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Abstract
Gene delivery is one of the biggest challenges in the field of gene therapy. It involves the efficient
transfer of transgenes into somatic cells for therapeutic purposes. A few major drawbacks in gene
delivery include inefficient gene transfer and lack of sustained transgene expression. However, the
classical method of using viral vectors for gene transfer has circumvented some of these issues.
Several kinds of viruses, including retrovirus, adenovirus, adeno-associated virus, and herpes simplex
virus, have been manipulated for use in gene transfer and gene therapy applications. The transfer of
genetic material into lacrimal epithelial cells and tissues, both in vitro and in vivo, has been critical
for the study of tear secretory mechanisms and autoimmunity of the lacrimal gland. These studies
will help in the development of therapeutic interventions for autoimmune disorders such as Sjögren’s
syndrome and dry eye syndromes which are associated with lacrimal dysfunction. These studies are
also critical for future endeavors which utilize the lacrimal gland as a reservoir for the production of
therapeutic factors which can be released in tears, providing treatment for diseases of the cornea and
posterior segment. This review will discuss the developments related to gene delivery and gene
therapy in the lacrimal gland using several viral vector systems.
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1. Introduction
Gene transfer and gene therapy in principle involve the development of efficient means for
delivering gene(s) to the nuclei of somatic cells to replace a defective gene with a functionally
normal one. This approach offers the hope of cures for various genetic and autoimmune
diseases, including sickle cell disease [1], X-linked severe combined immunodeficiency
disorder [2], Sjögren’s syndrome [3], rheumatoid arthritis [4], type I diabetes [5], multiple
sclerosis [6], cystic fibrosis [7], and hemophilia [8]. Additionally, it also provides hope for
long-term therapeutic benefits in contrast to the transient relief provided by conventional drug
therapy.

One of the basic methods of gene transfer is to modify viruses into genetic shuttles which will
deliver the gene of interest into the target cells. Much progress in gene delivery and therapy
has been achieved with viral vectors due to their high transduction efficiency in cells in vivo.
Viral vector systems, including retroviruses, lentiviruses, adenoviruses, and adeno-associated
viruses, currently offer the best choice for efficient gene delivery [9,10]. The most commonly
used DNA viral vectors are adenoviruses (Ad) and adeno-associated viruses. These vectors
have been extensively used in gene therapy of the eye [11]. They have been successfully used
to mediate gene transfer for ocular neovascularization [12,13], age-related macular
degeneration [14], uveitis [15], diabetic retinopathy [16] corneal wound healing [17] and
experimental autoimmune lacrimal gland disease [18,19]. In this review, we discuss the viral
gene delivery approaches performed in the lacrimal gland to understand and modulate lacrimal
gland functions for therapeutic purposes.

2. Gene delivery by viral vectors in primary cultures of lacrimal gland tissue
Genes can also be introduced into cells to produce beneficial substances for therapeutic
purposes. The lacrimal gland is responsible for the production and regulated release of tear
proteins into ocular surface fluid. These proteins include nutrient factors which nurture the
cornea, as well as factors which protect the ocular surface from pathogens. Delivery of genes
for necessary products the lacrimal gland would chronically secrete could be a potential
therapeutic approach for patients suffering from various diseases of the eye, including,
glaucoma, dry eye, keratitis, and uveitis. Currently, these diseases require long-term
administration of therapeutic preparations in the form of topical eye drops and eye ointments.
Although this approach has the advantage in minimizing systemic side effects, the major
drawback is the short residence time of the medication on the eye and hence the need for
frequent applications which in some cases, could become a functional disability that would
affect the patient’s quality of life. Many studies on gene therapy to the eye have been reported
but the delivery and expression of foreign genes in the lacrimal gland for therapeutic purposes
has not been extensively explored. As well, gene therapy to the lacrimal gland to specifically
treat disorders of the lacrimal gland is of great interest, considering the large numbers of people
who suffer from severe dry eye syndromes including the autoimmune disease, Sjögren’s
syndrome.

Recently, Banin et al. demonstrated the first feasibility study of gene transfer ex vivo in rat
lacrimal gland tissue fragments using viral vectors [20] such as vaccinia, Ad, and herpes
simplex. The results showed that all the vectors were capable of delivering a reporter gene
(β-galactosidase or β-gal) to the lacrimal gland but with different transduction efficiencies and
tropisms. After 7 days of modified lacrimal gland fragment organ culture technique [21], β-
gal expression was observed in 77% of tissue fragments exposed to vaccinia vector, 41% of
fragments exposed to Ad and 13% of fragments exposed to herpes vectors. Upon histologic
examination, vector-specific expression patterns of reporter genes were observed. The vaccinia
vector preferentially delivered the β-gal gene to the lacrimal duct cells and acini while Ad
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vectors expressed β-gal mainly within the myoepithelial cells surrounding the lacrimal acini.
It was also noted that β-gal expression in acinar cells transduced with Ad vectors was
accompanied by degradation of these cells, possibly due to vector toxicity.

3. Ad-mediated gene therapy
3.1 Dry eye syndrome

Dry eye has been defined as “a disorder of the tear film due to tear deficiency or excessive
evaporation that causes damage to the interpalpebral ocular surface and is associated with
symptoms of discomfort” [22]. Systemic autoimmune diseases like Sjögren’s syndrome,
rheumatoid arthritis, lupus erythematosus, and thyroiditis are considered as the major initiating
factors in some kinds of dry eye disease. One of the most severe forms of dry eye is found in
patients with Sjögren’s syndrome, an inflammatory autoimmune disorder characterized by
lymphocytic infiltration and affecting approximately 4% of the population in the United States
[23]. The immune-related lacrimal insufficiency reduces the quality and quantity of tear
production below the level required to maintain a healthy and comfortable ocular surface. It is
believed that a combination of immunologic, genetic, hormonal and environmental factors play
a crucial role in the development of autoimmunity in the lacrimal gland [24,25]. The
inflammatory infiltrates produce toxic factors that act as immune mediators, resulting in
reduced secretory function caused by secretory tissue atrophy and dysfunction of the surviving
tissue [26,27]. There is evidence that these lymphocytic infiltrates produce proinflammatory
cytokines, including interleukin (IL)-1, -6, -12, and -18; interferon (IFN)-γ; and tumor necrosis
factor (TNF)-α [28–32]. However, in addition to these proinflammatory cytokines, anti-
inflammatory cytokines including IL-10, transforming growth factor (TGF)-β and IL-4 have
also been detected [33,34]. Numerous studies indicate that regulation of anti-inflammatory
cytokines (IL-10, IL- 4) or specific inhibitors of proinflammatory cytokines (sTNFR, IL-ra,
anti-TNF-α) can play an important immunoregulatory role in inhibiting a disease process
[35,36]. Among these cytokines, the local up-regulation of IL-10 and/or inhibition of TNF-α
binding to target cells have received increased attention as promising therapeutic potentials
against an immunopathological disease [37]

3.2 Autoimmune dacryoadenitis in animal models
The pathogenesis of dry eye syndrome has been difficult to fully elucidate due to the limited
availability of lacrimal gland tissue samples from patients with Sjögren’s syndrome, thereby
prompting the need for animal models of this disease. Murine models of autoimmune disease
resembling secondary Sjögren’s syndrome have been established [38,39]. An induced lacrimal
gland disease, autoimmune dacryoadenitis, has also been induced in mice and rats which to a
certain extent resembles primary Sjögren’s syndrome in humans [40]. However, compared to
studies of rodent models with induced lacrimal disease, fewer studies have been conducted on
larger animals to effectively evaluate the efficiency of ocular therapies. Keratoconjunctivitis
sicca has been studied in dogs [41] however, a spontaneous disease in dogs is challenging and
they also require expensive maintenance care. Hence a rabbit model developed in this institute
[42,43] was pursued for dry eye disease and experimental validation of therapies as an
alternative option.

Adenoviruses are the most common cause of acute viral infections of the cornea [44]. A rabbit
model was used to determine the effects of an ocular Ad virus infection on lacrimal gland
histopathology. Studies revealed that an Ad infection of the cornea resulted in increased
numbers of RTLA+ and CD18+ cells and increased expression of MHC class II molecules in
the lacrimal gland. However, Ad was not detected in the lacrimal tissue explanted 21 days after
post-inoculation and it was unclear whether the changes were caused by the inoculated virus
or through an aberrant expression of Class II histocompatibility antigens which involved T cell
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activation that led to autoimmunity in the lacrimal gland [44,45]. The possibilities suggested
by these early studies for T-cell modulation of lacrimal gland function were instrumental in
the establishment of a rabbit model for autoimmune dacryoadenitis which we have
subsequently used for studying the mechanism of Sjögren’s syndrome and for identifying and
evaluating therapeutic interventions. Autoimmune dacryoadenitis in rabbits was established
through autologous mixed cell reactions that involved incubation of purified acinar cells
prepared from one surgically excised inferior lacrimal gland and peripheral blood lymphocytes
from the same animal [44]. Disease is then induced by injecting the donor rabbit’s remaining
inferior lacrimal gland with the activated peripheral blood lymphocytes after 5 days of co-
culture with the autologous acinar cells in the mixed cell reaction. After 2 weeks, abundant
periductal foci of lymphocytes resembling the autoimmune lesions characteristic of Sjogren’s
syndrome are seen [43]. The induced adenitis is accompanied by lacrimal gland dysfunction
characterized by reduced tear production, reduced tear stability, abnormal corneal staining and
an increased presence of CD4+ cells in the gland; features that mimic the clinical manifestations
of Sjögren’s syndrome [46]. The severity of the induced disease shows no signs of abatement
and increases with time over a period of 6 months after disease induction (unpublished data).
Disease in the rabbit model has also been established through remote site injection of the
activated lymphocytes (unpublished data).

3.3 Prophylactic effect of IL-10 in vivo
IL-10 is a pleiotropic cytokine produced by Th-2 type T cells, B cells, monocytes and
macrophages and is considered an immunoregulatory cytokine because of its inhibitory effects
on the expression of a large spectrum of proinflammatory cyokines (such as chemokines, MHC-
II molecules, costimulatory molecules and other inflammatory mediators [47–49]. IL-10 was
also found to suppress antigen– stimulated proliferation of murine Th-1 cells [50,51]
suggesting that endogenous IL-10 down regulates cell-mediated immune responses in the
development of autoimmune diseases. Its effector functions include induction of a shift of T-
cell cytokine expression from a Th1 to a Th2 profile [51], and attenuation of the production of
pro-inflammatory cytokines by macrophages [52–54] and polymorphonuclear neutrophils
[55]. IL-10 has proven to be useful in several preclinical models of autoimmune diseases
[56,57], but its administration is difficult as it needs multiple injections. IL-10 gene therapy
using viral vectors stands out as an alternative method. Several reports have established that
IL-10 gene therapy inhibits autoimmune diseases [58,59]. To determine whether the expression
of the interleukin-10 gene suppressed lymphocytic proliferation in an in vitro autologous mixed
cell reaction [37], lacrimal gland acinar epithelial cells were transduced with Ad vector
encoding viral IL- 10 (vIL-10) (Fig.1). The transduction of lacrimal epithelial cells with IL-10
diminished lymphocytic proliferation in the mixed cell reaction. IL-10 product was transiently
expressed with maximal production during the first week, after which detectable amounts
declined with each successive week. Using the rabbit model of induced dacryoadenitis we
reported that Ad-mediated gene transfer and expression of viral IL-10 resulted in prophylaxis,
with diminution of lacrimal gland immunopathology and ocular surface disease [19]. The
transduced vIL-10 encoded by the Epstein-Barr virus shares 84% sequence homology with
human IL-10 and mimics several of its immunosuppressive activities. However, unlike human
IL-10, it lacks the stimulatory effects on natural killer cells and cytotoxic T cells [60,61]. Ad-
mediated IL-10 gene transfer to the lacrimal gland of rabbits with induced disease resulted in
transient expression and secretion of vIL-10 in tears for less than 2 weeks. Short-lived
Admediated vIL-10 expression has also been reported by De Kozak et al in treatment of
experimental autoimmune uveoretinitis induced in mice and rats [62]. In that study, expression
of the vIL-10 gene was associated with significantly decreased size and number of immune
infiltrates, including CD4+, CD18+, RTLA+ cells and MHC class II molecule expressing cells.
However, a significant increase in the number of CD8+ cells was observed [19]. These effects
are in agreement with published data showing that vIL-10 exerts its immunosuppressive
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properties by down-regulating the MHC class II molecule and proinflammatory cytokine
expression without stimulating cytotoxic T cells [37,46,63]. Prophylactic treatment of rabbits
with vIL-10 before injection of activated autoreactive lymphocytes protected tear production
and tear stability compared to animals with induced disease that did not receive Ad encoding
vIL-10 [19].

3.4 Prophylactic effect of TNF-α in vivo
TNF-α, an interesting targets of immunotherapy, has been reported to play an important role
in the pathogenesis of several immune mediated disorders, including rheumatoid arthritis
[64,65] and Sjögren’s syndrome [66]. It is a pleiotropic inflammatory cytokine that promotes
mononuclear cell infiltration in glands by inducing the secretion of several proinflammatory
cytokines, expression of endothelial adhesion molecules, release matrix metalloproteinases
from glandular epithelial cells, all of which promote the influx of mononuclear cells [67]. Also,
TNF-α secretion by infiltrating T cells has been associated with apoptosis of glandular
epithelial cells [68]. Since then many innovative strategies targeting TNF-α for the treatment
of autoimmune diseases have been established. Inhibition of TNF-α has been used as an
effective therapy in patients with rheumatoid arthritis and Crohn’s disease [69–71].
Neutralization of TNF-α was initially achieved using chimeric monoclonal antibodies in
patients with rheumatoid arthritis. Kolls et al. reported the construction of an Ad vector
encoding a chimeric TNF inhibitor, TNFRIp55-Ig [72]. The expression of TNFRIp55-Ig
inhibitor gene suppressed lymphocytic proliferation in an in vitro autologous mixed cell
reaction when the lacrimal epithelial cells were transduced with an Ad vector [37]. Expression
of the AdTNFRIp55-Ig gene has been reported to successfully block the effect of TNF-α in
several animal models [72–74]. The transgene product, a fusion protein formed by joining the
human 55-kDa TNF receptor extracellular domain to a mouse IgG heavy chain, binds TNF by
engaging two of its three receptor sites. Using this Ad vector we demonstrated a gene therapy
treatment of rabbit lacrimal glands with established autoimmune dacryoadenitis [18,75]. The
expression of TNFRIp55-Ig resulted in improvement of clinical features, which included
increased basal tear production, increased tear stability and a reduction of corneal surface
defects. These results suggest that the TNF inhibition altered the spectrum of cytokines in the
local infiltrates to one that did not impair tear secretion. The therapeutic effect also reduced
the intensity of immune cell infiltration in the gland (Fig.2).

4. Ad-mediated gene transfer: In the study of lacrimal gland physiology
Since the initial reports of Ad-mediated expression of β-gal in lacrimal gland, we and others
have subsequently optimized Ad-mediated gene transfer into lacrimal acini in primary culture,
reaching a transduction efficiency of 80–90% in many cases with a relatively low multiplicity
of infection (1–5). This achievement has been invaluable in the exploration of the function of
different effectors in the lacrimal gland, suggesting that aspects of adenoviral uptake are
unusually efficient in lacrimal acinar cells. Highlights from such studies are described below.

4.1 Androgen responses in primary cultures of lacrimal epithelial cells
Sjögren’s syndrome is most prevalent in women, with a gender ratio of 9:1. This huge gender
difference may be partially attributable to the role that androgen-regulated transcription plays
in lacrimal gland physiology [76–78]. Furthermore, androgens have been shown to suppress
the inflammation in lacrimal glands of mouse models of Sjögren’s syndrome [79]. Studies also
demonstrated the expression of various endogenous proteins including secretory component
(SC), cystatin-related protein 1 and the C3 component of the prostatic binding protein in the
primary lacrimal gland epithelial cell cultures were androgen responsive in male rats [80–
82]. Vanaken et al. demonstrated androgen regulation in primary cultures of rat lacrimal gland
through the use of recombinant adenoviral vectors [83]. The rat lacrimal gland primary cultures

Selvam et al. Page 5

Adv Drug Deliv Rev. Author manuscript; available in PMC 2007 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



under androgen control were used as a homologous test system for tissue-specific transcription
studies. By the use of two recombinant adenoviral vectors containing genomic fragments of
the SC gene, they demonstrated the functionality of the sc promoter as well as its androgen
regulation in this culture system.

4.2 Role of cytoplasmic dynein in apical secretory traffic in lacrimal acini
Conventional cytoplasmic dynein is a large multisubunit complex of ~1400 kDa consisting of
two heavy chains and several intermediate and light chains [84]. The dynein heavy chains
contains sites for MT binding and ATP hydrolysis, and is responsible for generation of
mechanochemical force. Directed transport of vesicles by dynein requires a multiprotein
complex called the dynactin complex [85]. Ad vectors with dynamitin constructs (Ad-Dynt)
were used to study the participation of dynein-driven vesicle transport in stimulated secretory
traffic to the apical membrane in lacrimal acini [86]. It was revealed that a cholinegeric agonist,
carbachol, induced microtubule-dependent recruitment of cytoplasmic dyein and the dynactin
complex into the subapical region and was inhibited by Admediated overexpression of
dynamitin, suggesting that dynein activity drives this recruitment. Overexpression of
dynamitin depletes subapical stores of rab3D, a member of the rab family of small GTP binding
proteins that participate in membrane trafficking in eukaryotic cells, in resting acini, suggesting
that dynein may also maintain this secretory vesicle population at the apical membrane. These
data implicate cytoplasmic dynein in stimulated traffic to the apical plasma membrane in these
secretory epithelial cells [86].

4.3 Role of PKC-α and PKC-ε on apical exocytosis of lacrimal acini
Protein kinase C (PKC) plays a major role in cholinergic and α1-adrenergic-stimulated lacrimal
gland protein secretion [87]. However, as PKC is a family of at least 10 different isozymes, its
role is somewhat complicated. The lacrimal gland contains at least four PKC isoforms, -α, -δ,
-ε, and –λ [88]. Using adenoviral-mediated expression of PKC effectors and/or modified forms
of these proteins, the major roles of PKC-α and PKC-ε on the apical exocytosis of lacrimal
acini have been elucidated [89,90]. Hodges et al. demonstrated that PKC-α can be
overexpressed using an adenoviral vector carrying the myristoylated PKC-α α constructs (myr-
PKC α) in rat lacrimal gland acini [89]. Results showed that the overexpression of a
constitutively active form of PKC-α increased basal protein secretion without altering Ca2+

handling in the lacrimal gland. The increase was dependent on the concentration of Ad used
and therefore the amount of PKC-α expressed, implying that secretion can be stimulated by
circumventing the release of neurotransmitters and instead through the activation of their
receptors.

PKC-ε was first identified in association with actin as an effector of exocytosis in hippocampal
neurons [91]. PKC-ε is known to influence cell adhesion and motility as it is associated with
actin cytoskeleton reorganization [92–94]. However, little is known about the contribution of
PKC-ε in regulation of actin filament remodeling in acinar exocytosis in epithelial cells. To
investigate the involvement of apical actin remodeling in carbachol-stimulated exocytosis in
reconstituted rabbit lacrimal acinar cells, Ad vectors with a dominant-negative (DN) PKC-ε
constructs were used [90]. It was found that carbachol-stimulation increases PKC-ε association
with apical actin filaments and actin-coated structures in lacrimal acini. To inhibit PKC-ε
activity and probe its functional role in exocytosis, lacrimal acini were transduced at high
efficiency with Ad vectors carrying the DN-PKC-ε constructs. Overexpression of PKC- ε
resulted in profound changes in apical and basolateral actin filament organization in parallel
with inhibition of the carbachol-stimulated secretion of protein and β- hexosaminidase. These
data confirm the role of PKC-ε as an actin-binding protein recruited transiently to apical actin
filaments and actin-coated structures, possibly, representing fusion intermediates, in carbachol-
stimulated lacrimal acini. It was further established that its inhibition, through overexpression
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of DN-PKC-ε, stabilized actin-coated structures and correspondingly inhibited stimulated
exocytosis of secretory products at the apical plasma membrane.

4.4 Role of actin and non-muscle myosin II in apical exocytosis of tear proteins
Green fluorescent protein (GFP)-actin has been used to measure the dynamics of actin in live
cells [95–98]. Ad vectors encoding GFP-actin have been utilized to label the actin filament of
lacrimal acini to obtain qualitative and quantitative measures of its dynamics [99]. The GFP-
labeled apical actin filament array in lacrimal acini showed rapid carbachol-induced
remodeling of the sub-apical actin network. Also, additional functional and morphological
analyses of lacrimal acini exposed to the general myosin ATPase inhibitor, 2,3-butanedione
monoxime and the more selective myosin light chain kinase inhibitor, demonstrated that the
filamentous actin array beneath the apical plasma membrane of stimulated lacrimal acini
participates actively in exocytosis, in conjunction with nonmuscle myosin II.

5. Ad-mediated gene transfer: Modulation of secretory functions by Adv
capsids in lacrimal epithelia

Although replication-deficient Ad vectors are leading candidates for gene therapy, there is a
paucity of data on the cellular effects associated with Ad binding, internalization and trafficking
to the nucleus, particularly in epithelial cells that represent normal targets for Ad infection. To
study these effects, lacrimal gland acinar cells were exposed to replication-defective Ad
serotype 5 (Ad5) containing a reporter gene (green fluorescent protein (GFP) or β-galactosidase
(LacZ) or UV-inactivated Ad virus in vitro [100]. The organization and function of the lacrimal
acinar secretory pathway in the reconstituted acinus-like structures were investigated.
Exposure of lacrimal acini to replication-defective Ad constructs at high transduction
efficiency (>80%) with a multiplicity of infection (MOI) of 5 for 16–18 h elicited a marked
dispersal of rab3D, from its normally apical enrichment, a change independent of altered rab3D
expression or membrane association. Rab3D is associated with the large pool of mature
secretory vesicles beneath the apical plasma membrane in lacrimal gland as well as pancreas
and parotid gland [86,101,102]. The dispersal of apical rab3D occurred independently of
effects on the cytoskeleton or other membrane compartments or decreased protein synthesis.
Stimulation of the Ad-transduced cells with carbachol resulted in a significant decrease in the
release of protein and the secretory product, β-hexosaminidase. Furthermore, exposure of
lacrimal acini to UV-inactivated Ad also depleted rab3D-enriched secretory vesicles in parallel
with the inhibition of carbachol-stimulated release of protein and β-hexosaminidase, though
the extent of the dispersal and inhibition, respectively, by UV-inactivated virus was slightly
less than that caused by mock UV-inactivated Ad. However, the effects on acinar secretory
functions were directly related to the duration of exposure to the Ad capsid, as lacrimal acini
exposed to Ad constructs for a period of 4 h at MOI of 5 and ~80% transduction efficiency
caused a 50% reduction in apical rab3D labeling.

Viral capsid proteins, exterior proteins associated with the protein-rich coat around the viral
core, have been utilized for second- and third- generation gene delivery systems [103–106].
These systems have eliminated the presence of a complete viral vector particle but depend on
the use of viral capsid proteins to interact with the host factors to facilitate entry of associated
DNA. To determine the cellular effects of capsid proteins on lacrimal acinar cells, isolated Ad
penton protein and knob protein, the region of the fiber protein known to interact with the
cellular receptor, CAR, in the absence of the rest of the virus were investigated [107]. These
proteins which have been used in non-viral gene transfer technique to enhance gene transfer
to HeLa and 293 cells reflect the established infection pathway of Ad vectors [105]. It was
found that treatment of lacrimal acini with recombinant Ad penton protein resulted in an almost
complete loss of rab3D-enriched secretory vesicles [107]. The process occurs in parallel with
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an uncoupling of the stimulated secretory response, resulting in significantly increased basal
protein release and significantly decreased carbachol-stimulated protein release. Knob protein
treatment did not elicit significant change in the basal and carbachol-stimulated release of bulk
protein. Additionally, penton protein caused additional cytoskeletal changes over and above
the effects elicited by Ad alone including loss of the abundant apical actin network and
bundling/disorganization of microtubules. However, knob protein was not found to elicit
detectable microtubule organization. These results suggest that the penton protein, and not
knob/fiber, is responsible for the deleterious changes in lacrimal gland function associated with
chronic Ad exposure and that knob/fiber are better choices potentially for non-viral gene
delivery into lacrimal acini.

6. Retroviral-mediated gene transfer: Immortalization of rabbit lacrimal gland
epithelial cells

Immortalized cell lines have been extensively used in basic research as they offer the possibility
of an inexhaustible supply of cells. Immortalized cell lines possessing morphological
characteristics and physiological functions similar to that of primary cells can serve as models
of animal and human tissues. Many different types of immortalized cell lines have been
established over the past few years through various methods and some of them have even been
successfully substituted for primary cells in many bioartificial organ systems [108–111]. An
immortalized lacrimal epithelial cell line will be of great value to study the intracellular
signaling pathways and lacrimal gland-associated gene expression studies. Also, a successful
immortalized lacrimal epithelial cell line could serve as a cellular component for the proposed
bioartificial lacrimal gland device which we are attempting to create in our laboratory [112].

Earlier attempts to culture and propagate primary lacrimal gland cells for extended periods of
time have met with limited success [113–115]. Nguyen et al. were the first to establish an
immortalized lacrimal epithelial cell line in a rabbit model using an immortalizing amphotropic
retroviral vector containing the E6 and E7 genes of the human papillomavirus by injecting the
retroviral vector into the orbital lacrimal glands of normal New Zealand White rabbits [116].
Two days after injection, cells were isolated from the lacrimal glands and were plated onto
Matrigel®-coated culture plates. The cultured cells flattened out and grew in a monolayer
typical of epithelial cells with a cobblestone appearance and this morphology was retained
even at higher passages (p36-58). Ultrastructurally, the immortalized cells showed numerous
interdigitating villi in the intercellular spaces and components of the cytoplasm such as
intermediate filaments were observed. They retained many characteristics of primary lacrimal
gland epithelial cells, including production and secretory granules and pharmacological
responses to stimulation with carbachol. The cells were also characterized by immunoreactivity
and positive staining was attained for the transferrin receptor and transferrin. Another
immortalized rabbit lacrimal epithelial cell line using the simian virus 40 T antigen (SV40)
was also established. However, the morphological and physiological characteristics of this cell
line have not been reported directly [117].

Studies have shown that generation of cell lines immortalized by the introduction of viral
oncoproteins alone tend to lose the normal phenotype of primary cells over extended periods
of time. Hence, the reliability of cell lines generated through ‘viral transformation’ is
questionable. However, different types of human cells have been efficiently transduced,
expanded and characterized through the expression of human telomerase reverse transcriptase
(hTERT) [118–122]. Cells immortalized through this technique, maintain a stable genotype
and retain critical phenotypic markers. Although, the expression of TERT might be species
specific, Thomas et al. reported the first use of hTERT expression in experimental
xenotransplantation using bovine adrenal cells immortalized by transducing plasmids encoded
for hTERT and SV40 T antigen [123]. The immortalized cells transplanted into severe
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combined immunodeficient (SCID) mice also formed functional tissue when replaced for the
animals’ own adrenal glands. However, no immortalized lacrimal epithelial cell line using
hTERT has been reported so far.

7. Conclusions and future directions
Recombinant adenoviral vectors have been extensively evaluated in the lacrimal gland and are
found to be the most efficient gene transfer technique available to transduce lacrimal epithelial
cells [20,46,83,86]. However, one major drawback in using adenoviral vectors is that they
provide an unstable transgene expression because they rarely integrate into the transduced
cell’s genome while vectors such as AAV provide prolonged transgene expression [124].
However, the limited capacity for gene delivery with respect to insert size severely limits the
utility of AAV vectors. Also of concern is the demonstration of altered secretory functions
associated with chronic exposure of the Ad penton protein. Retroviral vectors have been
extensively used for their high efficacy; however, they do not have the ability to transduce non-
dividing cells, a major limitation that has restricted their clinical use to gene therapy involving
haematopoietic cells, rapidly dividing tumor cells, or ex vivo gene therapy of cells that can be
propagated in cell culture [125]. Lentiviral vectors possess the ability to transduce non-dividing
cells; however, safety concerns and the non-specific integration in the host cell’s chromosome
mitigate the usefulness of these vectors for gene delivery.

Although high transduction efficiency and a sustained transgene expression present clear
advantages of a viral gene delivery system, the strong immune response that these vectors elicit
may pose a safety threat to the patient and to the immediate surrounding environment [126,
127]. As immunogenicity arises from the viral capsid proteins that mediate gene delivery,
engineering viral capsid proteins with altered ability to evoke immunity but with the same
ability to manipulate cellular uptake would be necessary to overcome these issues. Also, the
biological processes that underlie the cellular uptake and intracellular processing mechanisms
need to be better understood in the lacrimal gland in particular to promote target-cell specificity
of these vectors. Recent advances in improved vector design and vector purification have
resulted in newer generations of viral vectors [128–130]. However, an ideal viral vector for
tissue-specific transduction with regulated gene expression still remains elusive. Future
progresses in vector engineering will create the means for effective gene delivery and will
overcome the impediments to successful gene therapy.
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Figure 1.
In vitro evaluation of anti-inflammatory gene therapy. This schematic describes an in vitro
method for activating autologous lymphocytes in a mixed cell reaction and suppression of the
lymphocyte activation by gene transfer. [Ref: 37].
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Figure 2.
This schematic describes the method used to induce autoimmune dacryoadenitis and the effect
of gene therapy on the clinical symptoms and gland histopathology [Ref: 46,75,19].

Selvam et al. Page 18

Adv Drug Deliv Rev. Author manuscript; available in PMC 2007 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


