Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jul;177(13):3641–3646. doi: 10.1128/jb.177.13.3641-3646.1995

Lethal and mutagenic actions of N-methyl-N'-nitro-N-nitrosoguanidine potentiated by oxidized glutathione, a seemingly harmless substance in the cellular environment.

K R Kumaresan 1, S S Springhorn 1, S A Lacks 1
PMCID: PMC177078  PMID: 7601826

Abstract

Both the lethal and the mutagenic actions of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on cells of Streptococcus pneumoniae were greatly potentiated by a component of yeast extract added to the cellular environment. This component was found to be an oxidation product of glutathione, glutathione disulfide (GSSG). At low concentrations in the medium, both GSSG and glutathione potentiated MNNG action, but at high concentrations, glutathione (and other sulfhydryl compounds) abolished the effect. Point mutations in a cellular gene conferred resistance to the potentiating effect, and they blocked uptake of either GSSG or glutathione into the cells as well. This gene apparently encodes a component of the system for glutathione transport in S. pneumoniae. The mechanism by which GSSG, an apparently innocuous substance in the environment, renders low levels of MNNG genotoxic and cytotoxic thus depends on its transport into the cell, where it is reduced by glutathione reductase and then activates intracellular MNNG. Also, it was observed that mutants of S. pneumoniae defective in DNA mismatch repair are more resistant to MNNG than are wild-type cells by a factor of 2.5.

Full Text

The Full Text of this article is available as a PDF (207.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerboom T. P., Narayanaswami V., Kunst M., Sies H. ATP-dependent S-(2,4-dinitrophenyl)glutathione transport in canalicular plasma membrane vesicles from rat liver. J Biol Chem. 1991 Jul 15;266(20):13147–13152. [PubMed] [Google Scholar]
  2. Balganesh T. S., Lacks S. A. Heteroduplex DNA mismatch repair system of Streptococcus pneumoniae: cloning and expression of the hexA gene. J Bacteriol. 1985 Jun;162(3):979–984. doi: 10.1128/jb.162.3.979-984.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bulter J., Spielberg S. P., Schulman J. D. Reduction of disulfide-containing amines amino acids, and small peptides. Anal Biochem. 1976 Oct;75(2):674–675. doi: 10.1016/0003-2697(76)90129-9. [DOI] [PubMed] [Google Scholar]
  4. Chen J. D., Lacks S. A. Role of uracil-DNA glycosylase in mutation avoidance by Streptococcus pneumoniae. J Bacteriol. 1991 Jan;173(1):283–290. doi: 10.1128/jb.173.1.283-290.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Claverys J. P., Lacks S. A. Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria. Microbiol Rev. 1986 Jun;50(2):133–165. doi: 10.1128/mr.50.2.133-165.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eadie J. S., Conrad M., Toorchen D., Topal M. D. Mechanism of mutagenesis by O6-methylguanine. Nature. 1984 Mar 8;308(5955):201–203. doi: 10.1038/308201a0. [DOI] [PubMed] [Google Scholar]
  7. Fishel R., Lescoe M. K., Rao M. R., Copeland N. G., Jenkins N. A., Garber J., Kane M., Kolodner R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993 Dec 3;75(5):1027–1038. doi: 10.1016/0092-8674(93)90546-3. [DOI] [PubMed] [Google Scholar]
  8. Goldmacher V. S., Cuzick R. A., Jr, Thilly W. G. Isolation and partial characterization of human cell mutants differing in sensitivity to killing and mutation by methylnitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine. J Biol Chem. 1986 Sep 25;261(27):12462–12471. [PubMed] [Google Scholar]
  9. Haber L. T., Pang P. P., Sobell D. I., Mankovich J. A., Walker G. C. Nucleotide sequence of the Salmonella typhimurium mutS gene required for mismatch repair: homology of MutS and HexA of Streptococcus pneumoniae. J Bacteriol. 1988 Jan;170(1):197–202. doi: 10.1128/jb.170.1.197-202.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heijn M., Oude Elferink R. P., Jansen P. L. ATP-dependent multispecific organic anion transport system in rat erythrocyte membrane vesicles. Am J Physiol. 1992 Jan;262(1 Pt 1):C104–C110. doi: 10.1152/ajpcell.1992.262.1.C104. [DOI] [PubMed] [Google Scholar]
  11. Karran P., Marinus M. G. Mismatch correction at O6-methylguanine residues in E. coli DNA. Nature. 1982 Apr 29;296(5860):868–869. doi: 10.1038/296868a0. [DOI] [PubMed] [Google Scholar]
  12. Kat A., Thilly W. G., Fang W. H., Longley M. J., Li G. M., Modrich P. An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6424–6428. doi: 10.1073/pnas.90.14.6424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LACKS S., HOTCHKISS R. D. A study of the genetic material determining an enzyme in Pneumococcus. Biochim Biophys Acta. 1960 Apr 22;39:508–518. doi: 10.1016/0006-3002(60)90205-5. [DOI] [PubMed] [Google Scholar]
  14. Lacks S. A., Dunn J. J., Greenberg B. Identification of base mismatches recognized by the heteroduplex-DNA-repair system of Streptococcus pneumoniae. Cell. 1982 Dec;31(2 Pt 1):327–336. doi: 10.1016/0092-8674(82)90126-x. [DOI] [PubMed] [Google Scholar]
  15. Lacks S. A., Springhorn S. S. Cloning in Streptococcus pneumoniae of the gene for DpnII DNA methylase. J Bacteriol. 1984 Mar;157(3):934–936. doi: 10.1128/jb.157.3.934-936.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lacks S., Greenberg B. Competence for deoxyribonucleic acid uptake and deoxyribonuclease action external to cells in the genetic transformation of Diplococcus pneumoniae. J Bacteriol. 1973 Apr;114(1):152–163. doi: 10.1128/jb.114.1.152-163.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lacks S. Integration efficiency and genetic recombination in pneumococcal transformation. Genetics. 1966 Jan;53(1):207–235. doi: 10.1093/genetics/53.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lacks S. Mutants of Diplococcus pneumoniae that lack deoxyribonucleases and other activities possibly pertinent to genetic transformation. J Bacteriol. 1970 Feb;101(2):373–383. doi: 10.1128/jb.101.2.373-383.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lahue R. S., Au K. G., Modrich P. DNA mismatch correction in a defined system. Science. 1989 Jul 14;245(4914):160–164. doi: 10.1126/science.2665076. [DOI] [PubMed] [Google Scholar]
  20. Lawley P. D., Thatcher C. J. Methylation of deoxyribonucleic acid in cultured mammalian cells by N-methyl-N'-nitro-N-nitrosoguanidine. The influence of cellular thiol concentrations on the extent of methylation and the 6-oxygen atom of guanine as a site of methylation. Biochem J. 1970 Feb;116(4):693–707. doi: 10.1042/bj1160693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leach F. S., Nicolaides N. C., Papadopoulos N., Liu B., Jen J., Parsons R., Peltomäki P., Sistonen P., Aaltonen L. A., Nyström-Lahti M. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993 Dec 17;75(6):1215–1225. doi: 10.1016/0092-8674(93)90330-s. [DOI] [PubMed] [Google Scholar]
  22. Lopez P., Espinosa M., Greenberg B., Lacks S. A. Sulfonamide resistance in Streptococcus pneumoniae: DNA sequence of the gene encoding dihydropteroate synthase and characterization of the enzyme. J Bacteriol. 1987 Sep;169(9):4320–4326. doi: 10.1128/jb.169.9.4320-4326.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Loveless A. Possible relevance of O-6 alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides. Nature. 1969 Jul 12;223(5202):206–207. doi: 10.1038/223206a0. [DOI] [PubMed] [Google Scholar]
  24. McCalla D. R. Reaction of N-methyl-N'-nitro-N-nitroguanidine and N-methyl-N-nitroso-p-toluenesulfonamide with DNA in vitro. Biochim Biophys Acta. 1968 Jan 29;155(1):114–120. doi: 10.1016/0005-2787(68)90341-9. [DOI] [PubMed] [Google Scholar]
  25. Meister A. Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem. 1994 Apr 1;269(13):9397–9400. [PubMed] [Google Scholar]
  26. OKADA T., YANAGISAWA K., RYAN F. J. A method for securing thymineless mutants from strains of E. coli. Z Vererbungsl. 1961;92:403–412. doi: 10.1007/BF00890061. [DOI] [PubMed] [Google Scholar]
  27. Owens R. A., Hartman P. E. Glutathione: a protective agent in Salmonella typhimurium and Escherichia coli as measured by mutagenicity and by growth delay assays. Environ Mutagen. 1986;8(5):659–673. doi: 10.1002/em.2860080503. [DOI] [PubMed] [Google Scholar]
  28. Priebe S. D., Hadi S. M., Greenberg B., Lacks S. A. Nucleotide sequence of the hexA gene for DNA mismatch repair in Streptococcus pneumoniae and homology of hexA to mutS of Escherichia coli and Salmonella typhimurium. J Bacteriol. 1988 Jan;170(1):190–196. doi: 10.1128/jb.170.1.190-196.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Puyet A., Greenberg B., Lacks S. A. The exoA gene of Streptococcus pneumoniae and its product, a DNA exonuclease with apurinic endonuclease activity. J Bacteriol. 1989 May;171(5):2278–2286. doi: 10.1128/jb.171.5.2278-2286.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Romert L., Jenssen D. Mechanism of N-acetylcysteine (NAC) and other thiols as both positive and negative modifiers of MNNG-induced mutagenicity in V79 Chinese hamster cells. Carcinogenesis. 1987 Oct;8(10):1531–1535. doi: 10.1093/carcin/8.10.1531. [DOI] [PubMed] [Google Scholar]
  31. Romert L., Swedmark S., Jenssen D. Thiol-enhanced decomposition of MNNG, ENNG, and nitrosocimetidine: relationship to mutagenicity in V79 Chinese hamster cells. Carcinogenesis. 1991 May;12(5):847–853. doi: 10.1093/carcin/12.5.847. [DOI] [PubMed] [Google Scholar]
  32. Thomas L., Yang C. H., Goldthwait D. A. Two DNA glycosylases in Escherichia coli which release primarily 3-methyladenine. Biochemistry. 1982 Mar 16;21(6):1162–1169. doi: 10.1021/bi00535a009. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES