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Our current understanding of iron absorption under
normal conditions is presented, together with an
overview of the clinical disorders of iron overload and
the molecular processes that contribute to increased iron
deposition in iron overload. Recently, a number of new
genes involved in iron metabolism have been identified
which is allowing the molecular mechanisms of iron
absorption to be elucidated.
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Iron homeostasis is controlled by the absorption
of iron from the diet. It occurs mainly in the
duodenum at a rate of approximately 1–2 mg

iron per day. When iron levels in the body or the
diet are low, the rate of iron absorption is
increased, and when iron levels are replete there
is a reduction in the rate of iron absorption and
excess iron is excreted when enterocytes are
sloughed off every 2–3 days. Recently, a number of
new genes involved in iron metabolism have been
identified which is allowing the molecular
mechanisms of iron absorption to be elucidated.
In this review, our current understanding of iron
absorption under normal conditions is presented
followed by an overview of the clinical disorders
of iron overload and the molecular processes that
contribute to increased iron deposition in iron
overload.

MOLECULAR MECHANISMS OF IRON
ABSORPTION
Iron is found in the diet as ionic (non-haem) iron
and haem iron. Absorption of these two forms of
iron occurs by different mechanisms. Absorption
is a multistep process involving the uptake of iron
from the intestinal lumen across the apical cell
surface of the villus enterocytes and the transfer
out of the enterocyte across the basolateral mem-
brane to the plasma. Ionic iron is present in the
reduced (ferrous) or oxidised (ferric) state in the
diet and the first step in the uptake of ionic iron
involves the reduction of iron. Recently, a putative
reductase that is capable of reducing iron from its
ferric to ferrous state has been identified. It is a
membrane bound haem protein called Dcytb that
is expressed in the brush border of the
duodenum.1 Next, ferrous ion is transported
across the lumen cell surface by a transporter
called divalent metal transporter 1 (DMT1) that
can transport a number of other metal ions
including copper, cobalt, zinc, and lead.2 Evidence
for the role of DMT1 in iron absorption is
supported by studies in mk mice and Belgrade
rat. Both of these laboratory animals have a
G185R mutation in DMT1 that inhibits iron
uptake across the brush border leading to iron

deficiency.3 4 Iron is then stored in the enterocyte
or transferred out across the basolateral mem-
brane by a membrane bound protein called ferro-
portin (also known as IREG1 and MTP1).5–7

Extracellular ferrous iron is oxidised by the multi
copper oxidase haephestin and bound by plasma
transferrin.8

The mechanism of absorption of haem iron has
yet to be elucidated. Transfer across the brush
border membrane is probably mediated by an
unidentified haem receptor. Once inside, entero-
cyte iron is released from haem by haem oxygen-
ase and either stored or transferred out of the
enterocyte by a mechanism that is likely to be
similar to that for ionic iron (fig 1).9

REGULATION OF IRON ABSORPTION
Iron absorption is regulated by a number of
factors, including the level of body iron stores, the
rate of erythropoiesis, and hypoxia. Enterocytes in
the crypt region of the duodenal mucosa take up
iron from plasma in proportion to the body’s iron
level, and the intracellular iron level in crypt cells
reflects the body’s iron status.10 Crypt cells express
transferrin receptor 1 (TfR1) which mediates the
uptake of transferrin bound iron (TBI).11 The
haemochromatosis protein (HFE) is also highly
expressed in crypt cells12 and forms a complex
with β2 microglobulin and TfR1.13 The role of HFE
in the regulation of TfR1 mediated uptake of TBI
is unclear. A number of studies in isolated cell
systems have shown that HFE reduces both the
affinity of TfR1 for transferrin and the uptake of
iron, due either to a reduction in the cycling time
of the HFE/TfR1-TBI complex through the cell or
a reduced rate of iron release from transferrin
intracellularly.14–17 Whereas when both HFE and β2

microglobulin are overexpressed in Chinese Ham-
ster Ovary cells, uptake of TBI was enhanced due
to increased recycling of TfR1 through the cell.18

A second transferrin receptor (TfR2) has been
identified.19 TfR2 mRNA is expressed at very low
levels in the duodenum and does not interact
with HFE in vitro.20 21 Its role in iron absorption is
yet to be determined.

In iron deficiency, DMT1, ferroportin, and TfR1
are upregulated while ferritin is downregulated
and the converse occurs when iron levels are
increased.6 22–24 Expression of ferritin and TfR1 is
regulated by post-transcriptional mechanisms.
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The intracellular iron level controls the interaction of a
cytosolic iron regulatory protein (IRP) with an iron regulatory
element (IRE) in the untranslated region of the mRNA of
these genes.25 HFE and TfR2 do not contain IRE and their
expression is not iron regulated.19 26

IRP activity is one of the central regulators of iron
absorption. IRP activity in crypt cells reflects the body’s iron
status. Crypt cells migrate to the villus region of the
duodenum and differentiate into absorptive cells where the
level of IRP binding activity, predetermined in crypts,
regulates expression of iron transporters and the rate of iron
absorption.27 Villus cells also respond to a change in iron levels
in the diet. An iron gavage reduces IRP activity, DMT1 expres-
sion, and iron absorption by villus cells within hours.28

Both the rate of erythropoiesis and hypoxia regulate iron
absorption.29 Expression of ferroportin and Dcytb are upregu-
lated in hypoxia and in a hypotransferrinaemic mouse which
has chronic anaemia due to defective erythropoiesis.1 6

Increased expression of these genes is likely to account for the
increase in iron absorption.

CLINICAL SYNDROMES OF IRON OVERLOAD
Hereditary haemochromatosis
Clinical disorders of iron overload are classified in table 1. In
populations of Northern European ancestry, hereditary
haemochromatosis (HH) is the most common disorder of pri-
mary iron overload. This autosomal recessive disorder usually
results from a homozygous mutation in the HFE gene of
Anglo-Celtic populations. The clinical features of HH have
been reviewed extensively.30

“In populations of Northern European ancestry,
hereditary haemochromatosis is the most common
disorder of primary iron overload”

The HFE gene was discovered in 1996 by Feder and
colleagues26 who described a novel gene containing two
missense mutations. One of these mutations (Cys282→Tyr;
C282Y) was found to be homozygous in 83% of 178 patients
with typical HH and has probably arisen in the last 2000 years,
as estimated from ancestral haplotype studies.31 Studies from
other groups of HH patients from Europe, the UK, and
Australia have demonstrated that, on average, 85–90% of
patients with HH are homozygous for the C282Y

mutation.32–34 A second mutation (His63→Asp; H63D) was
also identified but was not associated with the same degree of
iron overload as the C282Y mutation.26 Lower frequencies of
homozygosity for the C282Y mutation (64%) are found in
Southern European patients with HH.35 The C282Y mutation is
rare in African, Asian, Polynesian, and indigenous Australian
chromosomes.36

Other mutations within the HFE gene have been found that
are associated with iron overload, usually in combination with
C282Y heterozygosity: Mura et al reported enrichment of S65C
missense substitution in patients with mild HH.37 A novel
splice site mutation causing skipping of exon 3 in the HFE
locus has also been reported (IVS3+1G→T).38 Piperno et al
found two novel missense mutations in five unrelated HH
patients with C282Y heterozygosity.39

The role of mutations in the HFE gene as a cause of HH was
further strengthened in 1998 when a knockout mouse model
for the HFE gene was described.40 This model exhibited

Figure 1 A model of the pathways of iron absorption by the enterocyte. The figure shows uptake of ionic iron and haem iron from the gut
lumen and transfer of iron to blood. DMT1, divalent metal transporter 1; HFE, haemochromatosis protein, TfR1, transferrin receptor 1; TfR2,
transferrin receptor 2.
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Table 1 Classification of iron overload states

Familial or hereditary forms of haemochromatosis
Hereditary haemochromatosis (HH, HFE1)

C282Y homozygosity
C282Y, H63D heterozygosity
Other HFE gene mutations

Juvenile haemochromatosis (HFE2)
Transferrin receptor 2 mutation (HFE3)
Ferroportin mutation (HFE4)
Acaeruloplasminaemia
Atransferrinaemia
Neonatal iron overload
Autosomal dominant haemochromatosis (Solomon Islands)

Acquired iron overload
Iron loading anaemias

Thalassaemia major
Sideroblastic anaemia
Chronic haemolytic anaemias

Dietary iron overload
Chronic liver disease

Hepatitis C
Alcoholic liver disease
Non-alcoholic steatohepatitis
Porphyria cutanea tarda
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changes in iron metabolism and developed iron overload that
were similar to humans with HH.

Clinical and biochemical expression of HFE gene
mutations
There is variable clinical expression of haemochromatosis
protein (HFE) mutations in terms of the development of iron
overload and clinical disease. Previous HLA based family
studies suggested that almost all patients who had inherited
the underlying genetic defect would develop iron overload.41

However, more recent studies of patients with HH have shown
that up to 26% of subjects homozygous for the C282Y
mutation may not develop iron overload.42 A large, systematic,
Australian population based study has shown that 15 of 16
C282Y homozygotes are detected with an elevated transferrin
saturation >45%; 50% of homozygotes had typical clinical
features and 25% had significant hepatic fibrosis or cirrhosis.

“One in 700 individuals in an Anglo-Celtic population
will have clinically significant iron overload but not
possess mutations in the HFE gene”

Progressive iron overload occurs in the majority of C282Y
homozygotes.43 However, the frequency of biochemical expres-
sion varies with different populations. A study in blood donors
in San Diego found that 36% of C282Y homozygotes had a
transferrin saturation less than 45%.44 Up to 20% of patients
heterozygous for both mutations (C282Y, H63D compound
heterozygotes) demonstrate a clinical syndrome identical to
that observed in C282Y homozygotes.45 Likewise, 1 in 700
individuals in an Anglo-Celtic population will have clinically
significant iron overload but not possess mutations in the HFE
gene.43 Cirrhosis and significant hepatic fibrosis are rarely
observed in C282Y homozygotes or compound heterozygotes
under the age of 40 years, provided that no other hepatotoxins
or hepatotropic viruses are present and serum ferritin level is
less than 1000 ng/ml.45–46

Other genetic defects of iron metabolism
Well defined kindreds exist with mutations outside the HFE
gene. Juvenile haemochromatosis is an autosomal recessive
disorder characterised by iron loading in the same pattern as
adult HH but in the second or third decade of life. Roetta et al
studied nine affected families and identified a locus on the
long arm of chromosome 1 not known to correspond to a gene
involved in iron metabolism.47 Juvenile haemochromatosis is
now also termed HFE2. Camaschella et al reported a new locus
on 7q22 and showed that a homozygous nonsense mutation in
the gene encoding TfR2 is found in some individuals with
non-HFE related iron overload.48 The disorder described by
Camaschella et al is now also termed HFE3.

“Juvenile haemochromatosis is an autosomal recessive
disorder characterised by iron loading in the same
pattern as adult HH but in the second or third decade
of life”

Pietrangelo et al studied a large Italian family in which 15 of
53 members had iron overload and none had C282Y
mutations. Microsatellite analysis of the HH phenotype
showed no linkage to the HFE gene.49 The iron overload disor-
der in these patients has now been linked to a mutation in the
ferroportin gene and is termed HFE4.50 51 The mechanisms
underlying the development of iron overload in the HFE2-
HFE4 disorders are not clear.

Acaeruloplasminaemia is a rare genetic iron overload disor-
der that results in diabetes and neurodegenerative disease due
to a mutation in the caeruloplasmin gene causing non-
expression of the gene product. Lack of caeruloplasmin

reduces plasma ferroxidase activity and cellular release of iron
causing progressive accumulation in the liver, pancreas, and
brain.52 Atransferrinaemia is a very rare inherited disorder in
which there is no plasma transferrin. Patients have enhanced
iron absorption but the erythroid precursor cells are unable to
utilise non-transferrin bound iron (NTBI) and thus respond as
though there is severe iron deficiency. Excess NTBI accumu-
lates in the liver, pancreas, and heart as the rate of iron release
from these tissues is also reduced due to lack of transferrin.53

These patients require transferrin infusion for survival.

Regulation of iron absorption in hereditary
haemochromatosis
In HH patients there is an increase in the rate of iron absorp-
tion. Enterocytes of HH patients have increased IRP activity
and reduced ferritin levels.54 Furthermore, recent studies have
shown that expression of the iron transporters DMT1 and fer-
roportin are both upregulated in subjects with HFE-HH, non-
HFE HH, and iron deficiency but not secondary iron
overload.6 55 56 Increased expression of DMT1 mRNA and
protein has also been observed in the intestine of the HFE
knockout mouse model of HH inducing enhanced iron
absorption.57 58 However, this finding is controversial as others
found no increase in DMT1 mRNA and protein levels in the
intestine of C282Y HFE and β2 microglobulin knockout mouse
models of iron overload.59

These observations indicate that there is an incorrect sens-
ing of the body’s iron level by the intestinal crypt cells in HH.
In a recent study we have reported that HFE regulation of TBI
uptake by the duodenum is impaired in the HFE knockout
mouse model of HH.60 This would lead to reduced intracellular
iron levels in crypt cells of the duodenum that do not reflect
correctly the high plasma iron levels found in HH. Thus enter-
ocytes would be incorrectly programmed to absorb iron from
the diet.

Exactly how C282Y HFE impairs the uptake of TBI from
plasma by the duodenum is unknown. However, these
findings are consistent with results obtained using Chinese
Hamster Ovary cells described earlier where overexpression of
wild-type HFE and β2 microglobulin enhanced the uptake of
TBI by increasing the rate of TfR1 recycling through the cell.18

As it is known that the C282Y HFE does not associate with β2

microglobulin and TfR1 and its cell surface expression is
reduced,61 62 it is unlikely that C282Y HFE could stimulate TBI
uptake by Chinese Hamster Ovary cells as the wild-type HFE
does. Therefore, a relative reduction in TBI uptake in the pres-
ence of C282Y HFE by Chinese Hamster Ovary cells would be
consistent with reduced uptake of TBI by the duodenum of
HFE knockout mice and by macrophages from patients with
HH.60 63

Molecular mechanisms of iron loading of the liver
The liver is the main site of iron storage and most of the iron
is deposited in hepatocytes as ferritin or haemosiderin. In iron
overload the rate of iron uptake exceeds the rate of iron release
by hepatocytes resulting in increased hepatic iron levels. Usu-
ally iron is transported in plasma by transferrin. However, in
iron overload, transferrin becomes saturated with iron and
excess iron or NTBI is also present. The hepatocyte can take up
both NTBI and TBI and both sources are likely to contribute to
elevated hepatic iron deposition in iron overload.

“In iron overload the rate of iron uptake exceeds the
rate of iron release by hepatocytes resulting in
increased hepatic iron levels”

Functional studies have shown that uptake of TBI by the
hepatocyte occurs by TfR1 and TfR1 independent pathways.
Hepatocytes express only a low number of TfR1 receptors and
the main pathway of TBI uptake by hepatocytes and hepatoma
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cell lines is thought to be mediated by low affinity TfR1 inde-
pendent pathways.64 65 The first of the TfR1 independent path-
ways involves endocytosis of TBI while the second involves
release of iron from transferrin at the cell surface and
transport into the cell by an iron transporter that also
mediates uptake of NTBI.66 67 TfR2 is highly expressed in
human liver.19 Its role in hepatic iron transport is yet to be
established but it is likely that TfR2 mediates uptake of iron by
the TfR1 independent pathway (fig 2).

TfR1 expression by hepatocytes is downregulated by iron
loading.20 68 In fact there is complete absence of TfR1
expression in HH patients69 and in the HFE knockout
mouse,20 and therefore TfR1 mediated uptake of TBI is
unlikely to contribute significantly to iron loading of the liver.
TfR2 does not contain an IRE and its expression in the liver is
not iron regulated. In the HFE knockout mouse, TfR2 expres-
sion remains high and TfR2 mediated uptake of iron could
contribute to loading of the liver in HH.20

NTBI is extremely toxic, can generate free radicals, and is
rapidly cleared from plasma by the liver.70 Hepatocytes take up
NTBI by a process that involves iron reduction and transport
across the cell membrane by a carrier mediated process71–73

which may involve the iron transporters DMT1 or stimulator
of iron transport.74 Both the uptake of NTBI and expression of
DMT1 in the liver have been shown to be enhanced by iron
loading and this process may contribute to iron loading of the
liver.23 71

The mechanism of iron release by hepatocytes is not well
understood. Ferroportin is localised to the hepatocyte cell
membrane and is a likely candidate for the transporter of iron
out of cells.7 Iron is then oxidised by caeruloplasmin and
bound by plasma transferrin (fig 2).75 Further studies need to
be undertaken to establish if ferroportin expression and the
rate of iron release are altered with iron loading.

HFE is not expressed in hepatocytes and therefore is not
likely to play a role in the regulation of iron transport in
hepatocytes.12 76 In HH, iron metabolism of hepatocytes is not
directly affected by mutations in the HFE protein but rather,
increases in plasma TBI and NTBI contribute to elevated iron
levels and subsequent liver damage.

“Recently, the hepatic antimicrobial peptide hepcidin
has been identified as a potential new player in iron
metabolism”

Recently, the hepatic antimicrobial peptide hepcidin has
been identified as a potential new player in iron metabolism.
Interestingly, a transcription factor USF2 knockout mouse
which lacks hepcidin expression developed iron overload that
was similar to HH.77 However, others have shown that hepatic
hepcidin levels are upregulated in iron overload.78 Thus the
role of hepcidin in iron homeostasis is unclear but it may act
as a signalling molecule that regulates hepatic iron levels and
the rate of iron absorption.

Mechanisms of iron induced liver injury
The mechanisms by which iron may cause liver disease have
been reviewed.79 Studies that have examined collagen gene
expression in iron overload have indicated that iron deposition
in hepatocytes is necessary since, if iron is not present in
hepatocytes, collagen gene expression is not increased.80 These
data suggest that either iron loaded hepatocytes directly
release profibrogenic substances, which activate hepatic
stellate cells (the principal cellular sources of collagen and
other matrix proteins in chronic liver disease) or release sub-
stances which stimulate Kupffer cells to produce profibrogenic
substances which activate hepatic stellate cells. Iron overload
can induce lipid peroxidation of organic membranes leading
to cell injury and cell death. Lipid peroxidation products have
been shown to stimulate collagen production in activated
hepatic stellate cells and cultured human fibroblasts.81

Alternatively, lipid peroxidation products may increase pro-
duction of transforming growth factor β or other profibrogenic
substances by Kupffer cells which might then stimulate
hepatic stellate cell activation.82 Hepatocellular carcinoma
could result from DNA damage from iron induced adduct for-
mation and chromosomal damage83 or proliferation and dedif-
ferentiation of hepatic stem cells termed “oval cells”.84

Figure 2 Diagrammatic representation of the pathways of uptake of transferrin bound iron and non-transferrin bound iron by hepatocytes (see
text for explanation). TfR1, transferrin receptor 1; TfR2, transferrin receptor 2; DMT1, divalent metal transporter 1; SFT, stimulator of iron
transport.
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CONCLUSION
There have been significant advances in recognising the evolv-
ing phenotype of iron overload syndromes and their associated
genotypes over the last five years, although there are likely to
be further candidate genes identified. However, reconciling
the mechanisms by which the various iron transport genes
and proteins contribute to normal homeostasis of iron
metabolism is far from complete. Candidate mutations in iron
transport genes and abnormal protein functions have been
described predominantly at the molecular and isolated cell
levels. Attempts to confirm these observations at the whole
organism level have either proved difficult or have not been
attempted. Clearly, the key to “ironing out” the molecular
pathogenesis of iron overload disorders depends on the ability
to correlate events at the gene, RNA, and protein levels with
functional outcomes in the whole organism.
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