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The 6.2-kbp DNA fragment encoding the enzymes in the porphyrin synthesis pathway of a cellulolytic
anaerobe, Clostridium josui, was cloned into Escherichia coli and sequenced. This fragment contained four hem
genes, hemA, hemC, hemD, and hemB, in order, which were homologous to the corresponding genes from E. coli
and Bacillus subtilis. A typical promoter sequence was found only upstream of hemA, suggesting that these four
genes were under the control of this promoter as an operon. The hemA and hemD genes cloned from C. josui
were able to complement the hemA and hemD mutations, respectively, of E. coli. The COOH-terminal region of
C. josui HemA and the NH2-terminal region of C. josui HemD were homologous to E. coli CysG (Met-1 to
Leu-151) and to E. coli CysG (Asp-213 to Phe-454) and Pseudomonas denitrificans CobA, respectively. Further-
more, the cloned 6.2-kbp DNA fragment complemented E. coli cysG mutants. These results suggested that both
C. josui hemA and hemD encode bifunctional enzymes.

Metal-chelating tetrapyrrole derivatives are contained in
several essential components of most organisms, such as respi-
ratory chain complexes, light-harvesting complexes, catalases,
and peroxidases, and their biosynthesis routes have been stud-
ied in many organisms (3, 17, 24, 34, 47).
Recently, the genes involved in tetrapyrrole biosynthesis

have been cloned by using Escherichia coli auxotrophs requir-

ing some intermediates such as 5-aminolevulinic acid (ALA)
and hemin for porphyrin synthesis from facultatively anaerobic
bacteria such as E. coli (10, 11, 19, 23, 41, 50) and Salmonella
typhimurium (12, 13) and from strict aerobes such as Bacillus
subtilis (20, 36). Nothing is known, however, about the genes
involved in porphyrin biosynthesis from strictly anaerobic bac-
teria. We have attempted to isolate interesting clones by a

simple means: exposing E. coli transformants to long-wave UV
light. Since porphyrins are excited by light of approximately
400 nm to exhibit pink fluorescence, organisms which overpro-
duce porphyrins exhibit such fluorescence.
In this paper, we describe the cloning and nucleotide se-

FIG. 1. Fluorescence of the transformants harboring pOR1 (1) and pBR322 (2). After overnight cultivation on an LB-ampicillin plate, cells were exposed to visible
light (A) and UV light (B).
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quence of the gene cluster responsible for porphyrin biosyn-
thesis in a cellulolytic anaerobe, Clostridium josui (14, 15, 49).
C. josui FERM P-9684 (49), isolated from compost in Thai-

land, was cultivated in GS medium (16) with cellobiose as the

sole carbon source, and its chromosomal DNA was isolated by
the method of Saito and Miura (38). C. josui DNA was par-
tially digested with Sau3AI, and 4- to 10-kbp fragments were
fractionated by agarose gel electrophoresis. The C. josui gene
bank was constructed by ligating the Sau3AI fragments with
the vector pBR322 (39), which had been digested with BamHI
and dephosphorylated with bacterial alkaline phosphatase by
using T4 DNA ligase. E. coli HB101 (39) was transformed with
the chimera plasmids, plated onto Luria-Bertani (LB) agar
medium containing ampicillin (100 mg/ml), and kept at 378C
overnight. One transformant fluorescing pink on UV irradia-
tion at 375 nm was isolated (Fig. 1). It harbored a plasmid
designated pOR1 with the 6.2-kbp Sau3AI fragment of C. josui
at the BamHI site in pBR322. The restriction map of the
cloned fragment is shown in Fig. 2. Subcloning was performed
with E. coli JM103 (58) and XL1-Blue (Stratagene, La Jolla,
Calif.) as hosts and plasmids pUC118 and pUC119 as vectors.
In Southern hybridization analysis, the 4.6-kbp XbaI-DraI frag-
ment hybridized with the XbaI-and-DraI digest of chromo-
somal DNA of C. josui at the position corresponding to kbp 4.6
(data not shown), indicating that the cloned fragment origi-
nated from C. josui chromosomal DNA without any rearrange-
ment.

FIG. 2. Physical map of pOR1. Shaded and open bars show the cloned
fragment. The shaded region was sequenced on both strands. Open arrows
(ORF1 to ORF5) show the localization of each gene and the orientation of
coding sequences. The regions encoding ORF1 and ORF5 are shown as rectan-
gles with ragged left and right sides, respectively. The genes encoding homolo-
gous enzymes are indicated in parentheses. The symbol between ORF1 and
ORF2 indicates the presence of a palindromic structure. pOR101 carries a
2.3-kbp PstI-PstI fragment at the PstI site in pUC119. pOR105 carries a 3.4-kbp
XbaI-PstI fragment at the XbaI-PstI site in pUC118. Arrows indicate the direc-
tion of lacZ9 transcription. B, BamHI; D, DraI; E, EcoRI; Ev, EcoRV; H,
HindIII; P, PstI; Sa, Sau3AI; Sl, SalI; X, XbaI.

FIG. 3. Nucleotide and deduced amino acid sequences of the 6.0-kbp fragment of the C. josui chromosome. The underlined nucleotide sequences marked 235 and
210 refer to the sites for recognition and binding of RNA polymerase. SD indicates a possible ribosome-binding site. The stop codons are indicated by three asterisks.
Palindromic sequences between ORF1 and ORF2 are shown by horizontal arrows.
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The DNA sequence of the 6.0-kbp Sau3AI-PstI fragment of
pOR1 from C. josui was determined by the dideoxy-chain ter-
mination method (40) by using single-stranded DNA templates
and a Sequenase DNA sequencing kit (United States Bio-
chemical Co., Cleveland, Ohio) according to the supplier’s
protocol (Fig. 3). The deletion-bearing plasmids for DNA se-
quencing determination were constructed by exonuclease III
and mung bean nuclease digestion as described by Henikoff
(22), with some modifications, and single-stranded DNAs were
prepared by infecting E. coli MV1184 harboring pUC118 or
pUC119 derivatives with M13KO7 (53). Sequence data were
analyzed by using the program GENETYX-MAC, version 5.0
(Software Development Co., Ltd., Tokyo, Japan).
As a result, five open reading frames (ORFs) (ORF1 to

ORF5) were found in the 6.0-kbp fragment (Fig. 3). ORF1
(Fig. 2 and 3), encoding 389 amino acid residues, was incom-
plete, i.e., the initiation codon was not contained in this frag-
ment. Immediately downstream of ORF1, two palindromic
structures, which were followed by a putative promoter se-
quence and four ORFs (ORF2 to ORF5) of 1,545, 885, 1,512,
and 616 bp, were detected. ORF5, the last ORF, did not
contain any stop codon (Fig. 2 and 3) in the 6.0-kb fragment,
indicating that ORF5 was also incomplete. Each ORF was
preceded by a typical ribosome-binding site upstream of its
ATG initiation codon. Only one putative promoter sequence,

1308TGGGCA1313 as the 235 region (consensus for E. coli,
TTGACA) and 1331TATAAT1336 as the 210 region (consen-
sus for E. coli, TATAAT), was found with the consensus dis-
tance of 17 bp upstream of ORF2, and no other promoter
sequence was identified in the nucleotide sequence, suggesting
that ORF2 to ORF5 are transcribed from this promoter in a
polycistronic mRNA, i.e., the genes form an operon.
Amino acid sequences deduced from ORF2, ORF3, ORF4,

and ORF5 were homologous to those of HemA, HemC,
HemD, and HemB, respectively, of E. coli and B. subtilis, as
described below (Fig. 2).
The NH2-terminal region of the ORF2 protein (Leu-20 to

Trp-343) was highly homologous to HemA proteins of B. sub-
tilis (identity, 29%) (36), E. coli (33%) (10, 29, 52), and S.
typhimurium (31%) (12) (Fig. 4A), which synthesize ALA via
the C5 pathway, but not homologous to HemA proteins of
Rhizobium meliloti (27), Agrobacterium radiobacter (9), Brady-
rhizobium japonicum (32), Saccharomyces cerevisiae (51),
chickens (7), rats (48), mice (43), and humans (4), which syn-
thesize ALA via the C4 pathway. The plasmid pOR105 (Fig. 2),
containing ORF2, complemented E. coli hemA mutants
AN344 (provided by Y. Murooka) and SASX41B (provided by
B. Bachmann; CGSC4806). These results indicate that ORF2
encodes HemA protein, NAD(P)H-dependent glutamyl-tRNA
reductase (20), which is involved in ALA synthesis via the C5

FIG. 3—Continued.

VOL. 177, 1995 NOTES 5171



pathway. ORF2 was termed hemA. In addition to having sim-
ilarity with other HemA proteins, C. josuiHemA had similarity
(23%) in its COOH-terminal region (Asp-361 to Asp-515) with
the NH2-terminal region of CysG protein of E. coli (35, 55, 56)
(Fig. 4B). Recently, M. J. Warren et al. have reported that the
NH2 terminus of E. coli CysG was involved in the dehydroge-
nation of dihydrosirohydrochlorin (precorrin-2) and ferroche-
lation, which convert precorrin-2 into siroheme (54). The
NADP1-binding site (21, 45) identified as Asp-14 to Asn-41 in
E. coli CysG (54) was conserved in C. josui HemA as Lys-377
to Val-404 (Fig. 4B). These results suggest that the hemA gene
of C. josui is responsible for two different steps in porphyrin
biosynthesis, i.e., the synthesis of ALA from glutamate and
siroheme from precorrin-2.
The amino acid sequence predicted from ORF3 displayed a

high degree of homology with sequences of porphobilinogen
deaminases (PBG-Ds) (hydroxymethylbilane synthase [HMB-
S]; EC 4.3.1.8) which are encoded by the hemC genes of B.
subtilis (36), E. coli (1, 50), humans (37), S. cerevisiae (25), and
Euglena gracilis (46) (Fig. 5). An extract from E. coli
BL21(DE3) cells (Novagen, Madison, Wis.) harboring pER1
(constructed by inserting PCR products containing the hemC
region into pET-16b vector purchased from Novagen) had

PBG-D activity (data not shown). These results indicate that
ORF3 corresponds to the hemC gene. The cysteine residue in
the dipyrromethane cofactor-binding site which was identified
as Cys-242 in E. coli PBG-D (44) was conserved in C. josui
HemC as Cys-237 and is present in all other PBG-Ds reported
so far (Fig. 5). One Asp and six Arg residues which were
identified as catalytic sites for tetrapyrrole synthesis in PBG-D
from E. coli (30) are conserved in C. josui HemC as Asp-86,
Arg-13, Arg-128, Arg-129, Arg-146, Arg-152, and Arg-173 and
are also conserved in the other PBG-Ds (Fig. 5).
ORF4 encodes a polypeptide of 504 amino acids, and its

COOH-terminal region downstream of Met-247 revealed 24%
identity with the HemD protein, uroporphyrinogen III (UroIII)
synthase (EC 4.2.1.75), from B. subtilis (20) (Fig. 6A). pOR101
(Fig. 2) complemented E. coli hemD mutant SASZ31 (provid-
ed by B. Bachmann; CGSC7153). On the basis of these results,
ORF4 was identified as hemD. The NH2-terminal region
(Met-1 to Phe-246) of C. josui HemD revealed 49 and 39%
identities with the COOH-terminal region (Asp-213 to Phe-
454) of the E. coli CysG protein (35, 55, 56) and with the whole
of the Pseudomonas denitrificans CobA protein (8) (Fig. 6B),
respectively. Both proteins are S-adenosylmethionine-depen-
dent UroIII methylases. Therefore, HemD of C. josui might
catalyze sequential reactions to synthesize UroIII from HMB
and then precorrin-2, which are intermediate compounds in
both vitamin B12 and siroheme biosyntheses.

FIG. 4. Homology analysis of the predicted amino acid sequence from ORF2
(hemA) from C. josui. (A) Alignment of the predicted amino acid sequences in
the NH2-terminal region in HemA of C. josui (C.j) and NAD(P)H-dependent
glutamyl-tRNA reductases (HemA) of B. subtilis (B.s), E. coli (E.c), and S.
typhimurium (S.t). (B) Alignment of the predicted amino acid sequences in the
COOH-terminal region in HemA of C. josui (C.j) and in the NH2-terminal
region of CysG of E. coli (E.c). The putative NADP1-binding site is underlined.
Shaded residues represent amino acids which are identical to those in C. josui
HemA.

FIG. 5. Alignment of the predicted amino acid sequence from ORF3 (hemC)
of C. josui (C.j) and the amino acid sequences of PBG-Ds (HMB-S) (HemC) of
B. subtilis (B.s), E. coli (E.c), humans (Hum), S. cerevisiae (Yea), and E. gracilis
(E.g). Shaded residues represent amino acids which are identical to those in C.
josui HemC. Conserved amino acids which are candidates for the catalytic sites
discussed in a previous paper (30) are marked by asterisks.
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The NH2-terminal region of the amino acid sequence pre-
dicted from ORF5 (205 residues) showed a high degree of
similarity with PBG synthases (ALA dehydratase) (EC
4.2.1.24) of B. subtilis (20), E. coli (11, 28), S. cerevisiae (31),
humans (57), and rats (6) (Fig. 7), whereas the 6.0-kbp frag-
ment sequenced in this study did not contain the region en-
coding the COOH-terminal moiety. The amino acid sequence
of C. josui HemB contained a short motif (Cys-117 to Cys-127)
similar to a zinc-binding domain, including two cysteines and
two histidines in a zinc finger (5, 26), and this motif was highly
conserved in all PBG synthases (Fig. 7). This incomplete gene,
however, was not sufficient for complementing E. coli hemB
mutant RP523 (provided by B. Bachmann; CGSC7199), prob-
ably because of the defectiveness of the C. josui hemB gene.
The arrangement of the gene cluster responsible for porphy-

rin biosynthesis in C. josui (Fig. 2 and 8) was similar to that of
the gene cluster in B. subtilis, although a gene corresponding to
hemX was not found between hemA and hemC. Homology
analysis of HemAs suggested that in C. josui, ALA was possibly
synthesized via the C5 pathway, which was also found to be the
case in Clostridium thermoaceticum (33). Therefore, some clos-
tridia seem to use the C5 pathway for ALA synthesis. The
hemL gene, encoding glutamate-1-semialdehyde-2,1-amino-
transferase (EC 5.4.3.8), which is involved in ALA synthesis via
the C5 pathway, was not included in the fragment cloned from
C. josui in this study, although the hemL genes of several
organisms, such as S. typhimurium, E. coli, B. subtilis, and
plants, have been cloned and sequenced (13, 18, 19, 20). Since
the hemL gene is located downstream of the hemB gene in B.

subtilis, the hemL gene of C. josuimight also occur downstream
of hemB (ORF5).
In addition, HemA and HemD might be involved in the

biosynthesis of vitamin B12 or siroheme (Fig. 8). We examined
the vitamin B12 productivity of C. josui by performing a micro-
biological assay with vitamin B12 auxotrophic E. coli 215 (42)
according to the method of the Association of Official Analyt-
ical Chemists (2). When C. josui was cultivated at 458C for 4
days in 20 ml of GS medium (16) containing biotin (0.2 mg/
liter), p-aminobenzoic acid (0.4 mg/liter), and CoCl2 z 6H2O
(20 mg/liter) instead of yeast extract, it accumulated 30 ng of
CN-vitamin B12 in total. Furthermore, pOR1 (Fig. 2) was able
to complement E. coli cysG mutants AT718 and AT2455 (pro-
vided by A. Nishimura; ME5358 and ME5461). Homology
analysis and complementation experiments indicated that the
HemA and HemD proteins of C. josui each contained two
putative catalytic domains with different functions and there-
fore may be bifunctional enzymes (Fig. 2, 4, and 6).
Our results showed that these genes responsible for porphy-

rin synthesis were arranged in a more compact organization in
C. josui than in the other bacteria and suggested that the gene
cluster might be involved in the synthesis of vitamin B12 and
siroheme. To our knowledge, this is the first report describing
the genes responsible for porphyrin biosynthesis from a strictly
anaerobic bacterium.
Nucleotide sequence accession number. The nucleotide se-

quence data reported in this paper will appear in the GSDB,

FIG. 6. Homology analysis of the predicted amino acid sequence from ORF4
(hemD) from C. josui. (A) Alignment of the predicted amino acid sequences in
the COOH-terminal region in HemD of C. josui (C.j) and UroIII synthase
(HemD) of B. subtilis (B.s). (B) Alignment of the predicted amino acid se-
quences in the NH2-terminal region in HemD of C. josui (C.j) and S-adenosyl-
methionine-dependent UroIII methylases (CysG and CobA) of E. coli (E.c) and
P. denitrificans (P.d). Shaded residues represent amino acids which are identical
to those in C. josui HemD.

FIG. 7. Alignment of the predicted amino acid sequence from ORF5 (hemB)
of C. josui (C.j) and amino acid sequences of PBG synthases (ALA dehydratase)
(HemB) of B. subtilis (B.s), E. coli (E.c), S. cerevisiae (Yea), humans (Hum), and
rats (Rat). Shaded residues represent amino acids which are identical to those in
C. josui HemB. A short motif similar to a zinc-binding domain is underlined.
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DDBJ, EMBL, and NCBI nucleotide sequence databases with
the accession number D28503.
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