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ABSTRACT The principle of general covariance is used to
derive the conditions for a map to be harmonic. Modification
to the harmonic map equations due to the presence of a Yang–
Mills field is described.

1. Introduction

Einstein, Infeld, and Hoffmann derived the “geodesic prin-
ciple” saying that a particle moves along a geodesic in
response to the semi-Riemann geometry determined by
the mass distribution of the universe from general symme-
try considerations—the “principle of general covariance” in
ref. 1. Their result not only stated that the trajectory of a
particle is a geodesic, γ, but also that the associated energy
momentum tensor is proportional to the tensorial distribution
γ′ ⊗ γ′ supported on γ. In the 1970s it was shown [first by
Souriau (2) in the mathematics literature and then by Gurses
and Gursey (3) (independently) in the physics literature] that
the Einstein–Infeld–Hoffmann (EIH) method can be used to
derive the equations of a string provided that some special
additional assumptions are made about its energy momen-
tum tensor. In view of the recent interest in “branes” as a
physical theory, I thought it would be useful to work out the
general case of a submanifold of arbitrary dimension, without
making any special assumptions about the nature of the as-
sociated tensorial distribution other than its nondegeneracy.
The EIH condition implies that the energy momentum ten-
sor be tangential to the submanifold, and our nondegeneracy
assumption means that it induces a semi-Riemann metric on
Q. In all dimensions except two we can rescale the energy
momentum tensor so that the density with respect to which
we are integrating is the volume measure of the associated
metric. (In two dimensions this is an additional assumption.)
When this is done, the EIH condition says that the map giv-
ing the submanifold is “harmonic” relative to the ambient
metric and the intrinsic metric coming from the energy mo-
mentum tensor. Here we use the word “harmonic” to mean
the obvious generalization to the semi-Riemannian case of
the standard notion of harmonicity in Riemannian geometry.
The precise statements will be given below. This elementary
result does not seem to be in the mathematical literature,
and some of my mathematician friends have urged me to
publish it. It is hard for me to believe that it is not some-
where in the physics literature, and I apologize in advance
if I have not cited the appropriate references. The method
of proof follows the fundamental interpretation of the EIH
condition using the theory of distributions due to Souriau
in his groundbreaking paper (4). We will also see how these
equations are modified in the presence of a Yang–Mills field,
using the method of ref. 5.

We begin by recalling two standard formulas in Riemannian
geometry.

2. Preliminaries

2.1. Divergence of a Vector Field on a Semi-Riemannian
Manifold. Suppose that g is a semi-Riemann metric on an n-
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dimensional manifold, M . Then g determines a density, call
it g, which assigns to every n tangent vectors, ξ1; : : : ; ξn at a
point the “volume” of the parallelepiped that they span:

gx ξ1; : : : ; ξn 7→ � det��ξi; ξj���
1
2 : [1]

If X is a vector field on M , and ω is any (smooth) nowhere
vanishing density on M , we can define the divergence of X
with respect to ω as

divωX ·ω = LXω: [2]

The meaning of this definition is as follows: the right-hand
side of 2 is the Lie derivative of the density, ω, with respect
to the vector field, X. It is a density. Since the density ω van-
ishes nowhere, it follows that the density LXω must be some
function times ω. This function is defined to be the divergence
of X with respect to the density ω. We want a formula for divg
where g is the volume density of g.

For this we form the covariant differential of X with respect
to the connection determined by g,

∇X:
It assigns an element of Hom �TMp; TMp� to each p � M
according to the rule

ξ 7→ ∇ξX:
The trace of this operator is a number, assigned to each point,
p, i.e., a function known as the “contraction” of ∇X, so

C�∇X� x= f; f �p� x= tr�ξ 7→ ∇ξX�:
The standard formula for the divergence of a vector field with
respect to the volume form g of a Riemann metric g is

divX = C�∇X�: [3]

2.2. The Lie Derivative of of a Semi-Riemann Metric. The
second standard formula we will use is

LV g = 3∇�V ↓�: [4]

The left-hand side of this equation is the Lie derivative of the
metric g with respect to the vector field V . It is a rule that
assigns a symmetric bilinear form to each tangent space. By
definition, it is the rule that assigns to any pair of vector fields,
X and Y , the value

�LV g��X;Y � = V �X;Y � − ��V;X�; Y � − �X; �V;Y ��:
The right-hand side of 4 means the following: V ↓ denotes the
linear differential form whose value at any vector field Y is

�V ↓��Y � x= �V;Y �:
In tensor calculus terminology, ↓ is the “lowering operator,”
and it commutes with covariant differential. Since ↓ commutes
with ∇, we have

∇�V ↓��X;Y � = ∇X�V ↓��Y � = �∇XV;Y �:
The symbol 3 in 4 denotes symmetric sum, so that the right-
hand side of 4 when applied to X;Y is

�∇XV;Y � + �∇YV;X�:
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3. The principle of general covariance

See for example refs. 4 or 5. This principle says the following:
let the group ' act differentiably on the manifold -. let / =
' · g be the ' orbit of g � -. Then the principle of general
covariance (the EIH condition) applied to a covector µ is that

µ vanishes when restricted to T/g: [5]

The case we are interested in is where ' is the group of
diffeomorphisms of compact support of a manifold M and -
is the space of all semi-Riemann metrics on M . The tangent
space T-g can be identified with the space

0�S2�T ∗M��
of smooth symmetric covariant two tensor fields on M (inde-
pendently of g) and we will be interested in continuous linear
functions µ on the subspace 00�S2�T ∗M�� of tensor fields of
compact support. Condition 5 then says that

µ�LV g� = 0

for all vector fields V of compact support, or, in view of (4)
that

µ�3�∇V ↓� = 0

for all V of compact support. We will be interested in µ pro-
vided by the following data:

1. a k dimensional manifold Q and a proper map f x Q→
M ,

2. a smooth section t of f ]S2�TM�, so t assigns to each
q � Q an element t�q� � S2TMf �q�, and

3. a density ω on Q.

For any section s of S2T ∗M and any q � Q we can form the
“double contraction” s�q�•t�q� since s�q� and t�q� take values
in dual vector spaces, and since f s proper, if s has compact
support then so does the function q 7→ s�q� • t�q� on Q. We
can then form the integral

µ�s� x=
∫
Q

s�·� • t�·�ω: [6]

We observe (and this will be important in what follows) that µ
depends on the tensor product t⊗ω as a section of f ]S2TM⊗
D, where D denotes the line bundle of densities of Q rather
than on the individual factors.

We apply the equation µ�3�∇V ↓� = 0 to this µ and to
v = φW , where φ is a function of compact support and W a
vector field of compact support on M . Since

∇�φW � = dφ⊗W +φ∇W
and t is symmetric, this becomes∫

Q

t • �dφ⊗W ↓ +φ∇W ↓�ω = 0: [7]

We first apply this to a φ that vanishes on f �Q�, so that the
term φ∇W vanishes when restricted to Q. We conclude that
the “single contraction” t · θ must be tangent to f �Q� at all
points for all linear differential forms θ and hence that

t = df∗h
for some section h of S2�TQ�.

Again, let us apply condition 7, but no longer assume that
φ vanishes on f �Q�. For any vector field Z on Q let us, by
abuse of language, write

Zφ for Zf ∗φ;

for any function φ on M , write

�Z;W � for �df∗Z;W �M;
where W is a vector field on M , and

∇ZW for ∇df∗ZW:
Write

h =
∑

hijeiej

in terms of a local frame field e1; : : : ; ek on Q. Then

t • �∇V ↓� =
∑

hij
[
ei�φ��ej;W � +φ�∇eiW; ej�

]
:

Now

�∇eiW; ej� = ei�W; ej� − �W;∇ei ej�
so

t • ∇V ↓=
∑
ij

[
hijei�φ�ej;W �� −φ�W;hij∇ei ej�

]
:

Also,∫
Q

∑
hijei

(
φ�ej;W �

)
ω = −

∫
Q

φ�ej;W �L∑i h
ijei
ω:

Let us write

zj = divω�
∑

hijei�
so

L∑
i h

ijei
ω = wjω:

If we set

Z x=
∑

zjej;

then condition 7 becomes∑
ij

hijM∇ei ej = −Z; [8]

where we have used M∇ to emphasize that we are using the
covariant derivative with respect to the Levi–Civita connection
on M , i.e.,

M∇ei ej x= ∇df∗ei�df∗ej�:
To understand 8, suppose that we assume that h is non-

degenerate, and so induces a semi-Riemannian metric ȟ on
Q, and let us assume that ω is the volume form associated
with ȟ. (In all dimensions except k = 2 this second assump-
tion is harmless, since we can rescale h to arrange it to be
true.) Let h∇ denote covariant differential with respect to ȟ.
Let us choose the frame field e1; : : : ; ek to be “orthonormal”
with respect to ȟ, i.e.,

hij = εjδij; where εj = 51

so that ∑
i

hijei = εjej:

Then

Lejω = C�h∇ej�ω
and

C�h∇ej� =
∑
i

εi�h∇ei ej; ei�ȟ = −
∑
i

�ej; εh
i ∇ei ei�ȟ;
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so

Z = −
∑
j

∑
i

εj�ej; εih∇ei ei�ȟej

= −
∑
i

εi
h∇ei ei = −

∑
ij

hijh∇ei ej:

Given a semi-Riemann metric ȟ on Q, a semi-Riemann
metric g on M , the second fundamental form of a map f x
Q→M , is defined as

Bf �X;Y � x= g∇df �X��df �Y �� − df �h∇XY �: [9]

Here X and Y are vector fields on Q and df �X� denotes the
“vector field along f” that assigns to each q � Q the vector
dfq�Xq� � TMf �q�.

The tension field τ�f � of the map f (relative to a given g
and ȟ) is the trace of the second fundamental form so

τ�f � =
∑
ij

hij
[g∇df �ei��df �ej�� − df �h∇ei ej�

]
in terms of local frame field.

A map f such that τ�f � A 0 will be called harmonic. This
reduces to the standard definitions if both g and ȟ are positive
definite. For these definitions, see for example, ref. 6, pages 12
and 13. We thus see that under the above assumptions about
h and ω:

Theorem 1. Condition 5 says that f is harmonic relative to
g and ȟ.

Suppose that we make the further assumption that ȟ is the
metric induced from g by the map f . Then

df �h∇XY � = �g∇df �X�df �Y ��tan;

the tangential component of g∇df �X�df �Y �, and hence

Bf �X;Y � = �g∇df �X�df �Y ��nor;

the normal component of g∇df �X�df �Y �. This is just the clas-
sical second fundamental form vector of Q regarded as an im-
mersed submanifold of M . Taking its trace gives kH, where
H is the mean curvature vector of the immersion. Thus if in
addition to the above assumptions we make the assumption
that the metric ȟ is induced by the map f , then we conclude
that 5 says that H = 0, i.e., that the immersion f must be a
minimal immersion. (This is a standard argument, see for ex-
ample ref. 6, page 15.) We have recovered the result of Gurses
and Gursey (3), which says that the EIH condition, together
with the assumption that the energy momentum tensor is the
Kalb–Ramond tensor, yields the Nambu string equations.

4. Modifications in the Presence of a Yang–Mills Field

We follow the definition and notations of ref. 5 and 7 so '
is taken as the group of automorphisms of compact support
of a principal bundle P → M and - consists of all pairs
�g;2� where g is a semi-Riemann metric on M and 2 is a
connection on P . The tangent space to - at any point can
be identified with the space of all pairs �s;A� where s is a
covariant symmetric two tensor field on M and A is a one
form on M with values in the associated vector bundle k�P�
where k is the Lie algebra of structure group K of P . Any ξ �
aut0�P�, the Lie algebra of ' projects onto a vector field V of
compact support on M , and the tangent space to the '-orbit
/ at �g;2� consists of all �LV g; Lξ2�.

We want to consider covectors µ associated with a subman-
ifold Q, so we now need the following data:

1. a k dimensional manifold Q and a proper map
f x Q→M ,

2. a smooth section t of f ]S2�TM� so t assigns to each
q � Q an element t�q� � S2TMf �q�,

3. a smooth section J of f ]�TM ⊗ k∗�P�, and
4. a density ω on Q.

Then we define

µ��s;A�� x=
∫
Q

(
s�·� • t�·� + J�·� •A)ω: [10]

We will first show that the general covariance condition
shows that t and J are “tangent to Q” as before. For this
we first look at ξ which are supported in a neighborhood over
which P is trivialized and so 2 can be identified with a k val-
ued one form B on M . Also ξ can be identified with a pair
ξ = �V; v� where V is the projected vector field on M and
v is a k valued function on M , in which case the associated
tangent vector to the orbit is

�LV g; LV B + dv + �v; B��:
First choose V = 0 and v = φw where φ vanishes on Q so
the only term left in the above expression upon restriction to
Q is A = dφ⊗w. The fact that J •A must vanish for all such
A implies that J = df � j� where j is a section of TQ⊗ k∗f ]P .

If we take v = 0 and V = φW where φ vanishes on Q we
have

LV A = dι�V �A+ ι�V �dA = dι�V �A = dφ⊗ ι�W �A
and dφ = 0 on Q so j•LV A = 0 for this choice of φ. The only
contribution comes from LV g and we conclude that t = df∗h
as before.

Next take V = 0 and v arbitrary. The pairing between the
section j of T �Q� ⊗ k∗ and the restriction of dv to Q which
is a section of T ∗Q ⊗ k can be done in stages: first contract
the TQ component of j with the T ∗Q component of dv. This
is just the Lie derivative Ljv of v with respect to the vector
field j with coefficients in k∗. So it is a k∗ ⊗k valued function
on Q. Then we can apply the evaluation map

ev x k∗ ⊗ k→ R

to obtain a function that we must integrate with respect to ω.
We can integrate this by parts to obtain∫

Q

j • dv ω = −
∫
Q

ev�divω j⊗ v�ω:

On the other hand, �v; B� is a section of T �Q� ⊗ k and we
have the coadjoint action ad# of g on g∗ so that we can write

j • �v; B� = −ev�ad#�B� j�
where we have extended the ad# notation to include the pair-
ing between T ∗Q and TQ. We obtain

divω j+ ad#�B� j = 0: [11]

Finally we will consider the case where v = 0 and V is
arbitrary, and revert to more invariant notation. That is, we
will start with a compactly supported vector field V on M
and let Ṽ be the corresponding horizontal vector field on P
relative to the connection 2. Thus

ι�Ṽ �2 = 0

so

LṼ 2 = ι�Ṽ �d2+ dι�Ṽ �2 = ι�Ṽ �d2:
Now the curvature, F of the connection 2 is that k-valued
two form that assigns to every pair of tangent vectors ξ;η at a
point of M the value d2�ξ̃; η̃� where ξ̃; η̃ are their horizontal
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lifts. We thus see that the term j • LṼ 2 contributes the term
�evι� j�F��V � to the integral, in other words the term

�evι� j�F� ↓
must be added to the right-hand side of 8 to give the effect of
the Yang–Mills field.

5. Remarks

A number of obvious questions arise. What happens when we
consider higher order distributions along Q, rather than just
zero-th order energy momentum tensor fields? For the case
of curves this was worked out for first order distributions by
Souriau (4) with very interesting results. In (8) the interaction
between spin and torsion was derived using Cartan soldering
forms as a component of the geometrical object, again for the

case of curves. It would be interesting to see what this yields
for higher dimensional submanifolds.

I would like to thank Prof. Pierre Ramond for useful discussions
and for calling my attention to ref. 3.
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