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This review presents a new unified view of the pathogenesis
of three common causes of acquired retinal degenerative
disease—diabetic retinopathy, age related macular
degeneration, and retinopathy of prematurity. In these
three conditions, angiogenesis has a predominant role in
the development of sight threatening pathology.
Angiogenesis is controlled by among other factors the
expression of vascular endothelial growth factor (VEGF),
which in turn is regulated by absolute and relative lack of
oxygen. The severe pathological manifestations of these
three conditions are not part of a general underlying
disease process because they are peculiar to the eye, and
the profound hypoxia that develops in normal retina during
dark adaptation (rod driven hypoxia) is an adequate and
elegant additional factor to explain their pathogenesis. A
large number of experimental reports support this
conclusion, although rod driven anoxia is not generally
considered as a causal factor in ocular disease. However,
the hypothesis can be critically tested, and also suggests
novel methods of treatment and prevention of these
conditions that may be simpler and more inexpensive than
current therapies and that have a smaller potential for
adverse effects.
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T
hree common blinding diseases—diabetic
retinopathy (DR), retinopathy of prematurity
(ROP) in oxygen treated neonates, and age

related macular degeneration (ARMD)—are
peculiar to the eye. The hallmark of these
conditions is angiogenesis, the formation of
new blood vessels, but the processes that give
rise to them are apparently confined to the
retina. Recent discoveries have detailed various
mechanisms of angiogenesis in the eye, in
particular the role of hypoxia induced vascular
endothelial growth factor (VEGF),1 so it is now
becoming meaningful to ask what local factors
might account for the especial damage to the
retina in DR, ROP, and ARMD. One feature that
distinguishes the retina from other parts of the
central nervous system and from other organs is
the presence of large numbers of specialised
photoreceptor cells—140 000 000 rods and
6 000 000 cones. We suggest that the special
susceptibility of the retina is caused by two
properties of photoreceptor cells—their signal-
ling transduction properties2–4 and the proximal
growth and distal shedding of their outer
segments throughout life.5 We have constructed
a hypothesis about causation of DR, ROP, and

ARMD that leads to strong predictions about
epidemiology and treatment, which in some
instances have already been empirically tested.
The key idea we wish to bring to the readers’
attention is that the dark adapted retina is
normally hypoxic because of the great oxygen
demands of rods. Any embarrassment of the
supply of oxygen, whether it be caused by
capillary basement membrane thickening, capil-
lary non-perfusion, or a relative impermeability
of Bruch’s membrane or indeed any other
pathology, causes the zone of reduced oxygen
tension to spread from the photoreceptor layer
both proximally and distally. This anoxia is a
very important but hitherto relatively little
considered contributory causal factor in the three
conditions discussed below, though of course,
local factors also play a part, and DR and ARMD
are known to be multifactorial.

DIABETIC RETINOPATHY
Histopathology of the condition peculiar to
the eye
Diabetes, experimental and clinical, selectively
damages retinal microvessels. Elsewhere, the
diabetic state causes thickening of capillary
basement membrane, but only in retinal blood
vessels is there loss of pericytes, and swelling and
damage to capillary endothelial cells that result
in the capillary dropout, microaneurysms, leak-
age, cellular damage, and new blood vessel
growth that characterises DR.6 This indicates
that local factors unique to the retina provoke
DR,6 although retina is often considered ‘‘an
approachable part of the brain.’’7 The main
difference between retina and brain tissue is, of
course, the photoreceptors.

Energy requirements of photoreceptors
Their signal transduction mechanism, found in
no other neuron, is very energy demanding. In
darkness the surface membrane of the rod outer
segment is leaky, and water and sodium enter, to
be extruded by pumps in the inner segment.
Light seals the leaks in the outer segment,
reduces or stops the dark current and promptly
halts the pump action, reducing metabolism and
oxygen uptake. The maximum magnitude of the
dark current under strict dark adapted condi-
tions indicates that the rod circulates its entire
cytosol volume in 30 seconds,8 and this process
produces more heat and consumes more oxygen
than any function in any other cell. Although the
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panretinal photocoagulation; ROP, retinopathy of
prematurity; VEGF, vascular endothelial growth factor
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retina has a double blood supply from the central artery and
from the choroid, the photoreceptor layers are avascular, and
the oxygen supply is normally barely sufficient. This explains
why dark adapted sensitivity in normal people begins to drop
when there is a slight reduction of inspired oxygen,
equivalent to ascending to 3000 feet (914 metres),9 and loss
of dark adaptation is the first symptom in a variety of
pathological conditions, ranging from polycythaemia vera to
partial carotid occlusion, before other functions fail.10–12

Retinal anoxia in dark adaptation is present in normal
eyes
Experiments with oxygen microelectrodes in normal eyes
show a precipitous drop in partial oxygen pressure (pO2) as
the microelectrode passes from the level of the choroidal
blood vessels to fall to a minimum in the vicinity of the rod
mitochondria and the photoreceptor cell synapses in the
outer plexiform layer.13 14 In dark adapted eyes this minimum
pO2 tension is zero, but even during a brief flash of light it
reaches 30 mmHg.15 Unlike other brain cells, rods can
apparently function in such ultra low oxygen environments
but their remarkably intense activity in darkness reduces the
pO2 of the inner retina, a region served by blood vessels that
penetrate inward from the vitreal surface but do not actually
reach the rod cells. Therefore, when rods operate at
maximum activity, a relative anoxia may develop in the
inner portions of the retina in disease states with less than
optimal oxygen supply.

Relative impairment of oxygen supply in early (grade
0 and 1) DR
Clinical DR appears to develop years after the condition is
diagnosed. But during the preclinical period, although the
fundus is normal (stage 0), psychophysical and electrophy-
siological experiments demonstrate that anomalies are
developing, especially in rod vision (reviewed by Arden16).
It has been shown that several of these losses can be
promptly, though only partially, reversed by inhaling oxygen
from a face mask.17–19 Therefore, even at stage 0, there must
be a degree of oxygen lack in the retina of people with
diabetes. Thus, the loss of dark adaptation in people with
diabetes at stage 0 is explicable. Diabetes causes a series of
slight changes in the circulation: glycosylated haemoglobin
has a Michaelis-Menton curve shifted slightly to the right,
basement membranes thicken, and red blood cell walls
stiffen slightly, reducing ease of transport through the
capillaries. In most tissues, these modifications would be of
little consequence, but the retina has very little reserve
capacity, and slight reductions in oxygen supply would tend
to decrease the pO2. This cannot fall below the zero level
found in the region of the rod mitochondria, but proximal
and distal to this point pO2 will be reduced. This concept is
supported by findings in diabetic cats, where retinal oxygen
tension is reduced relative to normal, even in regions with no
fluorescein angiographic evidence of actual capillary drop-
out.20

Production of cytokines in diabetic retina enhanced by
hypoxia
Hyperglycaemia is the first signal to trigger the onset of DR
and the cascade of metabolic and biochemical changes.21

Hyperglycaemia is associated with apoptosis of neuronal and
vascular cells in the retina.22 23 High levels of intracellular
glucose cause, among other changes, a state of ‘‘pseudohy-
poxia’’ in retinal cells.24 (Pseudo)hypoxia may upregulate
factors such as vascular endothelial growth factor A (VEGF-
A).1 VEGF is a prime regulator of angiogenesis and vascular
permeability (reviewed by Ferrara25), but may have vasopro-
tective and neuroprotective functions as well. Evidence is
available for a role of VEGF-A in the early stage of DR, as

retinal VEGF expression by activated Müller cells is increased
a few weeks after the onset of diabetes in rats.25–31

Intracellular pseudohypoxia, high levels of glucose and
advanced glycation end products (AGEs) all induce increased
VEGF expression in cells in vivo and in vitro.21–33 We suggest
that in preclinical DR, the increased anoxia associated with
complete dark adaptation is a crucial and necessary driving
force of VEGF upregulation, in synergy with the conse-
quences of chronic hyperglycaemia. Therefore, even in the
preclinical phase of diabetic retinopathy, dark adapted rods
are instrumental in the increase of VEGF expression. VEGF
overexpression may reflect a stress response enabling survival
of vascular and neuronal cells, but it also induces early blood-
retinal barrier breakdown,34–36 leucocyte adhesion to retinal
vessels,37 swelling of endothelial cells,38 and proliferation of
endothelial cells.39

Once this increase is established, repeated insults of
endothelial apoptosis and reactive proliferation probably
cause replicative senescence of endothelial cells resulting in
the capillary dropout seen in clinical DR, which, by itself, may
leads to a vicious circle of ischaemia, VEGF production,
endothelial swelling and capillary non-perfusion, reinforcing
the production of anoxia.30–39 This scheme of events can easily
be envisaged against the background of rod induced anoxia
acting as an independent driving force. Later, when clinical
DR is established, and widespread vascular leakage, capillary
dropout, and neovascularisation can be seen, the anoxia
associated with DR is evident (see fig 1). The part played by
VEGF-A and its receptors in this clinical stage is very well
documented.1

Evidence that DR is caused by local anoxia
Evidence is plentiful for the suggestion that ‘‘rod driven
anoxia’’ triggers the changes that cause DR. As predicted, DR
does not occur in patients who have diabetes and retinitis

Figure 1 Physiopathological scheme for the development of diabetic
retinopathy. DR, diabetic retinopathy; DAG, diacylglycerol; PKC, protein
kinase C; AGE, advanced glycation end product; VEGF, vascular
endothelial growth factor.
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pigmentosa16 because rod outer segments are reduced in this
condition. Proliferative DR may even regress in the presence
of retinal degenerations such as retinitis pigmentosa.40 In the
mitochondrial disorder MIDD 3243, which begins in adult
life, diabetes is characteristic, and DR commonly occurs
unless a retinal degeneration also develops.41–43 Some people
with longstanding diabetes (types 1 and 2) develop no signs
of DR at all. In a group of these, it has been shown that the
upregulating effect of anoxia on blood white cell VEGF
production is greatly reduced.44 However, the best evidence of
the importance of anoxia is (i) the success of the common
treatment of DR, panretinal photocoagulation, which was
introduced to destroy retinal tissue thought to be liberating
‘‘toxins,’’ but which may work simply by destroying enough
rods to increase retinal pO2,

45 and (ii) the recent report that
breathing oxygen from nasal tubes for 3 months improves
visual acuity and partially reverses the appearance of the
macula in cases of diabetic maculopathy.46 Such treatment
only provides,10% more oxygen to the retina. An alternative
strategy, light adaptation during sleep, could reduce the
oxygen requirement by ,50% and should therefore be at
least as effective.47

Other causes of DR, and predictions arising from the
new hypothesis
Of course several systems contribute to diabetic retinopathy.
The effects of glucose and insulin are well known, and the
polyol pathway, and pseudohypoxia that is associated with
NAD-NADH levels also can cause retinal damage. In
experimental oxygen induced retinopathy, knockout of
insulin receptors, which are indirectly necessary for VEGF
activity, reduces vascularisation by 50%,48 but knockout of
rods in mice prevents any vascular proliferation in this
model.40 Almost the only time human rods ever dark adapt
(and maximise their oxygen needs) in our electrically lit
modern environment is during sleep. Our hypothesis predicts
that if people with diabetes and grade 0–I retinopathy were to
sleep in light levels of 1–10 cd/m2, sufficient light would pass
through the lids to protect against DR. (Consideration of the
quantity of light required can be found in the paper by
Arden16) Another testable prediction is that elderly people
with diabetes who suffer from sleep apnoea would have
considerably more DR than those who do not.

RETINOPATHY OF PREMATURITY
Rod driven anoxia is also the probable cause of ROP. In a well
known mouse model of ROP49 pups are placed in 75% oxygen
from postnatal day P7 to P12. For the first two thirds of this
period the eyelids are still closed, the rod outer segments have
just begun to form, and the retina is growing and becoming
vascularised. However, the hyperoxia results in an under-
development of retinal vasculature. Return to normal air at
P12 coincides with the rapid development of rod outer
segments, an increased retinal oxygen demand, and a large
rise in retinal VEGF, so that by P17–21, a prominent
proliferative retinopathy develops. However, if the same
experiment is performed with mutant mice in which
photoreceptor cells degenerate as their rod outer segments
are differentiating, no proliferative retinopathy is found.40

Thus, in this model the activity or presence of rods is
necessary for ROP to develop.
Despite great advances in paediatric care, ROP remains a

relatively frequent complication of prematurity. It is custom-
ary to maintain premature infants in well illuminated
intensive care units, though ordinary care units typically
are maintained in reduced illumination. By analogy with the
mouse experiments, our hypothesis suggests this is precisely
the wrong arrangement. When neonates are maintained in a
high oxygen environment, they should be exposed to as little

light as possible to encourage growth of the retinal vessels.
Red light (wavelength .660 nm) is scarcely absorbed by
retinal rods; general and local illumination with red light
emitting diodes should suffice for all necessary manipula-
tions. When the neonate is returned to a normal air
environment, the room should be brightly lit, so that the
oxygen demand of the still immature eye is minimised. Brief
trials would show whether this regime results in less ROP.
Experimental evidence exists supporting our hypothesis. In
the mouse model, ROP is less prominent in litters kept
continuously in darkness than those kept continuously in
light.50 In a multicentre trial in neonates,51 goggles absorbing
97% of ambient illumination were fitted at random to half of
the babies. In this trial, the investigators’ hypothesis that
bright light is harmful in neonates could not be confirmed, as
predicted by our hypothesis. That this trial did not show an
opposite effect, consistent with our hypothesis, may be
because of the amount of light passing through the goggles
and the eyelids: with eyes open, retinal illumination was at
photopic levels (4 cd/m2) behind the goggles. Because eyelids
in neonates absorb less light than in adults, even with the lids
closed, the retinal illumination in the ‘‘goggled’’ babies could
have been sufficient for a light adapted state and have a
protective effect against rod driven anoxia. In fact, the
percentage of ‘‘goggled’’ babies who had ROP was slightly
higher when the goggles were fitted early. Thus, the results of
this clinical trial are at least consistent with our hypothesis.

AGE RELATED MACULAR DEGENERATION
Pathology
Age related maculopathy is a multifactorial condition.
Though there is a genetic component,52 the rapidly increasing
prevalence suggests the importance of environmental fac-
tors,52–56 and this is also indicated by histopathological studies
(see below). The natural history shows that after the age of
55, increasing numbers of people develop large ‘‘soft’’ drusen,
and the number of these increase with time. The drusen are
seen in the posterior pole, often in a ring peripheral to the
macula.56 The drusen are the clinically visible indicators of a
collection of abnormal material between Bruch’s membrane
and the retinal pigment epithelium (RPE) and Bruch’s
membrane and the choroid, known as basal laminar and
basal linear deposits, respectively.57–59 The RPE also becomes
loaded with lipofuscin granules, resulting from phagocytosis
and incomplete digestion of rod outer segment fragments.60–64

The volume of shed outer segments is,2 mm3 per rod per day
(see Young and Bok5) and ,30 outer segments contact each
RPE cell. Analysis of the material contained in drusen59 60

shows it contains highly oxidised lipids, suggesting their
formation by reactive oxygen species in senescent RPE cells
that can no longer properly digest phagocytosed rod outer
segments.61–64 This failure leads to the accumulation of the
deposits in both the ‘‘dry’’ and ‘‘wet’’ forms of ARMD.61 At
the same time, abnormalities occur in the choroid.65 66 Thus,
ARMD appears to be another disease whose manifestations
are caused by local retinal factors.67 Visual function is affected
early in the condition.68–79 Dark adaptation is slowed and less
complete even in the early stages, and blue cone vision is also
affected.77–79 Like DR, there is an asymptomatic ‘‘preclinical’’
stage but during this stage, drusen can be seen, pigment
irregularities develop, and subtle losses of rod and cone
function occur. The histologically verified loss of rods in the
region of their highest density80 suggested that the condition
is caused by the death of rods, but at a comparable stage
there is also evidence of an obstructive barrier between
choroid and RPE,78–84 which hinders the diffusion of oxygen
from the choroid. Abnormal biochemical and immunocyto-
logical findings have been reported at this phase. With the
loss of rods, irregularities and patchy diminution of choroidal
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blood flow may be seen in ageing eyes.66 67 83 The causal
relations of these several findings are obscure. The primary
disorder may be a defect in the RPE. Curcio80 raises the
possibility that rod death leads to loss of a trophic factor
necessary for normal cone function. However, in various
other forms of night blindness, with absent or very reduced
rod function, macular degeneration does not occur as an early
event. The early stage (now often called age related
maculopathy, ARM) occurs with little obvious symptomatol-
ogy, but after some time, subjective visual disturbance occurs,
associated with a change in retinal appearance. In the ‘‘dry’’
form, a limited retinal geographic atrophy eventually occurs.
The fovea can be spared. In other cases, there is growth of
new vessels from the choroid through Bruch’s membrane
into the subretinal space, local oedema, and leakage
(choroidal neovascularisation (CNV)). At this stage there is
metamorphopsia, considerable reduction in acuity and
obvious retinal damage. At such a stage the condition is
often termed age related macular degeneration.

Cytokines in age related maculopathy
In development, and during adult life, the RPE controls the
vascularity of the choroids.1 There is a normal strong
polarisation of the secretion of VEGF basolaterally,84 and this
paracrine relation with the choriocapillaris1 is disturbed by
changes associated with ageing.81 In ageing, Bruch’s mem-
brane thickens and becomes lipid laden,82 decreasing
hydraulic conductivity and aqueous diffusion to the choroid.1

Even in the earliest stages of ARM, there may be retinal and
RPE hypoxia because of the high metabolic requirements of
the retina. Any diminution of VEGF secretion into the
choroid will cause choriocapillaris atrophy, which indeed is
observed in aged human eyes (reviewed by Witmer et al1),
and reduce the oxygen supply to the adjacent RPE and retina.
Thus ageing changes may enter a vicious circle, with
alteration in RPE function eventually leading to further
relative atrophy of choriocapillaris, the deposition of basal
deposits, the relative impermeability of Bruch’s membrane,
and documented loss of rod and blue cone function. At this
clinical stage considerable retinal and RPE hypoxia upregu-
lates VEGF, but transfer to the choriocapillaris is so reduced
that a higher critical concentration may develop in the outer
retina, or proximal to Bruch’s membrane, triggering chor-
oidal neovascularisation.84–87 Alternatively, the anoxia can
cause death of RPE and retina in geographic atrophy.
Although many factors contribute to this sequence of
change,86 critical participants are (i) abnormally metabolised
material shed from the rods (responsible for the barrier to
fluid transfer), and (ii) the extreme metabolic demands of
rods (contributing heavily to anoxia and VEGF upregula-
tion). This suggests that were rods to be absent the changes
associated with ARM would develop more slowly.

Effects of lasering and panretinal photocoagulation
on ARM
A small number of scattered laser burns in ARM reduces
drusen, and can stabilise retinal function.77 88–96 The Choroidal
Neovascularisation Prevention Trial (CNPT)96 also deter-
mined this, but the immediate high incidence of neovascu-
larisation following their protocol led to termination of
patient recruitment. However, after 5 years, the patients’
vision was not worse than controls, so that some retardation
in development of ARMD must have occurred. The longest
small trial shows that the production of ‘‘wet’’ ARMD is
reduced 8 years after lasering. The mechanism whereby such
light lasering removes drusen (at least temporarily), and
apparently arrests the progress of retinal degeneration is not
fully established. However, there is evidence that many more
retinal burns, applied to people with much milder ARM, can
have beneficial outcome. In people with type 2 diabetes ARM

occurs at a similar frequency to normal controls.97 However,
after panretinal photocoagulation (PRP) there is a marked
reduction in the prevalence of wet and dry ARMD98 and there
is much anecdotal evidence to the same effect. All this
suggests that an important factor in the development of ARM
may be a relative anoxia in the outer part of the retina/RPE
complex. The reported increase in cytokine formation84 87 is of
course consistent with a local relative anoxia. The success of
two differing anti-VEGF therapies99 100 in improving vision
and fundus appearances in patients with ARMD also
indicates the importance of this cytokine in the development
of the disease, and provides further indications of the
importance of relative anoxia. Anoxia would necessarily be
worse during periods of dark adaptation and, as in DR, it is
possible that the condition would progress more slowly if
such periods were avoided.
In summary, we propose that the huge numbers of

peripheral rods are major driving factors in hypoxic retino-
pathies, and propose light adaptation during sleep, or early
prophylactic inactivation or laser culling as a therapy.
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