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Advances in our understanding of the pathophysiology
of retinal ganglion cell death in glaucoma are providing
important insights into the functional changes occurring
in retinal ganglion cells in the early stages of the
disease. These exciting new findings may help us
develop psychophysical tests to monitor early retinal
ganglion cell damage, possibly before neurons are
committed to the process of cell death.
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Primary open angle glaucoma (POAG) is diag-
nosed by examining the optic disc and visual
field and measuring intraocular pressure

(IOP). The lack of sensitivity of standard auto-
mated perimetry (SAP) in the early detection of
POAG has triggered intensive research into the
evaluation of alternative psychophysical tech-
niques.

Much of the basic science and clinical research
that provides insights into visual processing is
psychophysical in nature. Examples of psycho-
physical tests in routine clinical use include visual
acuity, refraction, visual fields, and colour vision
testing. Therefore, it is essential for the clinician
to have a basic understanding of psychophysical
theory and methodology in order to perform
these tests and interpret the results meaningfully.

The development of psychophysical tests for
early diagnosis of glaucoma is based on our
current understanding of functional channels in
vision. Primate retinal ganglion cells can be clas-
sified according to the layer of projection in the
dorsal lateral geniculate nucleus (LGNd). Gan-
glion cells are classified as M cells if they project
to the magnocellular layers and P cells if they
project to the parvocellular layers. They are both
morphologically and physiologically distinct. Ac-
cordingly, there is much anatomical and physio-
logical evidence to support the idea of independ-
ent primary visual pathways for the processing of
visual information.1–3 M cells respond to high
temporal and low spatial frequencies, high lumi-
nance contrast, and movement. P cells respond
best to high spatial and low temporal frequencies
and are colour opponent.4 This functional di-
chotomy has led to the development of psycho-
physical tests that isolate the M or P cell channels
and several studies have been performed to
establish which tests are superior in terms of early
glaucoma diagnosis.

FUNCTIONAL PROPERTIES OF RETINAL
GANGLION CELLS
The retinal ganglion cell (RGC) is the output neu-
ron of the retina and there are 0.7–1.3 million

RGCs in each human retina.5 The response prop-
erties of RGCs result from transformations of
photoreceptor responses and are mediated by
interactions in the outer and inner plexiform lay-
ers of the retina. The pattern of inputs from all the
cell types in the different layers of the retina
defines the receptive field of the RGC, which is the
area of retina monitored by the RGC. Spatial
summation refers to the ability of RGCs to pool
excitatory effects over a certain area.

Most retinal ganglion cells exhibit a circular
centre surround organisation of the receptive
field.6 For example, ON-centre cells respond opti-
mally when light falls on the centre of the recep-
tive field and are inhibited when stimulated by
light in the surround. Similarly, OFF-centre cells
are stimulated by light in the surround and
inhibited by light in the centre. Therefore, the
receptive fields of RGCs are organised to respond
to differences between illumination of the centre
and surround—that is, contrast.7 M and P cells
comprise both ON and OFF-centre cells. P cells
have smaller receptive fields than M cells, and
whereas M cells are not selective for wavelength,
P cells exhibit colour opponency. RGC morpho-
logical and functional diversity has been de-
scribed thoroughly in the literature.8

Despite the different characteristics of M and P
cells, it has not been possible to isolate fully M
cells from P cells using psychophysical tests. For
example, the role of P cells in spatial vision, form
perception, and acuity has been questioned,9 but
the general consensus is that P cells are responsi-
ble for processing chromatic information.10 Fur-
thermore, investigators have found little or no
difference in the spatial or resolving power of M
and P cells regardless of retinal eccentricity.11 In
human peripheral vision, when isolating neural
subpopulations of the retina by motion aliasing
(the false representation of the stimulus by
undersampling), it is the P cell system which is
isolated, confirmation that P cells have an impor-
tant role in motion perception.12 Similarly, P cells
convey information about the motion of moderate
and high spatial frequency targets.13 14 This
imperfect functional dichotomy has obvious
implications for the conclusions we make regard-
ing the results of psychophysical tests, which are
described as being exclusively selective for a par-
ticular pathway.
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SELECTIVE CELL LOSS
The hypothesis that selective damage may occur in glaucoma
is important. If one of these pathways is damaged preferen-
tially in the early stages of the disease, psychophysical tests
could be used to isolate selectively the function of that
pathway and provide the basis for earlier detection of disease.
Selective cell loss in glaucoma has been supported by
histological, electrophysiological, and psychophysical studies.

There has been particular interest in isolating M cell func-
tion in early glaucoma diagnosis since there has been
histological evidence for earlier damage to large optic nerve
fibres, most of which are axons of M cells.15 16 However, this
finding has been challenged. It is not the purpose of this arti-
cle to discuss every test which has been studied, rather we
wish to point out that a number of studies isolating M and P
cell function suggest that both cell types are damaged in early
glaucoma.

PSYCHOPHYSICAL TESTS OF M AND P CELL
CHANNELS
Histological evidence of preferential damage to large optic
nerve fibres provided the impetus for the evaluation of
psychophysical tests aimed at detecting M cell
dysfunction.17–31 Although these tests demonstrated deficits in
motion perception in POAG and ocular hypertension (OHT)
patients, deficits were also found using tests that are designed
to isolate P cell function.32–38

A more rational approach would be to evaluate comparable
M and P cell tests in the same patient group. Several
investigators have compared a variety of M cell and P cell tests
on the same group of patients.39–45 These studies have demon-
strated equivalence between M and P cell tests in detecting
early glaucoma damage. Hence, the results of these studies are
not consistent with selective cell damage. Therefore, although
histological evidence has been interpreted as providing
support for selective loss of magnocellular RGCs, this has not
been the consistent result with a range of psychophysical
tests.39 40

Awareness of the complexity of the retinogeniculate
pathway and a greater understanding of RGC functional
properties are essential for the development and interpret-
ation of psychophysical tests. For example, the parietal cortex
receives most of its input from M cells and is involved in redi-
recting visual attention, object localisation, and the control of
pursuit eye movements.46–48 However, the use of these psycho-
physical stimuli for isolating M cell function remains highly
speculative.

CELL SHRINKAGE
The concept that the relation between cell size and cell type is
preserved in glaucoma has been questioned by recent studies.
Detailed histological analysis of retinal ganglion cell morphol-
ogy following intracellular injection of fluorescent dyes has
shown that the cell soma, dendritic tree, and axon in both M
and P cells can shrink before the onset of cell death.49 A subse-
quent study, analysing a large population of retinal ganglion
cells labelled by retrograde transport of neuronal tracer,
horseradish peroxidase (HRP), in the primate glaucoma
model has shown a similar level of cell shrinkage (16–20%) for
these cell types,50 which would be sufficient to generate appar-
ent selective cell death of larger retinal ganglion cells.51 The
same study was also unable to demonstrate a significant
reduction in the ratio of M to P cell types in retinal areas with
cell loss that would be expected if the magnocellular pathway
were selectively damaged. Therefore, these studies did not
provide clear evidence for selective cell loss in glaucoma. The
idea of cell shrinkage and functional “predeath” is novel to
glaucoma because it may represent a window of opportunity
for intervention, possibly with neuroprotective therapies.

However, the basis for this hypothesis remains tentative since
studies performed using the primate ocular hypertension
model might have limited relevance to chronic human
glaucoma.

The notion of non-selective cell damage does not under-
mine selective testing of those pathways with reduced
redundancy.40 For example, bistratified RGCs comprise 1% of
RGCs in the central retina and mediate the blue-yellow
signal.52 Reduced redundancy in this population of cells may
explain the ability of blue on yellow perimetry to detect visual
field loss earlier than conventional perimetry.39 42 Even if there
is cell shrinkage, if M cells are affected disproportionately,
then functional deficits in that population of cells may be
detected earlier using appropriate stimuli.

THE LATERAL GENICULATE NUCLEUS IN
GLAUCOMA
There have been few studies of cellular changes in the primate
lateral geniculate nucleus (LGN) with glaucoma. Using
human necropsy material, M cell density was significantly
reduced compared to P cell density and interpreted as prefer-
ential loss of M cells.53 In addition to some technical
limitations, this study did not address the relation between
LGN volume, and cell number in these chronic glaucoma
cases.54 In a previous enucleation study, there was substantial
neuronal loss in both the parvocellular and magnocellular
laminae that received input from the enucleated eye. However,
this was represented by a loss of volume in the parvocellular
laminae—that is, the laminae became thinner, without a
change in cell density.55 Both cell density and the volume of
the parvocellular laminae should be determined when
comparing cell loss between the different laminae. This was
demonstrated in a more acute model in rhesus monkeys
whereby cell density was increased in M and P cell layers (31%
versus 59%). The increased P cell density was most likely the
result of a greater reduction in laminar volume compared to
cell loss. Conversely, the more modest M cell density increase
was the result of a finer balance between reduction in laminar
volume and cell loss.56

In Weber’s study of primate LGN, M cell loss was
significantly greater than P cell loss (38% versus 10%). Using
parvalbumin to exclusively stain LGN relay neurons, other
investigators have not found a differential reduction in
laminar density in the primate glaucoma model.57 There is also
recent evidence for an equivalent reduction in metabolism in
P and M cell layers of the LGN and primary visual cortex in
glaucoma.58

Before the useful interpretation of all these studies, it is
important to appreciate the inputs and local circuitry of the
LGN. RGCs represent only 5–10% of the input to the LGN59;
other inputs from the brainstem and cortex can help preserve
LGN function. Therefore, the changes in the M and P cell lay-
ers may reflect this as much as the result of any selective dam-
age to axons. In the cat, LGN interneurons are directly inner-
vated by X cell axons and are firmly embedded in the X
pathway (X cells are the smaller cells of the retinogeniculate
pathway and exhibit linear spatial summation).60 In the same
study there was no evidence for interneurons in the Y cell (the
larger cell type exhibiting non-linear spatial summation)
pathway. This close association might aid the survival of the
smaller X cells, either by providing some sort of local
neuroprotection, or by preventing the cells from becoming
excitotoxic in the degenerating nucleus. It is also possible that
the smaller cells have lower thresholds to activation than Y
cells, and therefore can maintain some basal level of activity
longer than Y cells. This might be reflected in differences in the
distributions of synaptic inputs to the two classes of cells. The
more compact nature of the P cell dendritic fields might also
mean that more synapses remain capable of influencing the
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soma as distal dendritic processes degenerate (A J Weber, per-
sonal communication).

FUTURE APPROACHES
All the psychophysical tests that have been used are actually
testing a pathway from retina to cortex. For example, the
familiar contrast sensitivity function is representative of the
spatial resolving power of the visual system as a whole. If we
want to study the actual RGC modulation transfer function in
isolation we would have to devise a way to eliminate noise
from the other higher components of the retinocortical path-
way (J Rovamo, personal communication). This is a difficult
task, but highlights the problems involved if testing is to be
truly accurate and if the pure response of RGCs is to be
recorded.

Recent studies have demonstrated shrunken, distorted, and
“sick looking” RGCs in the primate glaucoma model.49 50

Therefore, we have to consider the following points:

• What would be the physiological behaviour of a dysfunc-
tional cell?

• What receptive field properties could be tested to identify
such cells?

Rather than attempting to detect the loss of cells, we should be
trying to detect novel physiological responses of altered cells.
If changes are occurring in cell soma and dendritic field size
then subtle deficits in the contrast sensitivity function should
also be apparent in areas without defects in the retinal nerve
fibre layer. The reversibility of such deficits should be
examined, after the application of IOP lowering drops or neu-
roprotective agents,61–63 in cases of early POAG or in glaucoma
suspects. If the changes were reversible, it would imply that
these represent the signals from altered cells, which are still
amenable to neuroprotective rescue.

CONCLUDING REMARKS
Recent detailed histological studies have paved the way for a
better understanding of cellular changes in early glaucoma.
Rather than designing psychophysical tests that are sensitive
to changes in cell population, perhaps we should be
investigating the physiological changes that occur in surviving
and dysfunctional cells. It is possible that some of the recent
psychophysical techniques are responding to dysfunction in
cells rather than the total loss of function. The test-retest vari-
ability found with all perimetry may reflect this fluctuating
physiological state.
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