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Alcohol is a major aetiological factor in
hepatocarcinogenesis but our understanding of its
importance as a modulating factor is just beginning to
emerge. In the present review, a number of possible
cofactors and mechanisms are discussed by which
alcohol may enhance the development of hepatoma.
These include dietary or environmental carcinogens
ingested along with alcoholic beverages, alcoholic
cirrhosis as a precancerous condition, and the effects of
alcohol metabolism.
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SUMMARY
The incidence of hepatocellular carcinoma is ris-
ing worldwide. Apart from hepatitis B and C
viruses, alcohol presents a major aetiological fac-
tor in hepatocarcinogenesis, as shown in numer-
ous epidemiological studies. While the patho-
genic role of alcohol in the development of liver
cirrhosis has been investigated extensively, our
understanding of its importance as a modulating
factor in hepatocarcinogenesis is just beginning
to emerge. In the present review, a number of
possible cofactors and mechanisms are discussed
by which alcohol may enhance the development
of hepatoma. These include dietary or environ-
mental carcinogens ingested along with alcoholic
beverages, alcoholic cirrhosis as a precancerous
condition, and the effects of alcohol metabolism
such as the toxicity of its metabolite acetalde-
hyde, increased lipid peroxidation due to reactive
oxygen species, activation of procarcinogens via
induction of cytochrome P450 2E1, and polymor-
phisms of alcohol dehydrogenase. Furthermore,
alterations of DNA methylation through interac-
tions with one carbon metabolism can lead to
aberrant methylation of tumour suppressor
genes and oncogenes. Alcohol metabolism also
reduces hepatic retinoic acid levels and may
thereby enhance cell proliferation and malignant
transformation via upregulation of activator pro-
tein 1 gene expression. Synergistic effects be-
tween alcohol and hepatitis B and especially C
virus have been demonstrated, although the
mechanisms remain unclear. Alcohol leads to
malfunction of the immune system, and suppres-
sion of natural killer cells by alcohol may favour
tumour development. Thus alcohol is commonly
considered a tumour promoter. However, evi-
dence from animal studies that showed pre-
neoplastic alterations after chronic alcohol expo-
sure indicate that alcohol may also contribute to
tumour initiation.

INTRODUCTION
Hepatocellular carcinoma (HCC) is the most
frequent primary liver tumour among the com-
monest malignant tumours today.1 Its prevalence
is increasing worldwide but differs greatly be-
tween regions, with incidences of approximately
3–4/100 000 in Western countries2–4 and up to
120/100 000 in Asia and Southern Africa. In more
than 80% of European and North American cases,
HCCs develop in cirrhotic livers whereas in Asia
near 50% of HCCs may occur in non-cirrhotic
livers.5 6 The increase in HCC is most likely due to
the more widespread chronic infection with
hepatotropic viruses, namely hepatitis B (HBV)
and especially hepatitis C (HCV). Epidemiological
studies have incriminated both viruses in hepato-
carcinogenesis, and the contributory role of alco-
hol, a major aetiological factor of liver cirrhosis in
Western countries, is undisputed.1 In the follow-
ing, we summarise the evidence and discuss
potential mechanisms of the cocarcinogenic effect
of alcohol.

EPIDEMIOLOGY
There is compelling evidence that chronic alcohol
consumption increases the risk of developing
HCC.7–9 However, the exact role of alcohol in the
development of HCC compared with chronic HBV
and HCV infection is still incompletely defined.
Numerous studies demonstrated that the inci-
dence of HCC among alcoholics is above the
expected rate.10 Thus an epidemiological survey
from the UK demonstrated an eightfold increase
in the risk of developing HCC among male
alcoholics.11 The higher rate of alcohol related
HCC worldwide may be partially explained by
prolongation of survival time of patients with
alcoholic cirrhosis due to improved disease man-
agement.

“Chronic alcohol consumption increases
the risk of developing HCC”

The effect of abstinence in the development of
HCC was discussed controversially in various
studies. It was shown that cessation of alcohol
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consumption increased the risk of developing HCC. This was
explained by alterations in cell regeneration after alcohol
withdrawal, which will be discussed below. However, a major
plausible argument is that abstinence allows recovery from
alcohol related hepatocellular damage which by prolonging
survival time may by itself increase the likelihood of develop-
ing HCC in a cirrhotic liver.

ANIMAL EXPERIMENTS
Experiments in which alcohol but no carcinogen was given
continuously to rodents have shown that alcohol per se is not
a carcinogen as even lifelong exposure to alcohol did not lead
to more cancers than in pair fed controls.8 Most animal
experiments with respect to hepatocarcinogenesis have been
performed using nitrosamines as tumour inducing com-
pounds. Unexpectedly, in almost all of these studies inhibition
of hepatocarcinogenesis together with alcohol intake was
shown.8 On the other hand, the rate of extrahepatic tumours,
such as tumours in the nasal cavity, trachea, and oesophagus,
increased. Only with additional manipulations, such as
administration of a diet low in methyl donors or
carbohydrates,12 13 or after partial hepatectomy,14 was alcohol
able to stimulate hepatocarcinogenesis. Interestingly, striking
enhancement of hepatic carcinogenesis was observed when
alcohol and the procarcinogen were given on an alternating
basis to avoid interactions between alcohol and carcinogen
metabolism. Another important determinant in animal stud-
ies of alcohol is the route of administration. If ethanol is given
with drinking water, nutrient deficiencies may occur due to
interactions with their absorption that may influence carcino-
genesis. Administration of ethanol as a liquid diet, a technique
established by Lieber and DeCarli,15 assures constant alcohol
intake and provides adequate amounts of macro and
micronutrients.

PATHOMECHANISMS
For the liver, there are multiple mechanisms by which alcohol
can accelerate cancer development. These include enzymes
and metabolites involved in ethanol metabolism, such as
cytochrome P450 2E1 (CYP 2E1) which can potentiate
carcinogens, interference with methyl transfer, modulation of
retinoid turnover, and the preconditioning associated with
concomitant infection by HBV and HCV. Importantly, cirrhosis
by itself is a precancerous condition. As no single pathomecha-
nism can be incriminated exclusively, several must act in con-
cert to induce HCC.

Alcohol, cirrhosis, and preneoplastic histology
Alcohol causes hepatocellular injury that can lead to enhanced
fibrogenesis and finally cirrhosis, the latter being per se asso-
ciated with an increased risk of developing HCC. Alcohol
related HCC without pre-existing cirrhosis is rare,10 indicating
that pathogenic events leading to cirrhosis precede those
causing cancer or that the structural alterations of cirrhosis
favour hepatocyte dedifferentiation. Although the presence of
cirrhosis can be considered the major prerequisite for the
development of HCC, various other pathogenic factors may
contribute significantly to the malignant transformation of
hepatocytes.

“Alcohol related HCC without pre-existing cirrhosis is
rare”

Some controversy exists as to whether alcohol is a tumour
inducer in hepatocarcinogenesis (fig 1). In various animal
models attempts have been made to correlate the stages of
initiation, promotion, and progression in hepatocarcinogen-
esis with specific precancerous histological features. Thus
centres of focal growth have been observed which show a

number of metabolic alterations—for example, enzyme
altered foci and preneoplastic nodules.16 Recently, such areas
of preneoplastic tissue were also produced in rats by alternate
treatment with N-nitrosodimethylamine as a cancer inducer
and alcohol, strongly suggesting that ethanol may indeed act
as a tumour promoter in hepatocarcinogenesis (fig 1).17 Inter-
estingly, Mallory body (MB) formation is high in HCC and the
incidence of HCC is significantly higher in cirrhosis with MBs
than without.18 It was therefore hypothesised that MBs may
represent an initial phenotypical alteration in the carcinogenic
transformation of hepatocytes.

Another histological abnormality observed in experimental
hepatocarcinogenesis is the occurrence of oval cells which
originate from the portal triads after long term alcohol
exposure.19 These cells do also appear after administration of a
choline deficient ethionine supplemented diet which is known
to stimulate hepatocarcinogenesis.20 Recently, the occurrence
of oval cells has also been observed in patients with chronic
alcoholic liver disease.21

Alcohol and environmental carcinogens
Alcoholics may be exposed to carcinogens or procarcinogens
ingested along with alcoholic beverages which may contain
nitrosamines, polycyclic hydrocarbons, asbestos fibres, and
fusel oils.22 In addition, many alcoholics are smokers and epi-
demiological surveys have shown a hyperadditive effect of
alcohol and smoking in increasing the risk of developing
HCC.9 Similarly, dietary carcinogens and exposure to carcino-
gens at the working place have to be taken into account (see
fig 1). With regard to the former, aflatoxin B1 (AFB1) is a major
hepatocarcinogen which is metabolised by the alcohol induc-
ible cytochrome P450 2E1 (CYP 2E1). AFB1 can induce a
mutation in codon 249 of the p53 tumour suppressor gene
which is frequently found in human HCC.23

“Many alcoholics are smokers and epidemiological
surveys have shown a hyperadditive effect of alcohol
and smoking in increasing the risk of developing HCC”

Although animal experiments have been controversial as to
whether ethanol enhances AFB1 induced hepatocarcinogen-
esis, an epidemiological study on AFB1 exposure demonstrated
that even a moderate daily consumption of 24 g ethanol
increases the risk of developing HCC induced by 4 µg of dietary
AFB1 by 35-fold.24 Vinyl chloride is also metabolised by CYP
2E1 and its exposure is associated with the development of
HCC which is again increased several fold by additional alco-
hol consumption.25

Alcohol metabolism and HCC
In the liver, ethanol is predominantly metabolised by alcohol
dehydrogenase (ADH) and CYP 2E1, resulting in acetaldehyde
(AA) formation. AA, the extremely toxic first intermediate of
ethanol metabolism, binds rapidly to cellular proteins and also
possibly to DNA. These AA adducts represent neoantigens
leading to the formation of specific antibodies.26 AA has muta-
genic and carcinogenic properties leading to metaplasia, inhi-
bition of DNA repair,27 sister chromatid exchanges,28 stimula-
tion of apoptosis, and enhanced cell injury associated with
hyperregeneration.29 According to the International Agency
for Research on Cancer, there is sufficient evidence to identify
AA as a carcinogen in animals.

Ethanol is metabolised by the successive action of ADH and
aldehyde dehydrogenase (ALDH). For both ADH and ALDH,
genetic polymorphisms have been described that influence the
rate of conversion of ethanol to AA and of the latter to
acetate.30 It has been consistently reported that ALDH2 is the
most important alcohol metabolising polymorphic enzyme
affecting predisposition to alcoholism in Asian populations.
With regard to ADH, the alleles ADH2*2 and ADH3*1 encode
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for an enzyme with a high capacity to produce AA (400 kcat/
min and 87 kcat/min).31 Therefore, higher AA levels are found
in patients revealing the alleles ALDH2*2, ADH2*2, and
ADH3*1, either via increased AA synthesis or via decreased
oxidation of AA to acetate. It has been shown that individuals
with inactive ALDH2*2 or highly active ADH2*2 are at
increased risk of alcoholic liver disease.32 While no association
between ADH2*2 and ALDH2 genes and HCC has been
found,33 preliminary data reveal a higher prevalence of
ADH3*1 in patients with alcohol related HCC than controls
(Stickel et al, unpublished data).

CYP 2E1 constitutes the microsomal ethanol oxidising sys-
tem which is inducible by higher amounts of ethanol and
other xenobiotics.34 The degree of CYP 2E1 induction can be
correlated with generation of reactive oxygen species (ROS),
in particular hydroxyethyl radicals and lipid peroxides.35

Moreover, experimental alcohol induced liver disease and CYP
2E1 can be modulated by CYP 2E1 inhibitors and
inducers.36–38 In the setting of alcoholism, additional sources of
ROS formation may be NADH dependent cytochrome C
reductase, aldehyde and xanthine oxidase, neutrophil NADPH
oxidase, and catalase. ROS initiate predominantly lipid
peroxidation but they may also react rapidly with cell
constituents, including DNA, and thereby lead to DNA
damage and cancer initiation.39

Hepatic iron plays a key role as an enhancer of ROS produc-
tion. Alcohol consumption increases iron absorption from the
gut with its consequent accumulation in the liver, which
suggests an at least additive effect of alcohol and iron in the
generation of ROS.40 Under normal conditions, these toxic
ROS are rapidly neutralised by reductive detoxification

mechanisms, mainly glutathione, α-tocopherol, superoxide
dismutase, catalase, and glutathione peroxidase. Eventually,
the amount of ROS produced exceeds the neutralising capac-
ity of these defence systems which may result in precancerous
tissue and organ damage.41 Therefore, the importance of
oxidative stress in alcohol related liver disease and hepatic
carcinogenesis has precipitated numerous experimental stud-
ies and clinical trials.42 Although on the basis of pathophysiol-
ogy the use of antioxidants in the treatment of alcoholic liver
disease seems plausible, most clinical trials addressing their
therapeutic effect in alcoholic liver disease have been
negative.43

Induction of CYP 2E1 may also contribute to hepatocarcino-
genesis by enhancing the conversion of various procarcino-
gens to eventual carcinogens such as dimethylnitrosamines
(DMN), AFB1, vinyl chloride, and dimethylhydrazine, as previ-
ously mentioned above.44 In particular, the metabolic interac-
tion between ethanol and nitrosamines has been
investigated.45 Alcohol induces low Km-DMN demethylase
activity and CYP 2E1 which both lead to increased activation
of this carcinogen in animals and humans.46 47 However, ethan-
ol is also an effective competitive inhibitor of DMN demethy-
lase when administered simultaneously with DMN. The
capacity of ethanol to both induce and inhibit DMN mediated
hepatocarcinogenesis is strongly dependent on the presence or
absence of alcohol at the time of carcinogen exposure. This
phenomenon explains why some animal studies in which
alcohol/nitrosamine interactions had been investigated have
shown an increase in DMN induced hepatoma17 48 and others
have not.49 50

Figure 1 Alcohol as a promoter of hepatocarcinogenesis. Both activation and inactivation of procarcinogens can occur. Alcohol per se is a
tumour promoter but may contribute to initiation via procarcinogen activation. ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase;
CYP 2E1, cytochrome P450 2E1; HCC, hepatocellular carcinoma.
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Recently, polymorphisms of CYP 2E1 were identified and Yu
and colleagues51 have suggested an association with hepato-
carcinogenesis based on a higher prevalence (83.3% v 63.3%)
of the CYP 2E1 c1/c1 genotype in patients with HCC compared
with controls. Homozygosity of this genotype was associated
with a significantly increased risk for the development of HCC
in smokers. However, other investigators could not confirm
the association of certain CYP 2E1 polymorphisms with the
risk of HCC.52 53

TNF-α and intracellular signal transduction
A major feature in the pathogenesis of ALD is release of
tumour necrosis factor α (TNF-α) and other cytokines, mainly
from Kupffer cells that are stimulated by endotoxin absorbed
from the gut.54 In fact, elevated TNF-α levels and correspond-
ing cytokines are a prominent feature of ALD compared with
other liver diseases, finally resulting in hepatocyte prolifera-
tion or death, recruitment of inflammatory cells, and tissue
remodelling.54 55 TNF-α binds to its cellular receptors on hepa-
tocytes and other liver cells leading to activation of various
adaptor proteins and potentially to apoptosis via the caspase
cascade. Thus TNF-α can trigger jun-N terminal kinase 1
which cooperates with other mitogens such as epidermal
growth factor to promote proliferation.56 On the other hand,
activation of sphingomyelinase by TNF-α increases intracellu-
lar ceramide which inhibits the mitochondrial electron trans-
port chain. Thereby, mitochondrial production of ROS is
increased promoting lipid peroxidation and apoptosis inde-
pendently of caspases. In addition, ROS, such as the super-
oxide anion as well as cytochrome C oxidase, are released from
damaged mitochondria via activation of caspases 8 and 3
leading to apoptosis. However, increased levels of ROS also
contribute to activation of the oxidative stress sensitive
transcription factor nuclear factor κB. Nuclear factor κB is
pivotal for initiation of a cell survival machinery involving
antiapoptotic proteins such as Bcl-2, manganese superoxide
dismutase, and nitric oxide synthase that protect the
mitochondrial membrane potential.57 Interestingly, experi-
ments in mice that lack the signal transducing type I TNF
receptor have demonstrated impaired liver regeneration after
partial hepatectomy.58 In summary, TNF-α may dose depend-
ently lead to activation of cellular survival mechanisms, or to
apoptosis and necrosis. This can explain why hepatocytes that
are challenged by an inflammatory insult which is below the
level leading to cell death may be more susceptible to
proliferative stimuli and to dedifferentiation triggered by car-
cinogens such as AA and nitrosamines. Thus ethanol induced
activation of nuclear factor κB could contribute to hepatocar-
cinogenesis.

Interactions with retinoids
Reduced serum and hepatic vitamin A concentrations have
been shown in chronic alcoholics.59 This is of particular
importance as retinoic acid (RA) is synthesised from retinol
via various enzymatic steps involving microsomal and
cytosolic retinol dehydrogenases, as well as via cytosolic ADH
and ALDH. RA has profound effects on cellular growth and
differentiation via two families of RA nuclear receptors
(RAR-α, -β, and -γ, and RXR-α, -β, and -γ) which mediate RA
induced gene transcription.60 In a series of experiments, the
effects of alcohol on retinol and RA metabolism, on
transcellular RA signalling, and on early events of carcinogen-
esis have been investigated. Chronic alcohol consumption
affects several aspects of vitamin A metabolism, including
retinol absorption, enhanced degradation in the liver, and
increased mobilisation of retinol from the liver to other
organs.61 62 These ethanol induced changes may result in
decreased hepatic concentrations of both retinol and retinyl
esters which are the metabolically active precursors of RA.

“Chronic alcohol consumption affects several aspects of
vitamin A metabolism, including retinol absorption,
enhanced degradation in the liver, and increased
mobilisation of retinol from the liver to other organs”

Furthermore, it has been demonstrated that ethanol acts as
a competitive inhibitor of retinol oxidation in the liver, thereby
counteracting the biosynthesis of RA.63 Accordingly, RA levels
in the liver of ethanol fed rats were decreased significantly
compared with controls pair fed an isocaloric control diet con-
taining equal amounts of vitamin A.64 It has recently been
shown that ethanol causes an additional local deficiency of RA
in the liver, resulting from enhanced RA catabolism due to
induction of CYP 2E1.65 In the same study, treatment of etha-
nol fed rats with chlormethiazole, a specific CYP 2E1 inhibitor,
restored both hepatic and plasma RA concentrations to
normal levels. Enhancement of RA catabolism by ethanol in
vitro was inhibited by CYP 2E1 antibodies and chlormethia-
zole, while catabolism of RA into polar metabolites was abol-
ished completely by non-specific cytochrome P450 inhibitors.
Lastly, chronic alcohol consumption resulted in a functional
downregulation of RA receptors and an up to eightfold
expression of the AP-1 (c-jun and c-fos) transcriptional
complex.63 This explains parenchymal hyperproliferation as
AP-1 is a central complex downstream of various growth fac-
tors, oncogenes, and tumour promoters.66 Most interestingly,
supplementation of animals with all-trans-RA to normal RA
levels not only leads to a decrease in AP-1 (c-jun and c-fos)
gene expression but also to normalisation of hepatic prolifera-
tion, as expressed by proliferating cell nuclear antigen
expression.65 In summary, these data suggest that low hepatic
RA levels due to chronic alcohol abuse may favour prolifera-
tion and malignant transformation of hepatocytes via
upregulation of AP-1 (c-jun and c-fos) gene expression.

Alcohol and methylation
Hepatocarcinogenesis is a multistep process involving genetic
events such as point mutations, as well as epigenetic factors,
particularly aberrant DNA methylation patterns and post-
transcriptional alterations. Changes in the degree of methyla-
tion of cytosine are frequently encountered in human cancers
but their relevance as an epigenetic factor in carcinogenesis is
only partially understood.67 However, DNA methylation is an
important determinant in controlling gene expression
whereby hypermethylation has a silencing effect on genes and
hypomethylation may lead to increased gene expression. In
hepatocarcinogenesis, general hypomethylation may be cou-
pled with areas of regional hypermethylation. Thus hyper-
methylation of tumour suppressor genes can result in
decreased gene transcription of p53 and HIC-1,68 and
hypomethylation of certain oncogenes such as c-myc and
c-N-ras may lead to dedifferentiation and proliferation.69 70

Recently, it has been suggested that aberrant DNA hypermeth-
ylation may be associated with genetic instability, as
determined by loss of heterozygosity and microsatellite insta-
bility in human HCC due to chronic viral hepatitis.71 72 Iwata et
al detected hypermethylation of the 14-3-3 sigma gene which
has been implicated as a key inducer of cell cycle arrest asso-
ciated with p53 in 89% of investigated human HCCs.73

However, genetic alterations in animal models and human
hepatocarcinogenesis differ substantially. Thus it was shown
that activation of N-myc and c-myc oncogenes is frequent in
woodchuck hepatitis virus associated HCC while no p53
mutations were found. This mutational pattern is reversed in
humans where p53 are frequent and oncogene activation
seems to play only a minor role.16 74

Importantly, modifications of the degree of hepatic DNA
methylation have also been observed in experimental models
of chronic alcoholism.75 76 Hypomethylation is a plausible con-
sequence of metabolic alterations in the setting of ethanol
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consumption. In fact, alcohol has a marked impact on hepatic
methylation capacity, as reflected by decreased levels of
S-adenosylmethionine (SAM), an important methyl group
donor, and increased levels of S-adenosylhomocystein (SAH),
resulting in an up to 2.5-fold decrease in the SAM/SAH
ratio.77–79 Several mechanisms have been suggested by which
ethanol could interact with one carbon metabolism and DNA
methylation and thereby enhance carcinogenesis (fig 2):

(1) chronic alcohol interacts with intake, absorption, and sub-
sequent metabolism of B vitamins involved in hepatic
transmethylation reactions, namely folate and pyridoxal-5′-
phosphate (vitamin B6), resulting in impaired methyl group
synthesis and transfer79–83;

(2) ethanol reduces the activity of methionine synthase which
remethylates homocysteine to methionine with methyl-
tetrahydrofolate as the methyl donor84 85;

(3) chronic alcohol consumption decreases glutathione levels,
a reductive tripeptide, which is synthesised from homo-
cysteine via transsulphuration in the liver, and thereby
enhances the susceptibility of the liver towards alcohol related
peroxidative damage85 86; and

(4) alcohol can inhibit the activity of DNA methylase which
transfers methyl groups to DNA in rats,77 a finding which
could not be confirmed in humans.87

To date, it is well established that dietary depletion of
lipotropes, including methionine, choline, betaine, SAM, and
folate, leads to DNA hypomethylation, particularly hypometh-
ylation of oncogenes (that is, c-Ha-ras, c-Ki-ras, and c-fos) and
to DNA strand breaks, all of which are associated with an
increased incidence of HCC in rats.88 89 Whether chronic alcohol
consumption alone is capable of inducing a lack of methylation
capacity sufficient to cause hypomethylation of DNA and genes
involved in hepatocarcinogenesis is not yet known.

It has been shown that DNA and site specific hypomethyla-
tion is reversible, either spontaneously90 91 or by therapeutic
intervention.16 In a randomised, controlled, multicentre trial,
123 alcoholic cirrhotics received SAM or placebo for two
years.92 The two groups were well matched and only six patients
were lost during follow up. Mortality and the number of
patients requiring liver transplantation were significantly lower
in patients with Child C cirrhosis treated with SAM. However,
no patient in the trial developed HCC, probably due to the short

duration of surveillance. So far, a study investigating the
chemopreventive effect of lipotropes—that is, SAM—in HCC
has not been performed. Therefore, the role of ethanol in gene
specific methylation requires further investigation.

Alcohol and hepatitis viruses
From epidemiological studies a close relationship has been
noted between alcohol consumption, infection with hepato-
tropic viruses, and HCC. With respect to HBV, several studies
have shown a high prevalence of HBV markers in patients
with alcohol related HCC.93 Brechot et al screened HCC liver
specimens of alcoholics for HBV-DNA to find that they were all
positive.94 However, other investigators failed to confirm these
data.95 96 Thus the role of alcohol and chronic HBV infection in
hepatocarcinogenesis awaits further clarification.

“A close relationship has been noted between alcohol
consumption, infection with hepatotropic viruses, and
HCC”

In the case of chronic HCV, the role of alcohol abuse remains
undisputed. A number of studies have demonstrated a high
prevalence of antibodies to HCV among alcoholics with liver
disease, ranging from 11% to 46%, even after confirmatory
antibody tests or polymerase chain reaction were used, and
after patients at risk (for example, recipients of blood transfu-
sions and intravenous drug abusers) were excluded.97 With
regard to hepatocarcinogenesis, it has been shown unambigu-
ously by various investigators that alcohol abuse coupled with
HCV infection accelerates the development of HCC.98 99 For
example, Yamauchi and colleagues98 showed that the cumula-
tive incidence of HCC after three, five, and 10 years in cirrhotic
HCV infected patients with an average daily alcohol consump-
tion of 120 g was 13.3%, 41.3%, and 80.7% versus 0%, 8.3%,
and 18.5%, respectively, compared with alcoholic cirrhotics
without HCV infection. A case control study by Corrao et al in
115 patients with alcoholic liver disease and chronic HCV
demonstrated a clear dose dependency between long term
alcohol consumption and the development of cirrhosis, a nec-
essary precondition of HCC development in chronic HCV.100

The authors concluded that as little as 20 g/day was detrimen-
tal. While the modes of interaction between HCV and alcohol
remain to be defined, there are a number of possible explana-
tions.

Figure 2 Interaction of alcohol with methyl transfer. Alcohol impairs one carbon metabolism via interfering with (1) folate uptake and
generation of tetrahydrofolate (THF); (2) degradation of pyridoxal-5′-phosphate (PLP) at several sites; and (3) inhibition of methyl transfer to
DNA via inhibition of methyltransferase, resulting in hypomethylation and consequently enhanced transcription of certain oncogenes.
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(1) Chronic alcohol consumption and coinfection with HCV
synergistically aggravate histological damage resulting in
faster progression.98 101 102

(2) Alcohol appears to enhance HCV replication with
subsequent direct cytopathic damage.103 104

(3) Alcohol may compromise the host’s immune response to
HCV infection, as demonstrated by Oshita and colleagues103

who measured serum neopterin levels, a suggested indirect
marker of macrophage activation. Thus in heavy drinkers
coinfected with HCV, neopterin levels were significantly lower
than in non-alcoholic HCV infected individuals. In addition,
CD4 cells, which are important in the antiviral immune
response, are particularly susceptible to alcohol related
functional impairment.105

(4) Alcoholic patients with chronic hepatitis C show higher
hepatic iron levels than patients with HCV infection alone and
iron excess is an important factor in liver damage and may
increase HCV replication.106

Alcohol and immune surveillance
Chronic alcohol consumption results in a complex alteration
of the unspecific (innate) and specific (acquired) immune
response.107 Numerous studies and clinical experience have
shown that chronic alcoholics are more susceptible to
infections and to certain neoplasms.108 Thus alcohol related
alterations of immune surveillance could contribute to the
development of cancer. Among the factors affecting the
immune system in the setting of alcoholism are malnutrition,
vitamin deficiencies, established cirrhosis, and alcohol itself.
In this respect, the influence of alcohol on natural killer (NK)
cells, which are implicated in the control of tumour
development and growth, is of particular importance. Interac-
tions between alcohol and this subset of cytotoxic cells have
been investigated in cell culture, animal studies, and in human
alcoholics. However, the data are conflicting which is mainly
due to discrepancies in analysis of lymphoid subsets and NK
cell cytotoxic activity, the presence or absence of active alcohol
consumption, biased patient selection, and different nutri-
tional status and comorbidity variables, such as coinfection
with hepatitis viruses.109

“Chronic alcoholics are more susceptible to infections
and to certain neoplasms”

Studies in mice have demonstrated that chronic alcohol
administration inhibits NK cell activity110 and reduces NK cell
number and lytic activity following a single binge equivalent
of alcohol.111 A more recent study in rats has shown that acute
alcohol intoxication may lead to an up to 10-fold increase in
the number of lung metastases of the NK cell controlled
adenocarcinoma cell line MADB106.112 Few studies in humans
have so far been performed. In a study by Laso et al, alcoholic
cirrhotics revealed both diminished NK cell numbers and
reduced lytic activity, even when stimulated by interleukin 2,
a powerful NK cell stimulating cytokine.113 NK cell numbers
were also found to be decreased in actively drinking individu-
als without established alcoholic liver disease.114 Pathomecha-
nisms are not fully understood but it has been suggested that
transforming growth factor β1, which is a key profibrogenic
cytokine in liver fibrogenesis and which is markedly elevated
in alcoholic liver disease,115 suppresses immune function in
general and NK cell activity in particular.116 However, there are
no data on how far antigen specific lymphocyte reactivity, HLA
class I and II expression, or organ specific lymphocyte subsets
are altered in alcoholism.

In summary, a major impact of alcohol on the immune sys-
tem is undisputed which may favour tumour development
and expansion but mechanisms by which alcohol compro-
mises antitumour immune surveillance are not yet completely
understood.

. . . . . . . . . . . . . . . . . . . . .
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