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LKB1, the multitasking tumour suppressor kinase
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Mutations in the lkb1 gene are found in Peutz-Jeghers
syndrome (PJS), with loss of heterozygosity or somatic
mutations at the lkb1 locus, suggesting the gene product,
the serine/threonine kinase LKB1, may function as a
tumour suppressor. Patients with PJS are at a greater risk of
developing cancers of epithelial tissue origin. It is widely
accepted that the presence of hamartomatous polyps in PJS
does not in itself lead to the development of malignancy.
The signalling mechanisms that lead to these PJS related
malignancies are not well understood. However, it is
evident from the recent literature that LKB1 is a multitasking
kinase, with unlimited potential in orchestrating cell activity.
Thus far, LKB1 has been found to play a role in chromatin
remodelling, cell cycle arrest, Wnt signalling, cell polarity,
and energy metabolism, all of which may require the
tumour suppressor function of this kinase and/or its
catalytic activity.
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P
eutz-Jeghers syndrome (PJS) was first iden-
tified by a Dutch physician Peutz in 1921,1

and later by an American physician Jeghers
in 1949.2 PJS is an autosomal dominant disorder,
characterised by mucocutaneous hyperpigmen-
tation and multiple benign gastrointestinal
hamartomatous polyps.3 4 The relative incidence
of PJS is approximately 1/120 000 births.5

Patients with PJS almost always develop malig-
nancies of the epithelial tissues, particularly
of the gastrointestinal tract. For example, they
have an 84 fold increased risk of developing
colon cancer, a 213 fold increased risk of
gastric cancers, and a 520 fold increased
risk of developing small intestinal cancers.6 7

Additional PJS related malignancies include
cancers of the breast, lung, uterus, ovaries,
cervix, and testes.8–16 The molecular mechanisms
that underlie these malignancies are not fully
understood.

‘‘Most patients with Peutz-Jeghers syndrome
(PJS) show germline mutations in the lkb1
gene, with a smaller proportion of individuals
presenting with sporadic PJS, and a single
family presenting with complete germline
deletion of the lkb1 gene’’

The gene responsible for PJS has been identi-
fied by linkage analysis on chromosome 19p13.3
and encodes a novel serine/threonine kinase,
LKB1 (STK11).17–19 Most (60–70%) patients with
PJS show germline mutations in the lkb1

gene,17 20–22 with a smaller proportion of indivi-
duals presenting with sporadic PJS,20 23 and a
single family presenting with complete germline
deletion of the lkb1 gene.24 The heterogeneity of
PJS suggests the possibility of the involvement of
other loci, working alone or in concert with the
lkb1 gene, a scenario that cannot be ruled out.
Inactivating mutations in lkb1 have also been

found in patients without PJS, such as those
with sporadic lung adenocarcinoma, where as
many as 33% of the lesions analysed displayed
somatic mutations in the lkb1 gene16 25–28;
ovarian carcinoma14; breast cancer13; and pan-
creatic and biliary adenocarcinoma.29 The like-
lihood that other cancers harbour mutations in
the lkb1 gene is very possible, so that in the
future there will probably be a greater number of
reported mutations in the lkb1 gene, possibly
similar in scale to those reported for TP53 and
PTEN.
PJS is unlike other polyposis syndromes in

that the inactivation of lkb1 occurs in epithelial
cells,30 whereas in juvenile polyposis syndrome
(JPS), the inactivation of the smad4 (SMA and
MAD related protein 4) gene occurs in stromal
cells.31 In both syndromes, the loss of lkb1 and
smad4, respectively, leads to the formation of
benign hamartomatous polyps composed pri-
marily of stromal tissue. In contrast, malignant
tumours derived from PJS and JPS polyps
are comprised primarily of epithelial cells.31

Understanding the molecular mechanisms that
mediate PJS early stage benign stromal lesions
and PJS related later stage epithelial malignancy
is extremely important, and is probably relevant
to the development of future targeted treatments
directed towards later stage malignancies.

LKB1, THE KINASE
Most of the identified mutations in the lkb1 gene
are localised to the catalytic (kinase) domain of
LKB1, so that it is thought that PJS results from
a loss of LKB1 kinase activity.20 32 33 Therefore,
the discovery that mutations in the tumour
suppressor lkb1 gene are responsible for a
hamartomatous polyposis syndrome is unique
because, to date, PJS is the only cancer suscept-
ibility syndrome that has been shown to result
from loss of the catalytic activity of a serine/
threonine kinase.8 17 It is assumed that the

Abbreviations: AMPK, 59-AMP activated protein kinase;
Brg1, Brahma related gene 1; Dvl, Dishevelled; JPS,
juvenile polyposis syndrome; GSK-3b, glygogen synthase
kinase 3b; LIP1, LKB1 interacting protein; par,
partitioning-defective gene; PJS, Peutz-Jeghers syndrome;
PKC, protein kinase C; smad4, SMA and MAD related
protein 4; STRAD, STE20 related adaptor; VEGF, vascular
endothelial growth factor; XEEK1, Xenopus laevis egg and
embryonic kinase 1
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tumour suppressor function of LKB1 is to trans-phospho-
rylate protein targets that are relevant to tumour progression.
LKB1 is a 433 residue serine threonine protein kinase that,

until recently, was categorised as a member of the AGC
superfamily of kinases (referring to multiple related kinase
families having a highly conserved kinase domain; PKA,
PKG, PKC). The classification of serine threonine kinases is
rapidly changing as additional functional information on
each of the kinases is acquired. Because of this, LKB1 has
now been classified as a member of the calcium/calmodulin
regulated kinase-like family that is part of the Ca2+/
calmodulin kinase group of kinases (http:// www.kinase.
com). LKB1 orthologues include Xenopus laevis egg and
embryonic kinase 1 (XEEK1),34 mouse LKB1,35 Caenorhabditis
elegans partitioning defective gene 4 (par-4),36 and drosophila
LKB1.37 Par-4 and drosophila LKB1 share 26% and 44%
overall identity with human LKB1, respectively, and 42% and
66% identity with the LKB1 kinase domain, respectively.
Human LKB1, mouse LKB1, and XEEK1 share a conserved
nuclear localisation signal, and LKB1 localises both in the
cytoplasm and the cell nucleus.38 However, the intracellular
distribution is dependent on its interaction with binding
partners, such as the exclusively nuclear chromatin remodel-
ling protein, Brahma related gene 1 (Brg1),39 the cytoplasmic
LKB1 interacting protein (LIP1),40 STE20 related adaptor
(STRAD), and scaffolding protein MO25.41–43 LKB1 has also
been seen in the mitochondria,7 and at the cellular
membrane, through a conserved CAAX box.44 45 The intro-
duction of LKB1 into human G361 melanoma cells that are
defective in lkb1 expression leads to growth suppression and
G1 cell cycle arrest, whereas the introduction of kinase
defective forms of LKB1 has no such effect.32 33 45 46 These
findings support a role for LKB1 as a tumour suppressor.
LKB1 is regulated by a series of upstream kinases, specifi-
cally, LKB1 is phosphorylated on serine 431 (S431) by cAMP
dependent protein kinase A or by p90 ribosomal S6 kinase.45

LKB1 is also phosphorylated on S31, S325, threonine 336
(T336), and T366 in vitro, but it is not known which kinases
mediate these phosphorylation events.47 LKB1 may be
involved in the tumour suppressor p53 signalling pathways
and apoptosis because LKB1 phosphorylates recombinant p53
in vitro and is involved in the expression of p53 responsive
genes.7 26 47

LKB1 DISRUPTION IN ANIMAL MODELS
LKB1 has a role in early mammalian embryonic development,
as does its X laevis orthologue, XEEK1.34 The inhibition of
XEEK1 expression in xenopus embryos results in develop-
mental abnormalities reminiscent of Wnt signalling defects.48

Lkb12/2 mice die at midgestation and display abnormal
neural tube development, mesenchymal cell death, defective
somitogenesis, and abnormal vasculature associated with
raised levels of vascular endothelial growth factor (VEGF),
possibly through the deregulation of VEGF mediated signal-
ling.49 These findings are similar to situations where the loss
of von Hippel-Lindau protein leads to deregulation of VEGF
signalling.49 In contrast, lkb1+/2 mice develop hamartoma-
tous tumours with similar histopathology to those found in
patients with PJS, although the absolute location of the
tumours within the mouse intestine differs from that seen in
humans.50 Interestingly, this same study found that these
tumours were not caused by biallelic inactivation of lkb1
because the mice retained a wild-type copy of lkb1, but rather
were the result of haploinsufficiency.50 Similar observations
regarding haploinsufficiency have been described for other
tumour suppressors such as p27kip—tumours develop in
p27kip+/2 mice despite the presence of a wild-type copy of
p27kip.51 Another member of the hamartomatous polyposis
syndrome family, JPS, has been attributed, in part, to loss of

heterozygosity at the smad4 locus in humans and in mice.
However, in some instances smad4+/2 mice develop cancers
despite the retention of a wild-type copy of smad4.52

Haploinsufficiency may be one explanation for the develop-
ment of polyps and cancers in PJS and JPS.50 52 53 However a
recent mouse study reported quite the opposite, namely the
loss of the wild-type lkb1 copy in a subset of lkb1+/2 polyps.54

In this same study, the authors propose that the loss of lkb1
in healthy epithelial intestinal tissues is protective, particu-
larly if the loss is an early event, whereas the loss of lkb1 at a
later stage, such as in cells that have already undergone
malignant transformation as a result of other cancer genes,
facilitates cancer progression.54 Clearly, findings from lkb1
knockout studies leave numerous questions as to the genetic
mechanism involved in both polyposis formation and the
steps that lead to malignant progression in PJS.

LKB1 SIGNALLING
Over the past seven years, LKB1 has shown an aptitude for
multitasking. When one considers that the first LKB1 binding
partner Brg1 was identified only four years ago,39 and the
more recent evidence that LKB1 is involved in Wnt
signalling,48 55 in cell polarity,37 56 and in energy metabo-
lism,57 58 the biological networking capability of LKB1 is
palpable. There are probably additional pathways, yet to be
described, in which LKB1 is involved through protein–protein
interactions and/or through trans-phosphorylation events.
On a cautionary note, it is arguable whether the multiplexing
of LKB1 networks is a realistic representation of cellular
signalling events in vivo. The question is whether these
signalling networks play a part in the tumour suppressor
function of LKB1 and whether they are suitable targets for
the development of specific treatments.

LKB1 IN CHROMATIN REMODELLING
LKB1 is known to associate with the ATPase Brg1 in vivo,39 an
essential component of the human SWI/SNF chromatin
remodelling complex. In eukaryotes, the basic subunit of
chromatin is the nucleosome. A function of nucleosomes is to
regulate gene transcription by mediating the compaction of
DNA. However, transient disruptions in nucleosomes allow
protein–DNA interactions to take place by using the energy
derived from Brg1 ATPase mediated ATP hydrolysis to disrupt
nucleosome structure, allowing the helicase to unwind
double stranded DNA.59–63 In the presence of LKB1, the
ATPase activity of Brg1 is enhanced.39 Because LKB1 induces
G1 growth arrest32 and associates with Brg1,39 which is
involved in retinoblastoma protein induced cell cycle arrest in
both the G1 and S phases,32 64 LKB1 may function in the Brg1
signalling pathway to induce growth arrest.39 The introduc-
tion of Brg1 into SW13 cells that lack Brg1 expression leads
to the appearance of large flat cells, indicative of cells that
have undergone growth arrest and are senescent.64 65

‘‘LKB1 induces G1 growth arrest and associates with Brg1,
which is involved in retinoblastoma protein induced cell
cycle arrest in both the G1 and S phases’’

The coexpression of inactive LKB1 kinase, SL26, and Brg1
results in a significant reduction in the number of senescent
SW13 cells compared with expression of Brg1 alone and with
the coexpression of Brg1 together with LKB1.39 Because the
allelic mutant SL26 lacks protein kinase activity, but binds to
and stimulates Brg1 ATPase activity, these findings indicate
that LKB1 protein kinase activity is required for Brg1
mediated growth arrest, but is not required for Brg1–
ATPase activity.39
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Other interacting partners of LKB1 include LIP,40 an
anchoring protein that tethers LKB1 to the cytoplasmic
membrane and binds to transforming growth factor b
regulated transcription factor Smad4, forming an LKB1–
LIP–Smad4 ternary complex. LIP functions to regulate the
distribution of LKB1 between the cytoplasm and nucleus,
where it can associate with interacting partners and/or
phosphorylate substrates. LKB1 has also been implicated in
Wnt signalling, with two opposing observations. In the first
study, XEEK1 was found to associate with and regulate the
phosphorylation of glygogen synthase kinase 3b (GSK-3b), in
addition to associating with a known GSK-3b kinase, protein
kinase C-f (PKC-f). The authors provide compelling evidence
in vivo that XEEK1/LKB1 enhances Wnt mediated signal-
ling.48 In contrast, others have found that LKB1 is an
upstream kinase of the partitioning defective serine threo-
nine kinase, Par-1A, regulating its phosphorylation and
activation.55 Specifically, LKB1 was found to compete with
Dishevelled (Dvl; a protein involved in Wnt mediated
signalling) for Par-1A. By redirecting Dvl from interacting
with Par-1A, LKB1 suppresses Dvl mediated Wnt mediated
signalling.55

LKB1 INVOLVEMENT IN CELL POLARITY
The localisation and kinase activity of LKB1 is regulated by
two recently discovered proteins, STRAD and MO25.41 42 The
STRAD proteins, STRADa and STRADb, are non-functional
kinases because they lack residues within the kinase domain
that are essential for their catalytic activity. The STE20-like
kinases were first identified in yeast,66 and are most similar to
mammalian mitogen activated kinases. When in complex
with STRAD pseudokinases and the stabilising proteins
MO25a/b, LKB1 is relocated from the nucleus to the
cytoplasm.41 42

The spatial and temporal movement of cells to their
biologically relevant location during eukaryotic development
is crucial for the survival of the organism. The genetic control
of cellular polarisation is mediated by signalling pathways
that are conserved from invertebrates to vertebrates. It is
widely accepted that the loss of cell polarity is a contributing
factor in the epithelial–mesenchymal transition that arises
during cellular transformation.67 The C elegans par genes,
par1–6, were identified as maternal effect mutations that
caused disproportional partitioning of polar granules at the
one cell stage during embryonic asymmetric division.68 69 A
decade after this discovery, research groups determined that
a complex of three proteins was required to establish
anterior–posterior polarity at the one cell stage asymmetric
division in C elegans—Par-3, Par-6, and atypical PKC-l and
PKC-f.70 More recently, LKB1, the putative Par-4 homologue,
has been found to provoke polarity in single isolated cells in a
STRAD inducible system.56 In PJS, the loss of lkb1 gene
expression leads to depolarisation of intestinal cells, which in
turn leads to cell transformation and the malignancies
associated with the disease. For recent reviews see Boudeau
et al and Baas et al.42 71

LKB1 IN CELL METABOLISM
LKB1 has been implicated in metabolism and cell prolifera-
tion through its regulation of the metabolic stress kinase
family, 59-AMP activated protein kinase (AMPK).43 57 During
metabolic stress, the ratio of cellular AMP to ATP is
increased, AMPK senses the change in ATP values, and is
activated to restore the energy integrity of the cell.72 The yeast
orthologue of AMPK is Snf1, and it has three known
upstream kinases, namely: Elm1, Pak1, and Tos3.73 74 In the
mammalian system, LKB1 shows sequence similarity to
Elm1, Pak1, and Tos3, and functions as an upstream kinase
of AMPK, in essence an AMPK kinase.57 More recently, when

in complex with STRAD and MO25, LKB1 has been shown to
regulate 11 of the 12 AMPK family members in vitro,
including MARK/PAR-1,43 58 suggesting that one of the
tumour suppressor functions of LKB1 may be the regulation
of AMPK signalling. For more details on the role of LKB1 in
metabolism see the reviews by Baas et al, Boudeau et al and
Kynakis.71 75 76

‘‘LKB1 has been implicated in metabolism and cell
proliferation through its regulation of the metabolic stress
kinase family, 59-AMP activated protein kinase’’

A major challenge for scientists intent on fully under-
standing the function of LKB1 in disease will be first to
unravel the normal signalling pathway(s) mediated by this
kinase in vivo—for example, by identifying the true
substrates, assuming that the primary function of LKB1 is
to invoke trans-phosphorylation events as part of its tumour
suppressor function, and by continuing to identify the
interacting partners. As additional LKB1 signalling pathways
are identified, a more profound understanding of mechan-
isms that lead to PJS and associated malignancies will give
rise to the development of targeted cancer treatments. There
is still a great deal to learn about LKB1; one need only to
reflect on the ongoing saga of the most widely studied and
disputed tumour suppressor, p53, to realise the complexity of
this task.
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