arthritis has been supported by several lines
of evidence.3 12 14 16 30–32 Initial observations demonstrated that
activated T cells provide a source of RANKL for subsequent
osteoclast differentiation in rat adjuvant induced arthritis.3

RANKL production by activated T cells directly controls
osteoclastogenesis and bone remodelling and explains why
autoimmune diseases, cancers, leukaemias, asthma, chronic
viral infections, and periodontal disease result in systemic
and local bone loss.3 In particular, RANKL seems to be a
principal pathogenetic factor that causes bone and cartilage
destruction in arthritis. Inhibition of RANKL function via its
natural decoy receptor OPG prevents bone loss in postmeno-
pausal osteoporosis and cancer metastases and completely
blocks bone loss and crippling in various rodent models of
arthritis. Perhaps, the most important evidence of the crucial
role that osteoclasts play in inflammation induced bone loss
comes from the study in which OPG was successfully used to
block bone erosion in collagen induced arthritis mice.3

ROLE OF TNFa IN INFLAMMATION INDUCED BONE
LOSS
Additional cytokines and growth factors that are also
produced by cells of the inflamed synovium, primarily the
proinflammatory cytokines TNFa and IL-1, can also stimulate
osteoclast development, thus providing a potential link
between the inflammatory process and bone destruction.33–35

Similar to RANKL, TNFa is a potent osteoclastogenic factor
that enhances proliferation and differentiation of osteoclast
precursors through its type 1 receptor, TNF-R1.35 36 However,
permissive levels of RANKL are required for optimal TNFa
induced osteoclastogenesis, most likely due to the inability of
TNFa to support calcium intake. TNFa mediates RANKL
stimulation of osteoclast differentiation through an autocrine
mechanism.37

TNFa exerts its biological functions through two receptors:
TNF-R1 (p55) and TNF-R2 (p75). Both receptors are
expressed on a wide variety of cell types including bone
marrow haematopoietic cells.38 Amongst the two receptors it
is TNF-R1 that mediates most of the biological effects of
TNFa, including programmed cell death and the activation of
NF-kB.39 Upon oligomerisation, TNF-R1 binds to and recruits
TNFR associated death domain protein (TRADD) molecules
and binds indirectly to Fas associated death domain protein
(FADD) through an interaction between the death domains
of FADD and TRADD. This interaction leads to the activation
of a caspase cascade responsible for programmed cell death.40

In contrast, TNF-R2 lacks a death domain and interacts
directly with TRAF (TNF associated factor) 2. Although,
TRAF 2 activates both NF-kB and c-Jun-N-terminal kinase
(JNK),41 TNF-R2 make very little contribution to NF-kB
activation.42

Osteoclast recruitment by TNFa is probably essential to the
pathogenesis of inflammatory osteolysis, whereas TNF-R1
promotes osteoclastogenesis, TNF-R2 was shown to inhibit
this process.36 TNFa is produced primarily by activated T cells
and activated macrophages within the inflamed synovial
tissue in RA.43 44 The prominent role of TNFa in driving

inflammation has made it a target for biologically based
therapeutics currently used for treatment of RA.45–49 TNFa
alone is sufficient to induce arthritis and joint destruction in
a murine model. Mice constitutively expressing human TNFa
develop polyarthritis, which is characterised by significant
focal bone erosion as well as generalised bone loss.11 12 32

Conversely, mice deficient in TNFa demonstrated a hetero-
geneous phenotype when challenged with serum transfer
arthritis. The absence of TNFa signalling mostly conferred
resistance to synovitis and bone erosion, but approximately a
third of the animals studied did develop clinical signs of
arthritis, albeit at a delayed rate and reduced severity
compared with wild-type littermates.10 Furthermore, focal
bone erosion, correlating roughly with the degree of
inflammation, was evident within the affected joints in the
animals that did develop clinical arthritis (CIA).10 This study
supported previous observations in which mice deficient in
TNFa were subject to collagen induced arthritis,50 suggesting
that TNFa independent pathways can compensate for the loss
of TNFa signalling in mediating inflammation and subse-
quent bone erosion.10 50 TNFa antagonists, either alone51–54 or
in combination with the immunosuppressant methotrexate45–
49 55–59 have demonstrated efficacy in reducing signs and
symptoms of RA and arresting progression of erosions in a
large number of patients with RA. Despite its apparent
efficacy, it is not effective in all patients. Some of them,
indeed, do not respond to anti-TNFa therapy, and complete
disease remission, including the prevention of bone loss, is
not always achieved. This suggests that, as in experimental
arthritis models, alternative pathways that mediate inflam-
mation and bone erosion may contribute to the heterogeneity
of disease, and that in cases in which TNFa blockade is
insufficient to control the disease process, alternative
therapeutic strategies need to be considered.

NF-kB AND IKKb AS REGULATORS OF
INFLAMMATION AND BONE REMODELLING
NF-kB activity is regulated through interaction with specific
inhibitors, IkBs, which trap NF-kB dimers in the cytoplasm.60

In response to cell stimulation with proinflammatory and
innate immune stimuli, such as TNFa, IL-1, or bacterial
endotoxin (lipopolysaccharide (LPS)), the IkBs are phos-
phorylated at two conserved serines and targeted to rapid
ubiquitin dependent proteolysis.61 IkB phosphorylation is
carried out by the IkB kinase (IKK), a complex composed of
three subunits: IKKa, IKKb, and IKKc/NF-kB essential
modulator (NEMO).62

IKKa and IKKb serve as the catalytic subunits, whereas
IKKc/NEMO is the regulatory subunit. IKKa and IKKb
contain similar kinase domains with essentially identical
activation loops.63 64 Despite their structural and biochemical
similarities, IKKa and IKKb are functionally distinct.62

Whereas IKKb is essential for NF-kB activation in response
to proinflammatory and innate immune stimuli, IKKa is not
required for such responses.65–68 IKKa, however, plays a
unique and critical role in development of the epidermis,65

but its ability to induce keratinocyte differentiation is
independent of its protein kinase activity or NF-kB.69

Recently, IKKa was found to be required for B cell
maturation, another unique function that is not provided
by IKKb.70 This function is dependent on IKKa kinase
activity, but instead of being mediated through inducible
IkB degradation, is exerted via a second NF-kB activation
pathway, dependent on processing of the NF-kB2/p100
precursor protein to the mature p52 subunit.70 This pathway
requires the activity of another protein kinase, NIK (NF-kB
inducing kinase), which may function as an activator of
IKKa.70 It was observed that NIK deficient osteoclast
precursors do not respond to RANKL in an in vitro
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differentiation system devoid of osteoblasts.71 However, aly
mice, which carry a point mutation in the Nik gene that
prevents NIK activation, are not osteopetrotic.72 Nor was
osteopetrosis reported for Nik2/2mice.71 In addition, we
found that a mutation that prevents IKKa activation has no
effect on bone development or inflammation induced bone
loss in vivo.73

Nonetheless, a pivotal role for transcription factor NF-kB in
regulation of inflammation has been well recognised.74 75 As
mentioned above, the relevance of NF-kB pathway to
osteoclastogenesis is underscored by the osteopetrotic phe-
notype of mice lacking the NF-kB1/p50 and NF-kB2/p52
subunits.22 23 Interestingly, a deficiency in a single subunit
has no effect on osteoclast formation or maturation. The
question, however, is which catalytic subunit is required for
NF-kB activation during osteoclastogenesis and inflamma-
tion induced bone loss.
NF-kB controls the expression of the proinflammatory

cytokines IL-1b and TNFa, which are important mediators of
inflammation in RA. In turn, both TNFa and IL-1b are potent
inducers of NF-kB activation, suggesting an interdependence
of persistent NF-kB activation and sustained IL-1b and TNFa
production. Indeed, expression of a non-phosphorylable
variant of the NF-kB inhibitor IkBa (srIkBa) abrogated the
induction of IL-1b and TNFa in human macrophages and
primary fibroblast-like synoviocytes (FLS).76 77 More impor-
tantly, a small synthetic peptide that disrupts the interaction
between IKKb and the IKKc regulatory subunit and therefore
prevents IKK activation was found to inhibit inflammation-
induced bone loss in a mouse model of arthritis.78

A recent study from our laboratory established that IKKb,
but not IKKa, is essential for inflammation induced bone loss
and is required for osteoclastogenesis in vivo.73 Bone marrow
cells deficient in IKKb do not form osteoclasts in vitro when
stimulated with RANKL. Furthermore, mice lacking IKKb in
haematopoietic cells and hepatocytes, IkkbD mice, are
osteopetrotic, due to the lack of osteoclasts, indicating that
IKKa function is dispensable in vivo in the RANK signalling
pathway (fig 1).
However, the main function of IKKb in osteoclastogenesis

is to prevent TNFa induced apoptosis of osteoclast precursors
(see fig 1). Indeed, bone marrow cells deficient in IKKb are
extremely sensitive to TNFa induced apoptosis and die in

response to elevated TNFa. Loss of TNF-R1 prevents
apoptosis in IKKb deficient BM cells and restores the
presence of osteoclasts in mice that lack both IKKb and
TNF-R1 in the relevant cells, IkkbD/Tnfr12/2 mice.
Nonetheless, the prevention of TNFa induced death reveals
that IKKb is also required for maturation of functional
osteoclasts, because IkkbD/Tnfr12/2 osteoclasts are defective
in bone resorption. Inflammation induced bone loss is
prevented in mice lacking IKKb, because IKKb deficient
osteoclasts and preosteoclasts are killed by TNFa. Once the
effect of TNFa is eliminated by ablation of its receptor,
inflammation induced bone loss is restored in IkkbD/Tnfr12/2

mice.73 Thus, despite the inability of IKKb and TNF-R1
deficient osteoclasts to undergo functional maturation (that
is, become active in bone resorption) under non-inflamed
condition, in the presence of a strong inflammatory stimulus,
such as the one generated by LPS-injection into the joint,
these cells undergo maturation after all.73 The inflammatory
cytokines that induce the functional maturation of IkkbD/
Tnfr12/2 osteoclast precursors remain to be identified.

THERAPEUTIC INTERVENTIONS
Knowledge of the pathogenic mechanisms of inflammatory
arthritis has led to the design of targeted therapies that are
effective in suppression of inflammation and prevention of
joint destruction. The current anti-inflammatory and anti-
rheumatic drugs used to treat RA include glucocorticoids,
aspirin, sodium salicylate, sulfasalazine, and gold com-
pounds, all of which have been shown to block NF-kB
activity.79 The list of therapeutic agents that inhibit NF-kB
also includes numerous natural and synthetic antioxidants,
immunosuppressants, and natural plant compounds, sug-
gesting that the ability to suppress NF-kB activation at least
partially accounts for their therapeutic effects.79 These
compounds are neither potent nor selective for this pathway,
however, and may have a range of undesirable side effects as
a result of their non-specific nature. Consequently, response
to treatment in RA patients is not always complete, and in a
subset of patients, focal bone erosion progresses despite
therapy. More clear answers were obtained using animals
with genetically inactivated NF-kB signalling. Ablation of the
nf-kb1 and rel genes rendered the affected animals refractory
to development of collagen induced arthritis (CIA).80

Transgenic mice expressing a super-repressor form of IkBa
(srIkBa) in the T lineage were similarly refractory to CIA.81

These genetic studies are in a good agreement with the
experiments that used highly specific inhibitors of NF-kB.
However, the safety of long term use of specific NF-kB
inhibitors remains to be elucidated. Genetic studies revealed
that NF-kB activity is required for provision of innate
immunity and prevention of opportunistic infections.82

Highly specific inhibitors, local delivery, and short term
treatments should alleviate the possible side effects asso-
ciated with systemic inhibition and minimise the risk of
general immunosuppression.
In this context, the results from our knockout experi-

ments73 and those obtained by the use of IKK peptide
inhibitor78 are exciting. They indicate that specific and
selective inhibition of the IKKb subunit and the classical
NF-kB activation pathway represent an effective approach to
the treatment of inflammatory diseases causing bone
resorption. Furthermore, during inflammation, proinflam-
matory cytokines such as TNFa and IL-1b are induced and
strongly potentiate RANKL induced osteoclastogenesis,
although such factors cannot induce osteoclast differentia-
tion on their own.73 34 TNFa signalling through TNF-R1 has
the potential to induce apoptosis through caspase 8, a process
that is prevented by IKKb dependent NF-kB activation.39

Once IKKb is inhibited, TNFa induced apoptosis can

RANK TNFR1

X IKKβ

NF-κB

Differentiation

(IKKα) Apoptosis

RANKL TNFα

Figure 1 Schematic model of receptor activator of nuclear factor (NF)-
kB ligand (RANKL) and tumour necrosis factor a (TNFa) signalling
during osteoclastogenesis and inflammation induced bone loss. X, a
pathway other than IkB kinase (IKK)/NF-kB that is activated by RANKL
binding to RANK and is essential for production of functional osteoclasts.
IKKa function in RANK signalling is dispensable. TNFR1, TNF receptor 1.
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eliminate osteoclast progenitors deficient in Ikkb, thereby
preventing inflammation induced bone destruction. Thus,
IKKb inhibition presents a logical strategy for the therapy of
numerous bone resorbing inflammatory disorders in which
TNFa is elevated, such as RA. However, the efficacy of such
an approach would be severely compromised if TNFa
signalling, responsible for the elimination of IKKb inhibited
osteoclast progenitors, is blocked by anti-TNFa drugs, such as
infliximab and etanercept. Thus, when IKKb inhibitors will
become available it is unlikely that they will be useful in
conjunction with the currently available anti-TNFa thera-
peutic agents.
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