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Ewing’s sarcoma: diagnostic, prognostic, and
therapeutic implications of molecular abnormalities
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The identification of the non-random chromosome
rearrangements between the EWS gene on chromosome
22q12 and members of the ETS gene family in Ewing’s
sarcoma, peripheral primitive neuroectodermal tumour,
Askin tumour, and neuroepithelioma has been a key
advance in understanding their common histogenesis
and defining the Ewing’s sarcoma family of tumours
(ESFT). In addition to improvements in diagnosis and
potentially the stratification of patients for risk,
biological investigations of these gene fusions may
define targets for much needed therapeutic strategies to
eliminate minimal residual disease or metastatic
disease. Insight into their relation with other oncogenic
events in ESFT will advance risk group analysis and
ultimately may improve clinical management and
survival for patients with this disease.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ewing’s sarcoma is the second most common
malignant bone tumour occurring in chil-
dren and young adults, and accounts for

10–15% of all primary bone tumours.1 The annual
incidence is approximately 0.6/million total popu-
lation, and it usually occurs between the ages of
10 and 20 years. It affects 13/million 0–24 year
olds each year in the UK,2 and is slightly more
common in males than females (ratio, 1.5 : 1). It
has been described in siblings,3 4 although this is
rare and the disease does not appear to be impli-
cated in familial cancer syndromes. Genetic influ-
ences may play some role in its aetiology because
black Afro-Caribbean and Chinese populations
are less frequently affected than the white
population.5 4

Ewing’s sarcoma can affect any bone but the
most common sites are the lower extremity
(45%), followed by the pelvis (20%), upper
extremity (13%), axial skeleton and ribs (13%),
and face (2%).6 The femur is the most frequently
affected bone, with the tumour usually arising in
the midshaft. Typically, by light microscopy, the
tumour consists of small round cells with regular
round nuclei containing finely dispersed chroma-
tin and inconspicuous nucleoli, and a narrow rim
of clear or pale cytoplasm. Ultrastructurally, the
tumour contains primitive cells with a smooth
nuclear surface, scanty organelles, and cytoplas-
mic glycogen in pools or aggregates.

“The femur is the most frequently affected
bone, with the tumour usually arising in the
midshaft”

Tumours with similar histology also arise in
soft tissues. These include peripheral primitive
neuroectodermal tumour (pPNET), neuroepithe-
lioma, and Askin tumour. pPNET is the second
most common soft tissue malignancy in child-
hood, accounting for 20% of sarcomas.7 It is
frequently found in the chest wall (Askin
tumour), paraspinal tissues, abdominal wall,
head and neck, and extremities.7 8 However, soft
tissue extension is common in osseous Ewing’s
sarcoma and infiltration of adjacent bone is
frequent in soft tissue pPNETs, which often
makes it difficult to determine the primary site of
tumour origin.

The identification of the non-random
t(11;22)(q24;q12) chromosome rearrange-
ment9 10 in these aggressive malignant tumours
arising in bone and soft tissue is strong evidence
for their common histogenesis, and provides a
valuable characteristic for their differential diag-
nosis from other small round cell tumours of
childhood. These tumours, including Ewing’s sar-
coma, pPNET, Askin tumour, and neuroepithe-
lioma, are now collectively recognised as the
Ewing’s sarcoma family of tumours (ESFT). In
this review, the diagnostic, prognostic, and thera-
peutic power of the t(11;22)(q24;q12) transloca-
tion and other molecular abnormalities in ESFT
will be reviewed.

DIAGNOSIS
Accurate diagnosis of ESFT is crucial for the most
appropriate clinical management of patients.
Adequate clinical information and the recogni-
tion of the morphological, immunocytochemical,
and sometimes ultrastructural features (table 1)
of ESFT are all required for its differential
diagnosis from other small round cell tumours of
childhood, such as neuroblastoma, rhabdomyo-
sarcoma, lymphoma (non-Hodgkin’s), other
primitive neuroectodermal tumours, desmoplas-
tic small round cell tumour, poorly differentiated
synovial sarcoma, and small cell osteosarcoma.

Increasingly, ESFT are being characterised by
non-random gene rearrangements between the
EWS gene on 22q12 and various members of the
ETS gene family (table 1). The most frequent
gene rearrangement is the t(11;22)(q24;q12)
translocation, found in about 85% of these
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tumours (fig 1; table 1). Fusion of the EWS gene on 22q12
with the FLI1 gene on 11q24 results in a chimaeric fusion
transcript EWS–FLI1 (fig 2A). Substitution of the EWS
domain with a portion of the FLI1 transcriptional domain
results in an EWS–FLI1 fusion transcript with increased
transcriptional activity compared with that of normal FLI1.
The chimaeric protein product is capable of transforming
NIH3T3 cells in vitro,11–13 but neither EWS nor FLI1 alone have
this capacity.

Other EWS–ETS gene family rearrangements have been
identified in the remaining 15% of tumours, with the
t(21;22)(q22;q12) translocation resulting in fusion of EWS
with the ERG gene on 21q22 being the second most common
(table 1).14 The fusion protein derived from EWS–ERG is simi-
lar to that of the EWS–FLI1 gene product, with EWS replacing
the transcriptional domain of ERG. Other variant transloca-
tions have been described where EWS is fused with ETV1
(t(7;22)(p22;q12)),14 E1AF (t(17;22)(q21;q12)),15 and FEV
(t(2;22)(q33;q12)),16 in addition to more complex transloca-
tions involving multiple chromosomes such as
t(11;14;22)(q24;q11;q12) and t(10;11;22)(p11.2;q24;q12).
The biological importance of these more complex gene
rearrangements is not yet clear, but they may be associated
with more aggressive tumour behaviour (P Roberts, personal
communication, 2002). There has also been at least one case of
cryptic EWS–FLI1 fusion in a tumour with normal chromo-
somes 11 and 22.17

“Accurate diagnosis of the Ewing’s sarcoma family of
tumours is crucial for the most appropriate clinical
management of patients”

Therefore, cytogenetic evaluation of ESFT is an essential
part of their diagnostic evaluation. Conventional G banding
may identify EWS–ETS gene rearrangements in a proportion
of tumours, although diagnostic accuracy can be enhanced
using either the reverse transcriptase polymerase chain
reaction (RT-PCR)18 and/or fluorescent in situ hybridisation
(FISH).19–21 The presence of EWS–ETS gene fusion products
detected by RT-PCR or FISH correlates well with conventional
G banding studies, but perhaps more interestingly these tech-
niques can be used to identify gene fusions in tumours where
conventional G banding has been uninformative, either
because of a very complex gene rearrangement or the lack of
mitotic cells. Indeed, the ability of RT-PCR to detect fusion
transcripts in small pieces of tumour, even in fine needle biop-
sies or bone marrow aspirations, makes this a very attractive
tool to aid in the diagnosis of ESFT.18

The EWS gene is also rearranged in several other tumours,
which are clinically and morphologically distinct from ESFT

(table 1). A multiplex RT-PCR for these different gene
rearrangements can be very useful to aid in the differential
diagnosis of sarcomas.18 However, there are some reports of
EWS–ETS gene arrangements in biphenotypic sarcomas with
features of muscle and neural differentiation,22 23 and rarely in
rhabdomyosarcomas,24 neuroblastomas,25 rhabdoid tumour,26

extraskeletal mesenchymal chondrosarcoma,27 and solid pap-
illary tumour of the pancreas.28 Whether these examples rep-
resent extremes of the ESFT or rare pathological entities
themselves is not clear. Consequently, the presence of an
EWS–ETS gene rearrangement alone may not be sufficiently
powerful to diagnose ESFT, but in conjunction with other
clinical and pathological criteria it is pathognomonic of this
tumour group.29

PROGNOSTIC VALUE
Improved outcome may be achieved by stratifying patients for
treatment according to risk. A recent systematic review of
prognostic tumour markers in ESFT has been undertaken
(NHS health and technology assessment programme; grant
number 97/15/03; for further details of these results see http://
www.prw.le.ac.uk/epidemio/personal/rdr3/paed.html). How-
ever, very few prognostic markers are routinely used in ESFT,
probably as a result of the small number of studies and
patients evaluated in clinical outcome investigations. This
identifies the need for multicentre, quality controlled,
prospective clinical outcome studies in ESFT. Currently in
ESFT the most useful prognostic indicators in clinical practice
are clinical features, including the presence of metastatic dis-
ease at diagnosis (measured by imaging and histological
examination of bone marrow), tumour volume, and primary
tumour site (patients with a primary tumour of the pelvis
have a worse prognosis).

Using RT-PCR to detect EWS–ETS fusion transcripts several
alternative forms of EWS–FLI1 have been described, reflecting
the different breakpoints in FLI1 and EWS. The most common
type, designated EWS–FLI1 type 1, consists of the first seven
exons of EWS joined to exons 6 to 9 of FLI1, and accounts for
approximately 60% of cases (fig 2A). The type 2 EWS–FLI1
fusion also includes FLI1 exon 5 and is present in a further
25%.30 Recent studies have suggested that the fusion transcript
type may be prognostically powerful,30 31 with the presence of
EWS–FLI1 fusion transcript type 1 being associated with
improved outcome compared with that in patients with other
fusion transcript types.30 31 However, this may be limited to
patients with localised disease.30 The EWS–FLI1 fusion
transcript type 1 appears to encode a less active chimaeric
transcription factor32 and to be associated with a lower prolif-
eration index33 than that of tumours with other fusion
transcript types; this might provide the biological basis for the

Table 1 EWS fusion types described in Ewing’s sarcoma family of tumours (ESFT)
and other sarcomas

Translocation Gene fusion
Tumour type (% of tumours with this EWS gene
rearrangement)

t(11;22)(q24;q12) EWS–FLI1 ESFT (85%)
t(21;22)(q22;q12) EWS–ERG ESFT (10%)
t(7;22)(p22;q12) EWS–ETV1 ESFT (rare)
t(17;22)(q12;q12) EWS–E1AF ESFT (rare)
t(2;22)(q33;q12) EWS–FEV ESFT (rare)
t(12;22)(q13;q12) EWS–AFT1 Clear cell sarcoma
t(11;22)(q13;q12) EWS–WT1 Desmoplastic small round cell tumour
t(9;22)(q22;q12) EWS–CHN Myxoid chondrosarcoma
t(12;22)(q13;q12) EWS–CHOP Myxoid liposarcoma

The presence of EWS–ETS gene rearrangements is increasingly used to define ESFT. The involvement of the
EWS gene on chromosome 22q is consistent; this can partner with several different ETS gene family members
located on various chromosomes, but most frequently with FLI1 on chromosome 11 in ESFT. Rearrangements
of the EWS gene on chromosome 22q12 with other chromosomes have also been described in other less
common sarcoma types (shown in italics).
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correlation between fusion transcript type and clinical
outcome. However, other studies have shown that the two
gene fusion products EWS–FLI1 and EWS–ERG do not define
distinct clinical phenotypes, suggesting that differences in the
C-terminal partner of ESFT gene fusions are not associated
with significant phenotypic differences.34 The clinical and bio-
logical relevance of different fusion transcript types is
currently being evaluated through a European prospective,
quality controlled, clinical outcome study, namely: the
European Ewing tumour working initiative of national groups
99 (Euro EWING 99).

The presence of disseminated disease, detected by imaging
and cytological and histological examination of bone marrow
at diagnosis in ESFT, is one of the most powerful markers of
poor prognosis. However, some patients with apparently local-
ised disease at diagnosis rapidly develop metastases and
aggressive disease, from which they subsequently die. This
suggests that these patients have low level metastatic disease
that is not detected by current routine methods, such as
imaging and histological examination of bone marrow at
diagnosis. Fusion products of specific EWS–ETS gene rear-
rangements have successfully been used as targets for RT-PCR
to identify low numbers of circulating ESFT cells with
improved sensitivity and specificity.35–37 Disease detected in the
peripheral blood by RT-PCR appears not to be clinically
informative, although in bone marrow it may predict a poor

clinical outcome.35 36 38–41 This suggests that RT-PCR for the
EWS–ETS fusion transcript type in bone marrow may be use-
ful to improve the stratification of patients for treatment and
could result in a redefinition of the term disease free. This
hypothesis is currently being evaluated in Euro EWING 99.

Additional chromosomal abnormalities have also been
described in ESFT, although these are less frequently
described than rearrangements of the EWS–ETS genes and
their clinical implication less well understood. They consist of
both numerical and structural aberrations, including gains of
chromosomes 842–46 and 12,43–46 the unbalanced translocation
t(1;16),42 46–50 and deletions at the short arm of chromosome
1.46 50 Initial studies suggested that individuals with gain of
chromosome 8 might have a poor clinical outcome,43 45

although this has recently been disputed.48 Deletion of chro-
mosome 1 is reported to be associated with an unfavourable
outcome in individuals with localised disease.48 Up to 15 dif-
ferent chromosomes, other than those relating to EWS–ETS
gene rearrangements, have been implicated in ESFT, al-
though much of this has been in the form of individual
patient data (see http://www.prw.le.ac.uk/epidemio/personal/
rdr3/paed.html). It is important to evaluate the frequency
and clinical importance of these additional chromosomal
aberrations in large clinical outcome studies, because a more
complex karyotype with multiple chromosomal aberrations

Figure 1 G banding of
chromosomes from a Ewing’s
sarcoma showing the
t(11.22)(q12.24) translocation. This
tumour is also characterised by
trisomy of chromosome 8 and 12 and
loss of chromosome 16, frequently
described secondary aberrations in
the Ewing’s sarcoma family of
tumours. Reproduced with the
permission of P Roberts, Department
of Cytogenetics, St James’s University
Hospital, Leeds, UK.
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appears to be associated with poor outcome and may be
prognostically powerful in ESFT.46 50

Loss of cell cycle control occurs in a variety of malignancies,
often as secondary genetic changes during multistage
progression. In ESFT, abrogation of the G1 checkpoint appears
to be important in the progression and development of the
clinical phenotype (fig 2B),50–52 consistent with the hypothesis
of unchecked cell division. This hypothesis is supported by
recent studies demonstrating changes in G1/S regulatory
genes after downregulation and forced expression of the
EWS–FLI1 fusion gene.53

Homozygous deletions and/or mutations of the INK4a gene
on chromosome 9p21 have been reported in seven of 4154 and
eight of 2750 primary ESFTs, although one study failed to
identify mutations of this gene in all 70 primary ESFTs
tested.55 Interestingly, loss of the INK4a gene product p16INK4A

in four of 20 cases was associated with shortened survival and
the presence of metastatic disease at diagnosis. Conversely,
loss of the alternatively spliced INK4a variant p14ARF is rarely
described even in tumours where p16INK4A is lost.52 This is con-
sistent with the hypothesis that selective loss of p16INK4A func-
tion may save p14ARF,56 with epigenetic inactivation by
promoter hypermethylation of the E1α exon resulting in the
loss of p16INK4A expression but retaining expression of
functional p14ARF.57

“Although the loss of p21WAF expression appears to be
the most common aberration in primary Ewing’s
sarcoma family of tumours, no correlation with clinical
behaviour has yet been reported”

The loss of retinoblastoma gene expression is very rarely
described in ESFT,50 52 and although mutations in the tumour
suppressor gene p53 have been described in up to 50% of ESFT
cell lines,58 59 this appears to be a rare event in primary
tumours.51 60–62 However, in the small clinical subset of patients
with ESFT in whom p53 is mutated this is associated with a
very poor outcome,51 62 although the expression of p53 protein
is reported by some to correlate with a poor prognosis.63

Amplification of the MDM2 gene, which inactivates the p53
protein, is also rare in ESFT,51 54 consistent with the hypothesis
that p53 and regulators of its activity may not play a dominant
role in ESFT transformation and progression.

One of the most frequent aberrations of a tumour suppres-
sor in ESFT reported to date is loss of p21WAF expression (11 of
20,52 and 30 of 5062). Because p21WAF is transactivated by wild-
type but not mutated p53, loss of its expression might reflect
inactivation of p53. This is true for some ESFTs,64 but for most
loss of p21WAF expression is independent of p53 status,
suggesting that gene silencing of WAF1 by mutation or hyper-
methylation may be important in these tumours. Although
the loss of p21WAF expression appears to be the most common
aberration in primary ESFT, no correlation with clinical
behaviour has yet been reported, although there are reports in
other tumour types of its prognostic power.65–67

THERAPEUTIC VALUE
In human ESFT cells, knockout studies using anti-sense
EWS–FLI1 oligonucleotides or cDNAs have shown reduced
growth in in vitro68–70 and in vivo69 71 models. These observa-
tions imply that EWS–ETS gene rearrangements are impor-
tant for the maintenance of the ESFT malignant phenotype.
Coupled with the high frequency of these rearrangements in
ESFT, this suggests that the products of these gene rearrange-
ments play a role in the genesis of ESFT. As the genetics and
biology of these gene fusions and their protein products are
elucidated, their potential as targets for therapeutic interven-
tion are being explored so they may be exploited for the ben-
efit of adolescents and adults with these tumours (fig 2C).

Figure 2 (A) Diagrammatical representation of the t(11;22)
(q24;q12) translocation resulting in the generation of the EWS–FLI1
type 1 fusion transcript. (B) Cell cycle regulatory proteins implicated
in regulation of the G1 checkpoint. 1. Despite the absence of
cytogenetically detectable 9p21 chromosomal aberrations, p16
deletions are one of the most frequent secondary molecular
aberrations identified to date in the Ewing’s sarcoma family of
tumours (ESFT). 2. p53 is rarely mutated in primary ESFT, although
mutation in this tumour suppressor gene has been described in up to
50% of ESFT cell lines. Mutation of p53 in ESFT is associated with a
poor outcome for a small group of patients. 3. Mutation of the
p21WAF gene and/or downregulation of its nuclear expression is a
common aberration in ESFT. For most tumours, loss of p21WAF

expression is independent of p53 status, suggesting gene silencing
of WAF1 by mutation or hypermethylation. 4. Loss of pRb1 is rarely
described in ESFT, but abrogation of the G1 checkpoint appears to
be important in the progression and development of the ESFT clinical
phenotype. Cdk, cyclin dependent kinase; Cyc, cyclin; pRb1,
retinoblastoma protein 1; ppRb1, phosphorylated pRb1. (C) Potential
strategies to exploit EWS–ETS gene rearrangements for therapeutic
purposes.
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In animal models, the chimaeric fusion transcripts are
reported to act as dominant oncogenes, contributing to the
development of ESFT by binding to the promoter region of
specific genes, and altering their expression.11 12 72–74 Deletion
analysis suggests that the EWS gene functions as the regula-
tory or modulating domain, with the ETS gene partners possi-
bly acting to establish promoter activity and also to link with
signal transduction pathways.75 Gene expression is a multi-
stage process potentially providing several steps that may be
targeted as a therapeutic strategy. Although general inhibitors
of transcription and translation may effectively downregulate
EWS–FLI1 protein expression and induce growth arrest in
vitro,76 this is unlikely to be specific enough for therapeutic
use. However, more specific targeting of oncogene expression,
through the use of antisense reagents to interfere with ribos-
omal translation, degradation, or processing of pre-mRNA
complexes may be more successful. Because EWS–ETS
oncoproteins are thought to protect ESFT cells from apoptosis,
antisense treatment may increase the efficacy of chemothera-
peutic strategies,77 or conversely may have a direct effect by
downregulating the role of EWS–FLI1 in maintaining cell
proliferation.68 69 76 Recent studies have shown that the delivery
of antisense oligonucleotides in polyalkylcyanoacrylate nano-
capsules results in a greater inhibition of ESFT growth in nude
mice than that seen with free antisense oligonucleotide
injections,71 although the delivery of antisense reagents in vivo
remains a challenge in therapeutic trials. Alternatively, the
oncogenic function of the EWS–ETS proteins may be targeted
by inhibition of the protein itself using—for example, a com-
petitive dominant negative strategy for the selective disrup-
tion of gene translation and expression.68

“Recent studies have also shown that EWS–ETS may
interfere with normal RNA processing, suggesting that
the gene fusions may function both in transcriptional
and post transcriptional processes to modulate growth”

The primary goal for much research that aims to exploit the
therapeutic value of EWS–ETS gene fusions has been to iden-
tify the EWS–ETS fusion target genes responsible for its onco-
genic activity. Because the transformed phenotype of these
tumours is thought to be dependent on the deregulated
expression of target genes, transcriptional repressors that
downregulate the same transcriptional targets may be used to
inhibit the function of these oncoproteins.78 This approach has
been evaluated in alveolar rhabdomyosarcoma.79 Alternatively,
fusion oncoprotein function may be inhibited by expressing
antibody fragments intracellularly.80 Although the genes
targeted by the EWS–ETS fusion proteins are not yet fully
defined, analysis of RNAs differentially expressed by NIH3T3
cells expressing FLI1 or EWS–FLI1 have identified some inter-
esting candidate genes including Manic Fringe (m-FNG),81

stromelysin,82 EAT-2,74 E2-C,83 transforming growth factor βII
receptor (TGFβ2 receptor),84 85 and platelet derived growth
factor C (PDGF-C).86 However, no single or group of gene(s)
has yet been identified that reproduces the EWS–FLI1 pheno-
type, and thus far direct target genes have not been
distinguished from indirect ones.

The function of these novel fusion proteins as potent tran-
scription factors may also be exploited to increase the delivery
of cytotoxin directed treatments. Because some of the fusion
transcripts have been shown to be more potent transcriptional
activators than their wild-type counterparts, the delivery of
exogenous toxic genes under the control of these regulatory
elements is a potentially specific mechanism to target these
tumours. Although normal cells may express the wild-type
gene, its reduced transcriptional activity is hypothesised to
result in little or no activation of the exogenous toxin. This
approach has yet to be evaluated in ESFT, but in alveolar rhab-

domyosarcoma target expression of the diphtheria toxin A
gene has resulted in expression and appropriately selective
toxicity.87

Recent studies have also shown that EWS–ETS may
interfere with normal RNA processing,88 89 suggesting that the
gene fusions may function both in transcriptional and post
transcriptional processes to modulate growth. Further evi-
dence that EWS–ETS fusion transcripts may operate through
mechanisms other than promoters of specific target genes
comes from the observations that EWS–FLI1 binds a nuclear
ribonucleoprotein involved in RNA splicing, which can result
in inhibition of EWS–FLI1 transactivation,90 and that an arti-
ficial EWS–FLI1 DNA binding domain mutant that has no in
vitro binding activity still retains some transforming
activity.91

An alternative therapeutic strategy in ESFT may be to
exploit the EWS–ETS gene fusions as novel tumour antigens
for immunotherapy. The intracellular expression of transloca-
tion protein products protects them from immune surveil-
lance. If the fusion transcripts are to be exploited as novel
tumour antigens to increase immune recognition of tumour
cells then the peptides derived from these fusion proteins (in
conjunction with major histocompatability complex class I
molecules) must be expressed on the tumour cell surface. This
strategy is being explored in alveolar rhabdomyosarcoma,92

synovial sarcoma, clear cell sarcoma, desmoplastic small
round cell tumour,93 and a variety of other sarcomas.94 95

CONCLUSIONS
In summary, as in many cancers, improved diagnostic and
staging methodologies for patients with ESFT will lead to bet-
ter risk group analysis and ultimately may improve clinical
management and survival for patients with this disease. The
identification and characterisation of the EWS gene rear-
rangements in ESFT has been the most important advance
made in these tumours in the past two decades, leading to
improvements in diagnosis and potentially stratification of
patients for risk. Current biological investigations of these
gene fusions may define targets for much needed therapeutic
strategies to eliminate minimal residual or minimal meta-
static disease, although delivery of these novel agents remains
a major challenge. Understanding the role of these tumour
specific fusion transcripts and protein products is essential,
but insight into their relation with other oncogenic events in
ESFT is crucial so that molecular abnormalities may be
exploited for the maximum benefit of individuals afflicted
with this disease.
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