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Intestinal epithelial responses to enteric pathogens:
effects on the tight junction barrier, ion transport, and

inflammation

J Berkes, V K Viswanathan, S D Savkovic, G Hecht

The effects of pathogenic organisms on host intestinal
epithelial cells are vast. Innumerable signalling
pathways are triggered leading ultimately to drastic
changes in physiological functions. Here, the ways in
which enteric bacterial pathogens utilise and impact on
the three major physiological functions of the

intestinal epithelium are discussed: alterations in the
structure and function of the tight junction barrier,
induction of fluid and electrolyte secretion, and
activation of the inflammatory cascade. This field of
investigation, which was virtually non-existent a decade
ago, has now exploded, thus rapidly expanding our
understanding of bacterial pathogenesis. Through
increased delineation of the ways in which microbes
alter host physiology, we simultaneous gain insight into
the normal regulatory mechanisms of the intestinal
epithelium.

ith the realisation that the intestinal
Wepithelium is not merely a static barrier

to the external environment, a wealth
of information regarding eukaryotic and
prokaryotic interactions has been gathered. It is
now evident that this is a two way interaction
involving a complex and dynamic “cross talk”
between the species. A new language and under-
standing has emerged from these discoveries.
Not only have we learned more about the
mechanisms by which these pathogens usurp
our defences and alter cellular functions, we bet-
ter understand the normal physiological role of
the intestinal epithelium. As the new dawn
fades, it is imperative that we reflect upon what
we have learned and contemplate what yet
remains to be discovered. The purpose of this
review is to give the reader an overview of the
different mechanisms by which enteric patho-
gens induce epithelial responses. Three general
categories of epithelial-pathogen interactions
will be discussed: alterations in the structure and
function of the tight junction barrier, induction
of fluid and electrolyte secretion, and activation
of the inflammatory cascade. It is noteworthy
that while some pathogens primarily activate one
of the above pathways, others such as Salmonella
and Escherichia coli are well versed in all three
languages.
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TIGHT JUNCTION STRUCTURE AND
BARRIER FUNCTION

Background

Enteric pathogens have devised several ways to
disrupt the tight junctions (TJ) of epithelial cells.
In general, this is achieved by either altering the
cellular cytoskeleton or by affecting specific tight
junction proteins. Tight junction regulation via
the cytoskeleton may occur indirectly through
changes in the perijunctional actomyosin ring or
directly through changes in specific TJ proteins
(fig 1). Disruption of specific TJ proteins can
result from degradation by bacterial derived pro-
teases or by biochemical alterations such as phos-
phorylation or dephosphorylation. These pro-
cesses may lead to perturbation in epithelial
functions such as establishment of electrochemi-
cal gradients as generated by active vectorial
transport and paracellular permeability. Objec-
tively, the function of TJs can be measured as a
decrease in transepithelial electrical resistance
(TER) and an increase in the paracellular flux of
macromolecules such as mannitol. In the follow-
ing section, examples of specific bacterial induced
mechanisms of TJ disruption will be discussed.

Tight junction disruption due to alterations
of the cytoskeleton

Clostridium difficile

Clostridium difficile is an anaerobic bacterium that
causes antibiotic associated pseudomembranous

Abbreviations: T, tight junctions; TER, transepithelial
electrical resistance; PKC, protein kinase C; PKCa, protein
kinase Ca; PKCP, protein kinase CB; EPEC, entero-
pathogenic Escherichia coli; MLCK, myosin light chain
kinase; EHEC, enterohaemorrhagic Escherichia coli; BFT, B
fragilis enterotoxin; Isc, short circuit current; HA/P,
haemagglutinin protease; CPE, C perfringens enterotoxin;
CPE-R, C perfringens enterotoxin receptor; CFTR, cystic
fibrosis transmembrane conductance regulator; CaCC,
calcium activated chloride channel; GC-C, guanylate
cyclase C; ST, stable toxins; DAG, diacylglycerol; IP,,
inositol 1,4,5- trisphosphate; TDH, thermostable direct
haemolysin; Gal-1R, galanin-1 receptor; LPS,
lipopolysaccharide; NO, nitric oxide; NOS, nitric oxide
synthase; iNOS, inducible NOS; EIEC, enteroinvasive E
coli; PGE,, prostaglandin E,; PGHS, prostaglandin H
synthase; COX- 2, cyclooxygenase 2; TLR, toll-like receptor;
MHC, major histocompatibility complex; IL, interleukin;
PEEC, pathogen elicited epithelial derived chemoattractant;
NFkB, nuclear factor kB; TNF-a, tumour necrosis factor o;
IkB, inhibitory protein kB; IKK, IkB kinase; NIK, NFkB
inducing kinase; MAP, mitogen activated protein; MAPK,
MAP kinase; MAPKKK, MAPK kinase kinase; MEK,
MAP/ERK kinases; INK, c-Jun NH2 terminal kinase; AP-1,
activating protein 1; cag, cytotoxin associated antigen.
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Figure 1 Epithelial tight junctions (TJ) can be altered by various pathogens, as well as by their elaborated toxins. These effects may result

from direct modification of TJ proteins such as occludin, claudin, and ZO-1, or by alteration of the perijunctional actomyosin ring. The
intfermediary signalling steps in these processes have not been fully characterised, and the exact relationship between TJ protein disruption and
actomyosin ring disruption is presently not clear. PKCa, protein kinase Ca; PKCP, protein kinase CB; EPEC, enteropathogenic Escherichia coli;

MLC, myosin light chain; HA, haemagglutinin.

colitis. The pathogenicity of this bacterium is attributable
to elaboration of two enterotoxins, toxin A and toxin B.
Exposure of eukaryotic cells to either of these toxins
causes degradation of filamentous actin and increased
levels of soluble actin, resulting in cell rounding.'’
Functionally, decreased TER and increased flux of para-
cellular markers such as mannitol and raffinose occurs,
indicating TJ disruption.*” These structural and
functional changes appear to be due to toxin induced modifi-
cations of the Rho family of proteins.’” The Rho proteins
(Rho, Rac, and Cdc42) regulate a wide variety of cell
functions, such as cell shape, cell-cell interactions, and TJs,
through organisation of the actin cytoskeleton.®’” Toxins A
and B monoglucosylate Rho, Rac, and Cdc42 using UDP-
glucose as a co-substrate. This results in inactivation of the
Rho GTPases and filamentous actin degradation.”® Loss of
organisation in the perijunctional F-actin ring following
inactivation of Rho by toxin A is believed to be a critical event
in the mechanism of lowered TER and increased paracellular
flux of solutes in toxin exposed intestinal epithelium.’
Associated with C difficile toxin induced depolymerisation
of actin is the movement of TJ proteins such as ZO-1 and
occludin away from the TJ and into the cytoplasm of the
cell”

“C difficile induced TJ disruption may be due to
alterations in both the cytoskeleton and direct effects on
TJ proteins”

Toxin A mediated decline in TER precedes changes in
cell morphology and TJ ultrastructure,’ suggesting that
C difficile may also affect TJ proteins directly. A recent
study found that toxin A increased the redistribution of
Z0O-1 from TJs which corresponded with the activation
of protein kinase Ca (PKCa) and protein kinase Cf
(PKCB)." Inhibition of PKCa and PKCPB with myristoylated
PKCa/B blocked toxin mediated RhoA glucosylation, ZO-1
translocation, and cell rounding, indicting the proximal
involvement of these signalling pathways. Together these
findings suggest that C difficile induced TJ disruption may be
due to alterations in both the cytoskeleton and direct effects
on TJ proteins.

Escherichia coli

Enteropathogenic Escherichia coli (EPEC) has a complex
biological arsenal. EPEC adheres to the surface of epithelial
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cells and induces accumulation of cytoskeletal proteins
underneath the site of attachment to produce the character-
istic attaching and effacing lesion." Expression of a type III
secretion apparatus allows insertion of effector molecules
into host cells. These proteins trigger a broad range of cellular
events including alterations in electrolyte secretion, disrup-
tion of the TJ barrier, and inflammation. When T84 human
intestinal epithelial monolayers are infected with EPEC, a
dose and time dependent drop in TER occurs.” " Mutant
strains deficient in the type III secretion have an attenuated
effect on TER.” " Dual mannitol and *Na* flux studies
confirmed that the permeability defect is at the level of the
TJ." This occurs via a calcium and myosin light chain kinase
(MLCK) dependent process.” EPEC infection of intestinal
epithelial cells stimulates phosphorylation of the 20 kDa
myosin light chain (MLC20) by MLCK, accounting in part for
the EPEC induced TJ disruption. MLC20 phosphorylation by
MLCK stimulates cytoskeletal contraction, including that of
the perijunctional actomyosin ring.' This event causes a drop
in TER and increase in paracellular permeability"” "
presumably by exerting tension on the cell membrane in the
region of the zonula adherens where the perijunctional
actomyosin ring inserts. This tension is transmitted to the TJ
and thus increases paracellular permeability. Alternatively,
cytoskeletal contraction may influence TJ proteins through
direct interactions. In fact, EPEC has been shown to alter
occludin, a transmembrane TJ protein that is important for
barrier formation."” ** Phosphorylation of occludin is required
for its localisation to the TJ complex.” ** Following infection
by EPEC, occludin shifts from the TJ into the cytosol of the
cell, an event that is accompanied by protein dephos-
phorylation.” These findings correlate temporally with the
decrease in TER. Reversal of these changes in occludin and
the return of TER to baseline occurs following elimination of
the infection with gentamicin. Furthermore, inhibition of
serine/threonine phosphatases prevented EPEC induced
changes in both occludin and TER, implicating their
involvement in the regulation of TJ. Whether this phos-
phatase activity is host or bacteria derived remains to be
discerned.

A genetically similar pathogen, enterohaemorrhagic E coli
(EHEC) also lowers TER, increases the paracellular flux of
mannitol, and alters ZO-1 distribution.*® The signalling
pathways involved in this process include MLCK and conven-
tional PKCs. In contrast, conventional PKCs do not appear to
participate in the EPEC associated disruption of TJs.”
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Therefore, although EHEC and EPEC cause similar functional
perturbations, somewhat different mechanisms appear to be
responsible.

Tight junction disruption due to bacterial derived
proteases

Bacteroides fragilis

Bacteroides fragilis is an example of a bacterium that disrupts
TJs by proteolytic degradation of TJ proteins. Diarrhoeic
strains of B fragilis produce a 20 kDa extracellular toxin known
as B fragilis enterotoxin (BFT) or fragilysin.” *” This toxin is a
metalloprotease with a zinc binding motif and has the ability
to hydrolyse several proteins, including gelatin, fibrinogen,
and actin in vitro.”® When applied to T84 monolayers, this
toxin caused a decrease in TER and increase in paracellular
permeability.” * This response was much more dramatic when
toxin was applied to the basolateral, rather than the apical,
surface of epithelial monolayers.” Also, a transient increase in
short circuit current (Isc), reflecting net ion transport, was
seen when the toxin was applied basally but not apically.” The
alteration in TER and Isc did not coincide temporally suggest-
ing that independent pathways lead to these effects. Morpho-
logically, cells exhibited rounding and loss of microvilli.”*
Staining for F-actin revealed dispersion from the normal loca-
tion at the apical perijunctional ring and microvilli. Similar
results were found with native human colonic tissue.”

“Bacteroides fragilis is an example of a bacterium that
disrupts TJs by proteolytic degradation of TJ proteins”

Further study of BFT showed the site of proteolytic action to
be the extracellular domain of the zonula adherens protein,
E-cadherin.” Immunofluorescent confocal microscopy of
HT-29 cells showed complete loss of E-cadherin staining after
one hour of BFT exposure. Western blot analysis using
antibodies to the cytoplasmic domain of E-cadherin demon-
strated the release of 28 and 33 kDa fragments from the intact
120 kDa protein on incubation with BFT. The predicted
combined weight of the intracellular and transmembrane
domains of E- cadherin is approximately 30 kDa, suggesting
that cleavage occurs near the plasma membrane. In contrast
with the initial ATP independent cleavage of E-cadherin, deg-
radation to the 28 and 33 kDa fragments and the toxin
induced morphological changes require cellular ATP. These
findings suggest that the initial cleavage step is directly caused
by BFT but that host proteases are responsible for the
subsequent degradation of E-cadherin and alterations in
actin. In theory, proteolysis of the intracellular domain of
E-cadherin may disrupt the association of E-cadherin with
-catenin, which links E-cadherin to a-catenin, therefore
causing actin disruption.

Vibrio cholera

Vibrio cholera is another enteric pathogen that alters barrier
function through the elaboration of a protease. Like B fragilis,
V cholera secretes a zinc binding metalloprotease, termed hae-
magglutinin protease (HA/P), which has the ability to act on a
wide variety of substrates, including cholera toxin, El Tor
cytolysin/haemolysin toxin, and CTX®.”** A mutant strain of V'
cholera of the El Tor biotype (CVD110) that expresses HA/P, but
not the toxins ctxA, zot, hylA or Ace, was shown to decrease
TER and induce alterations in the distribution of F-actin and
ZO-1 in cultured epithelial cells.” Further investigation
revealed that HA/P degrades occludin into two distinct
fragments whereas ZO-1 remained intact.” Immunofluores-
cent staining using antibodies against the intracellular
domain of occludin showed that the cytoplasmic portion of
this protein remained at the cell periphery. The specific bacte-
rial metalloprotease inhibitor Zincov abolished occludin
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degradation and actin rearrangement. These findings suggest
that the HA/P induced cleavage of occludin, alteration of ZO-1,
and rearrangement of actin consequently result in TJ
disruption.

Tight junction proteins as bacterial receptors

Clostridium perfringens

A more recently demonstrated and intriguing role served
by TJ proteins in bacterial pathogenesis is that of a receptor
for bacterial toxins. Clostridium perfringens is an anaerobic
bacterium that is an important cause of food borne
gastrointestinal illness and may also cause antibiotic associ-
ated diarrhoea.”™ Disease is caused by C perfringens
enterotoxin (CPE) producing strains.”” CPE has a C terminal
binding domain, while the biologically active portion of the
toxin is localised to the N terminus.” * Exposure of intestinal
cells to CPE results in tissue damage followed by fluid and
electrolyte secretion.” * After binding to the cell surface, CPE
remains associated with the plasma membrane and increases
membrane permeability.”” CPE membrane interactions lead
to the formation of a series of complexes, 90, 135, 155, and
200 kDa in size, that are thought to be capable of forming
pores in the apical plasma membrane.** CPE binding
correlates with the formation of the 90 kDa complex which
serves as a precursor to the formation of a larger pore form-
ing complex *. Katahira ef al demonstrated that a 20 kDa pro-
tein in Vero cells acted as the receptor for CPE, which they
termed CPE-R.” Two homologous proteins in human intesti-
nal epithelial cells, initially called hCPE-R and hRVP-1, were
subsequently determined to be members of the claudin
family and therefore renamed claudin-3 and claudin-4.>' >
Further investigation determined that the 200 kDa CPE
complex, but not the smaller complexes, also contain the TJ
protein occludin.” Certain point mutations in the N terminus
of CPE abolished the formation of the larger complexes,
whereas formation of the small 90 kDa complex was
unaffected,” suggesting that the presence of occludin in the
larger complex is not simply due to occludin-claudin inter-
actions. Structurally, CPE has been shown to induce
disruption of TJ fibrils and remove claudin-4 from TJs
when applied to the basolateral surface of rat liver cells.”
The C terminal portion alone is able to cause these same
changes in MDCK cells, even though this fragment lacks
cytotoxic activity.” These morphological changes correlate
temporally with decreased TER and increased paracellular
flux.

Subsequent to the discovery that the TJ transmembrane
proteins claudin-3 and -4 serve as receptors for the
bacterial toxin CPE, it was reported that another TJ
transmembrane protein, junctional adhesion molecule,
functions as a receptor for reovirus.” Also, the coxsackievirus
and adenovirus receptor was recently recognised to be a
transmembrane component of the TJ.”” In that this review is
restricted to the impact of bacterial pathogens on intestinal
function, the details of these studies will not be discussed
here.

FLUID AND ELECTROLYTE SECRETION

Background

The intestinal epithelium has a remarkable capacity for fluid
and electrolyte absorption. Approximately 8-9 litre of fluid
enter the gut on a daily basis and all except for 100-200 ml/day
are reabsorbed under normal conditions. Elaborate transport
pathways, under the tight control of various neurotransmit-
ters, hormones, inflammatory mediators, and intraluminal
contents, exist to carry out this function. When this system
becomes disrupted, as with bacterial infection for example,
diarrhoea may result. The following section focuses on the
biology of bacterial induced diarrhoea.
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Figure 2 Various enteric pathogens elicit a chloride secretory response by stimulating either of the two apical chloride secretory channels,
cystic fibrosis transmembrane conductance regulator (CFTR) or calcium activated chloride channel (CaCC). In addition to the various
mechanisms that directly activate these channels, proinflammatory processes induced by various pathogens also have the ability to stimulate
chloride secretion. Thus induction of the proinflammatory cytokine interleukin 8 stimulates the transmigration of neutrophils to the lumen where
they secrete 5'AMP. Conversion of this nucleotide to the secretagogue adenosine leads to chloride secretion. Similarly, induction of nitric oxide
by various pathogens leads to cGMP dependent chloride secretion. DAG, diacylglycerol; TDH, thermostable direct haemolysin; TRH, TDH
related haemolysin; NO, nitric oxide; PGE,, prostaglandin E,; Cox-2, cyclooxygenase 2; ETEC, enterotoxigenic E coli; EAEC,
enteroaggregative E coli; PLC, phospholipase C; CaMKIl, calmodulin dependent protein kinase; PIP2, phosphatidyl inositol 4,5-bisphosphate;

IP3, inositol 1,4,5-trisphosphate.

Epithelial electrolyte transport

Chloride secretion is the principle determinant of luminal
hydration. With chloride secretion, paracellular movement of
sodium follows. The resulting accumulation of luminal
sodium chloride provides an osmotic gradient for the diffusion
of water. Chloride secretion involves the concerted effort of
several transporters. Chloride enters the basolateral mem-
brane via the actions of the Na/K/2Cl cotransporter. Energy for
this transport is largely provided by the inwardly directed
sodium gradient set up by the basolaterally located Na, K-
ATPase. K" channels, also basally situated, provide the exit
route for transported K*. The apically located cAMP depend-
ent cystic fibrosis transmembrane conductance regulator
(CFTR) is responsible for the majority of apical chloride secre-
tion. There are also calcium activated chloride channels
(CaCC) which secrete chloride in response to increased intra-
cellular calcium levels.” The mechanisms whereby pathogens
stimulate chloride secretion via these two transporters are
depicted in fig 2.

Cyclic AMP mediated fluid secretion

Various pathogens, including V cholera, E coli, Salmonella,
Campylobacter jejuni, Shigella dysenteriae, and Pseudomonas aerugi-
nosa, mediate chloride secretion in a cAMP dependent
fashion.” * This is usually accomplished through the elabora-
tion of enterotoxins. The prototypical and best characterised of
these toxins is the AB; enterotoxin family. Cholera toxin from
V cholera and the type I (LTI) and type II (LTII) heat labile
enterotoxins from E coli are among this group. These toxins
consist of an A subunit non- covalently bound to five identical
B polypeptides. The B subunit forms a pentameric structure
and is responsible for toxin binding to the cell surface. The
receptor for the B subunit is the oligosaccharide domain of
ganglioside receptors. Binding specificity is determined by the
B subunit. For example, cholera toxin and LTI bind to ganglio-
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side G,,,, whereas the LTII variants LTIIa and LTIIb bind to G,
and G,,, respectively.”  The A subunit is the enzymatically
active portion of the toxin. It contains a protease sensitive
“nick site” and a disulphide bond. Cleavage of the nick site
and reduction of the disulphide bond results in the release of
two separate protein subunits, A, and A, The enzymatically
active A, subunit ADP-ribosylates the a-subunit of Gs, a
member of the G protein family. ADP-ribosylation of G,
causes it to dissociate from the membrane bound B y G, com-
plex. Once free, it binds to and activates the catalytic subunit
of adenylyl cyclase located on the basolateral membrane.” The
resulting increase in intracellular cAMP levels leads to the
activation of cAMP dependent protein kinase and subse-
quently CFTR. The final result is stimulation of electrogenic CI”
secretion and massive diarrhoea. In fact, CFTR” mice do not
secrete fluid on exposure to cholera toxin.” Cholera toxin may
also indirectly affect intestinal secretion by inducing the
enteric nervous system to release increased levels of
5-hydroxytryptamine.”

Cyclic GMP mediated fluid secretion

Under physiological conditions, increased intracellular cGMP
can also lead to phosphorylation and activation of CFTR by
cGMP dependent protein kinase II, resulting in chloride and
bicarbonate secretion.” Guanylate cyclase is responsible for
the generation of GMP. While several isoforms of transmem-
brane guanylate cyclase exist, this review will focus on guan-
ylate cyclase C (GC-C), which is the receptor exploited by bac-
terial pathogens.

Guanylin and uroguanylin are endogenous small peptides
that stimulate chloride and bicarbonate secretion in the intes-
tine through activation of GC-C.” ® Several bacteria elaborate
heat stable toxins (ST) that share considerable homology with
guanylin and uroguanylin.”*" ST binding to GC-C increases
intracellular cGMP and initiates a signalling cascade, leading
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to phosphorylation of CFTR followed by chloride and bicarbo-
nate secretion.

ST, from enterotoxigenic E coli shares 50% homology with
guanylin and was the first toxin found to activate cGMP. Sub-
sequently, numerous other pathogens have been found to
elaborate STlike toxins. Enteroaggregative E coli produce an
STlike toxin, called EASTI1, which is functionally and
structurally similar to guanylin.” " The EAST1 phenotype has
also been identified with significant frequency in EHEC
(88.0%), EHEC serogroup O157:H7 (100%), EAggEC (41—
86.6%), EPEC (22-58.3%), enterotoxigenic E coli (41%), and
Salmonella species (11.9%).” ”. The EASTI gene of EHEC is
chromosomally located whereas it is plasmid encoded in other
E coli species. Yersinia enterocolitica, V cholerae (O1 and non-Ol1
strains), and Klebsiella pneumoniae also produce heat stable
toxins that are involved in the diarrhoea induced by these
organisms.”’*

Calcium mediated fluid secretion

Intracellular calcium levels are generally very low (approxi-
mately 100 nM) and are under tight physiological control.
Changes in intracellular calcium concentrations are transient,
even in the continued presence of agonist. Calcium is seques-
tered into three compartments, the extracellular space,
mitochondria, and non-mitochondrial intracellular stores. A
number of neurohormonal substances, including acetylcho-
line, serotonin, carbachol, and bradykinin, can increase intra-
cellular calcium by altering the permeability of these
stores.”* Binding of ligand to receptor results in activation of
the membrane associated phospholipase C. This enzyme
hydrolyses phosphatidyl inositol 4,5-bisphosphate (PIP,),
releasing inositol 1,4,5- trisphosphate (IP,) and diacylglycerol
(DAG). IP, then acts to increase intracellular calcium levels
while DAG activates PKC.

“Vibrio parahaemolyticus is an important cause of
gastroenteritis worldwide with the thermostable direct
haemolysin (TDH) toxin being a major virulence factor”

The first human CaCC was cloned in 1998." These apically
located channels are activated by increases in cytosolic
calcium. Regulation of these channels is complex involving
phosphorylation by the calmodulin dependent protein kinase
CaMKII and possibly PKC.* * Vibrio parahaemolyticus is an
important cause of gastroenteritis worldwide with the
thermostable direct haemolysin (TDH) toxin being a major
virulence factor. TDH positive strains cause haemolysis on
Wagatsuma agar medium, known as the Kanagawa phenom-
enon. TDH has been shown to cause intestinal fluid secretion,
cytotoxicity, and a dose dependent increase in intracellular
calcium.” In an experimental model, TDH caused increased
Isc when applied to the luminal surface of colonic epithelial
cells which was inhibited by 4,4'- diisothiocyanatostilbene-
2,2'-disulphonic acid, an inhibitor of CaCC. Similarly, PKC
inhibitors attenuated the increase in intracellular calcium and
Isc caused by TDH, indicating that PKC induced phosphoryla-
tion is also involved.* Kanagawa phenomenon negative Vibrio
parahaemolyticus produce a TDH related haemolysin that also
increases Cl” secretion and raises intracellular calcium similar
to levels seen with TDH.”

Briefly, non-bacterial microbial pathogens, most notably
rotavirus, a common cause of severe diarrhoea in children,*
also exploit a calcium based mechanism to stimulate
intestinal secretion. This involves expression of the non-
structural glycoprotein NSP4 which acts as a viral enterotoxin
to elicit calcium dependent chloride secretion.” ® NSP4 was
shown to increase intracellular calcium through both release
from intracellular stores and through the plasmalemma,
mediated through activation of phospholipase C and IP,
mobilisation.”
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Bacterial driven host derived factors that increase
chloride secretion

In addition to bacterial toxins that function directly as secre-
tagogues, bacterial infection of host intestinal epithelial cells
can also upregulate the expression of host derived products
that, through autocrine or paracrine effects, also stimulate
intestinal, primarily chloride, secretion. Such secondary
events are discussed in this section.

Galanin

Most recently, galanin has been recognised as a mediator of
intestinal ion secretion in response to infection by enteric bac-
terial pathogens. Galanin is a neuropeptide released from the
nerve endings of the enteric nervous system.” In addition to
its ability to modulate intestinal motility, galanin induces
chloride secretion in human intestinal epithelium through
activation of the galanin-1 receptor (Gal-1R).” * Interestingly,
cloning of Gal-1R revealed the presence of putative nuclear
factor KB (NFkB) binding motifs.” Subsequent studies
confirmed that Gal-1R expression is upregulated in an NFKB
dependent fashion and that such upregulation plays a role in
fluid secretion on bacterial infection, as well as in DSS induced
colitis.” ”

“The enteric pathogens EHEC, EPEC, ETEC, Salmonella
typhimurium, and Shigella flexneri were all shown to
increase Gal-1R expression in vitro and in vivo”

Specifically, the enteric pathogens EHEC, EPEC, ETEC,
Salmonella typhimurium, and Shigella flexneri were all shown to
increase Gal-1R expression in vitro and in vivo. The chloride
secretory response to galanin was consequently accentuated
following infection by these pathogens in both model systems
and was significantly reduced by Gal-1R antibody as well as in
Gal-1R” mice.” Further studies demonstrated the galanin
induced secretory response to be a calcium mediated event
although the details of these stimulatory pathways are yet to
be defined.”* Further investigation into this process has
revealed an even broader role for Gal-1R expression and acti-
vation in secretory diarrhoea.” *

Nitric oxide

Another host derived bacterial induced secretory agent is
nitric oxide (NO). NO has several important functions in the
intestinal epithelium, including regulation of barrier function
and antimicrobial activity.”'" NO is synthesised by the
conversion of r- arginine to v-citrulline by nitric oxide
synthase (NOS)."” Recently it has been shown that NO is
capable of stimulating intestinal epithelial chloride secretion
by increasing intracellular cGMP levels.'” Several enteric
pathogens, and even lipopolysaccharide (LPS) alone, have
been shown to activate inducible NOS (iNOS)."” The invasive
bacteria S dublin, S flexneri, enteroinvasive E coli (EIEC), and
Shigella flexneri, but not non-pathogenic non-invasive organ-
isms, are capable of inducing iNOS expression.” ' Infection
by these pathogens was shown to increase intracellular cGMP
and electrogenic chloride secretion.” These responses were
attenuated by inhibitors of NFKB and tyrosine kinases,
thereby implicating their involvement in this pathway.'”

Prostaglandins

Prostaglandins are the products of arachidonic acid metabo-
lism through the cyclooxygenase pathway. Prostaglandin E,
(PGE,) production is catalysed by the enzyme prostaglandin H
synthase (PGHS) and stimulates chloride secretion in epithe-
lial cells.'™ . The invasive bacteria Shigella dysenteriae, Salmo-
nella dublin, Salmonella typhi, Salmonella typhimurium, Yersinia
enterocolitica, and EIEC, but not non-pathogenic bacteria,
induced the expression of PHGS-2 and its products PGE, and
PGF,q, resulting in chloride secretion."’ Similar results have
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been found with other pathogens including Crypfosporidium
parvum, Helicobacter pylori, and Entamoeba histolytica."'™'"
Cyclooxygenase 2 (COX-2) induction by S dublin and EIEC also
resulted in increased prostaglandin production which, in turn,
contributed to chloride secretion.” It is clear therefore that the
host cell response to infection by enteric pathogens is capable
of contributing to the intestinal secretory process, and
ultimately diarrhoea, through a variety of mechanisms. The
advantage to the host is the potential “flushing” of the intes-
tinal lumen and resultant clearing of pathogenic microbes.
The advantage of this process to the microbe is the increased
potential for transmission to additional hosts.

EPITHELIAL RESPONSE TO ENTERIC PATHOGENS:
ACTIVATION OF THE INFLAMMATORY CASCADE
Background

In addition to the effects on TJs and water and electrolyte
secretion, intestinal pathogens are also capable of inciting
inflammation in the gastrointestinal mucosa. While there are
several different mechanisms by which this may occur, the
common final response is the release of cytokines, chemo-
kines, and the recruitment of inflammatory cells. The means
by which this process is carried out is complex, and therefore
not completely understood. The recently described roles of the
NOD proteins, toll-like receptors (TLRs), CD14, and pathogen
associated recognition patterns have certainly shed light on
these complicated interactions and responses. This particular
topic has recently been reviewed'* and so will not be covered
here. Instead, the focus of this review will be limited to that of
signalling pathways that activate the key regulator of inflam-
mation, NFKB.

“In addition to the effects on TJs and water and
electrolyte secretion, intestinal pathogens are also
capable of inciting inflammation in the gastrointestinal
mucosa”

There is tremendous divergence in the signalling pathway
systems that are activated not only by different pathogens but
by a single organism. For example, EPEC infection activates
NFKB, mitogen activated protein (MAP) kinases, tyrosine
kinases, and PKCs, all of which are involved in inducing the
inflammatory response. Detailed knowledge of the signalling
molecules involved in this process and their inter-relationship
will not only allow for a better understanding of the
interaction between bacteria and host, but will also provide
insight into clinical situations in which inflammation goes
unchecked, as in inflammatory bowel disease. This section
begins with an overview of the mediators in gut inflammation
and the messenger systems involved. Finally, the mechanisms
by which inflammation is induced by specific bacterial patho-
gens will be discussed.

Inflammatory mediators

Enteric pathogens elicit expression of a characteristic profile
of cytokines from epithelial cells that recruit effector cells to
the site to clear the infecting organisms. The mucosal immune
system is quite remarkable in its ability to protect against
invasion by pathogens, yet not respond to the commensal bac-
terial flora or dietary antigens. The means by which enteric
pathogens initiate inflammatory signals is complex and just
beginning to be elucidated. After bacterial adherence or inva-
sion, epithelial cells respond by secreting or expressing a char-
acteristic pattern of cytokines, adhesion molecules, and major
histocompatibility complex (MHC) class II molecules. These
molecules, whose expression is regulated by various nuclear
transcription factors and protein kinases, recruit a wide vari-
ety of effector cells, including neutrophils, monocytes,
lymphocytes, and eosinophils to the site of infection.
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Epithelial control of neutrophil transepithelial migration is
mediated by the polarised secretion of distinct chemokines.
For example, interleukin (IL)-8 is secreted basolaterally by the
intestinal epithelium in response to pathogenic bacteria or
specific proinflammatory cytokines (fig 3). This polarised
secretion leads to the creation of IL-8 gradients that are largely
responsible for neutrophil migration through the extracellular
matrices of model epithelia and to the apical surface of
epithelial cells."” Once at the subepithelial surface, further
signals are needed to complete transepithelial migration such
that neutrophils will be strategically positioned adjacent to
the pathogens. One such signal recently described is an
apically secreted factor in response to S typhimurium infection,
termed pathogen elicited epithelial derived chemoattractant
(PEEC). This appears to be purely chemotactic to neutrophils
and does not induce superoxide production or
degranulation."® Further characterisation of this molecule is
awaited.

Interestingly, once the transepithelial migration of neu-
trophils has occurred and these cells are luminally situated,
they also contribute to intestinal epithelial chloride secretion.
Neutrophils release 5'AMP which is converted to adenosine by
the apical membrane enzyme 5' ectonucleotidase (CD73)."”
Interaction of adenosine with the intestinal adenosine recep-
tor A2, stimulates the secretion of ClI" through a Gas and cAMP
dependent mechanism."*

Signal transduction pathways

Nuclear factor kB

NFKB clearly plays a pivotal role in intestinal inflammation.
There is evidence that it also regulates apoptosis in certain cell
lines."” ' NFKB controls the expression of essentially all
proinflammatory cytokines, chemokines, immune receptors,
and cell surface adhesion molecules including IL-1f3, tumour
necrosis factor a (TNF-a), IL-6, IL-8, IL-12, iNOS, intercellular
adhesion molecule 1, vascular cell adhesion molecule 1, T cell
receptor a, and MHC class II molecules. Both invasive and
non-invasive enteric pathogens, but not commensal flora,
trigger the inflammatory cascade through activation of NFkB.
The clinical importance of this is illustrated by the presence of
activated NFkB in the crypt cells of the intestine of patients
with Crohn’s disease and ulcerative colitis. The magnitude of
this activation correlates closely with disease activity as does
the expression of cytokines including IL-8 and IL-6."*""'*

“NFkB clearly plays a pivotal role in intestinal
inflammation”

Inactive NFKB exists as either a hetero- or homodimer in
the cytoplasm, bound to one of the members of the inhibitory
IkB family of proteins. IKB kinase (IKK) phosphorylates
serine residues on IKB, targeting it for ubiquitination by pro-
teasomes, thus liberating NFKB. Dissociation of NFKB from
IkB unmasks the nuclear translocation domain of NFKB,
allowing it to move into the nucleus and activate transcription
of a variety of genes, including those involved in inflamma-
tion.

Recent studies suggest that phosphorylation of the NFKB
RelA/p65 subunit is also necessary for induction of NFkB
dependent transcription. The kinases responsible for this
phosphorylation event have only recently been identified. For
example, TNF-a induced p65 phosphorylation is mediated by
casein kinase II."** ' Phosphorylation of p65 by protein kinase
A is required for efficient binding to the transcriptional
activator protein CBP** PKC{'” as well as phosphotidylinositol
3 kinase'” has also been demonstrated to phosphorylate p65.

The extracellular signals responsible for activation of NFKB
are many and are still being defined but activation of IKK is
the common end point of many of these stimuli. IKK is
activated by phosphorylation but the molecules that perform
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Figure 3 The key proinflammatory pathway induced by enteric pathogens results in nuclear factor kB (NFkB) mediated transcription of
interleukin 8 (IL-8). Secreted IL-8, in addition to factors such as pathogen elicited epithelial derived chemoattractant (PEEC), stimulates the
transepithelial migration of neutrophils. Intraluminal neutrophils target the pathogens for destruction. The precise bacterial components involved
in evoking the inflammatory response and the details of the signalling pathways involved have not been determined in all cases. The mitogen
activated protein kinases (p38, c-Jun NH2 terminal kinase (JNK), and ERK1/2) play a central role in many of these pathways. Pathogen
associated molecular patterns, such as lipopolysaccharide (LPS) and flagellin, bind to cognate toll-like receptors (TLRs) to elicit a response.
Finally, non-IL-8 mediated proinflammatory pathways also exist in epithelial cells. PKC, protein kinase C; EPEC, enteropathogenic Escherichia
coli; kB, inhibitory protein kB; IKK, IkB kinase; NIK, NF«kB inducing kinase; AP-1, activating protein 1.

this task in vivo are unknown. Certain MAP kinases (MEKK]1,
MEKK2, MEKK3, and NIK) have been shown to phosphor-
ylate IKK in vitro but their role in in vivo regulation has yet to
be defined.

Activation of NFKB by cytokines, such as TNF-a and IL-1,
is initiated by their interaction with cognate receptors located
in the cell membrane. In these situations, NFKB inducing
kinase (NIK) communicates with the intracellular domain of
these receptors triggering a complex array of downstream
signalling events that ultimately activate IKK and, in turn,
NFKB. However, there is increasing evidence to suggest that
bacteria employ cytokine independent pathways to activate
NFKB."” The mechanisms by which bacteria stimulate the
NFKB pathway, an area of intense interest, are discussed
below.

MAP kinases

The MAP kinase (MAPK) family is involved in many signal
transduction pathways, including the inflammatory re-
sponse. While this family may be involved in membrane,
cytosolic, cytoskeletal, and nuclear processes, they commonly
target transcription factors that impact a diverse array of cel-
lular functions, including cytokine production,” "*! There are

three parallel MAP kinase cascades, ERK, JNK, and p38 that
can be simultaneously or independently activated. The
cascade is initiated by activation of MAPK kinase kinase
(MAPKKK). One of the best defined means of MAPKKK
activation is through receptor tyrosine kinases."” Receptor
autophosphorylation caused by ligand binding induces the
recruitment of SH2 containing adaptor proteins, which
subsequently recruit guanine nucleotide exchange factors
near the membrane, promoting GTP binding to Ras. GTP
bound Ras binds the protein kinases Raf-1 and B-Raf thus
increasing their protein kinase activity. Raf-1 and B-Raf then
phosphorylate MAPKK, also called MAP/ERK kinases
(MEK), which subsequently phosphorylates and activates the
MAP kinases.

The pathways by which ERKSs are activated have been stud-
ied in a number of cell systems. Signals from many receptors
lead to activation of ERK through Ras-Rafl-MEK."” A Ras
independent pathway that involves Rafl and PKCd has also
been described.”” In addition, the ERK pathway can be
activated by PKCC through its interaction/activation of
MEK."”" " Downstream, ERK may be involved in the
regulation of NFKB through MEK, which has been shown to
activate both IKK-a and IKK-."”" "*
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Protein kinase C

The PKC family consists of 11 identified members divided into
three groups based, in part, on their biochemical and sequence
homologies.""” The conventional PKCs (cPKC-a, B1, B2, and
y) are activated in a calcium and DAG dependent manner.
Novel PKCs (nPKC-9, €, 1, 6, and ) are calcium independent
but DAG dependent. Atypical PKCs (aPKC-{ and M) are DAG
and calcium independent and, in contrast with conventional
and novel PKCs, do not respond to phorbol esters. The differ-
ent isotypes have signal and tissue specificity. For example,
PKCC is involved in signal transduction pathways critical for
cell proliferation and survival.” ' ' This is most likely by
activating ERK and NFKB transcription factors.” P” ">
Studies have demonstrated that the atypical PKCs are required
for TNF-a induced activation of NFkB."”” Additionally, PKC(
has been shown to activate IKKf in TNF-a stimulated cells by
enhancing its interaction with IKK.” ' """ Alternatively,
PKCC can phosphorylate the p65 subunit of NFKB thereby
increasing its DNA binding activity."”

In summary, the above overview highlights the complex
and redundant nature of the regulation of NFKB activation.
The involvement of this singular transcription factor in so
many critical cellular responses mandates such tight yet over-
lapping levels of regulation.

Bacterial activation of inflammation and secondary
messengers

Numerous enteric pathogens activate the inflammatory
response. Whether this is advantageous to the bacterium or
the host remains controversial. In most cases it is probably a
combination of both. Bacteria may use the host cellular appa-
ratus for invasion, attachment, or synthesis of bacterial
proteins. In turn, this exploitation of mammalian molecules
usually results in the activation of mechanisms to clear the
invader. Pathogens utilise many inducers of the inflammatory
cascade. Such redundancy guarantees that inflammation is
the outcome. The above mentioned signalling pathways and
kinases are commonly utilised to achieve this goal.

“Invasion itself is not necessary for induction of
inflammation”

Infection of epithelial monolayers with strains of invasive
bacteria such as Salmonella dublin, Shigella dysenteriae, Yersinia
enterocolitica, Listeria monocytogenes, and enteroinvasive E coli
results in the expression of proinflammatory cytokines such
as IL-8, monocyte chemotactic protein 1, granulocyte
macrophage-colony stimulating factor, and TNF-a."”” "™ In
contrast, cytokine gene expression is not induced after infec-
tion of colon epithelial cells with the non-invasive bacteria
Streptococcus bovis, Enterococcus faecium, E coli serotype 029, or
the non-invasive protozoan parasite Giardia lamblia."” How-
ever, invasion itself is not necessary for induction of
inflammation. Inhibition of invasion of S dublin and S typhimu-
rium does not abolish degradation of 1kB, activation of NFKB,
or IL-8 secretion but bacterial adhesion is required." '

Specific pathogens

Salmonella typhimurium

Salmonella typhimurium is a prototypical bacterium which
induces a robust inflammatory response during infection. This
is mostly mediated through basolateral secretion of IL-8 and
recruitment and activation of neutrophils. IL-6 however is
apically secreted and may also be involved in the inflamma-
tory response.'” Recently, it has been described that soluble
flagellin is translocated across epithelial cells to the basolateral
membrane where it activates NFKB, elicits I1L-8 secretion, and
induces iNOS expression.'® '’ '* The polarity of flagellin activ-
ity is due to the exclusively basolateral localisation of its
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receptor TLR5.'” Flagellin engagement of TLR5 also results in
the recruitment of the adaptor protein MyD88 to the
membrane. These effects are independent of the invasive phen-
otype of Salmonella.'*

“Salmonella typhimurium induced activation of NFkB
and IL-8 secretion is through calcium dependent
phosphorylation of IkBa”

Salmonella typhimurium induced activation of NFKB and IL-8
secretion is through calcium dependent phosphorylation of
IkBa. Inhibition of increased intracellular calcium abolishes
IL- 8 secretion in response to infection.'” The MAP kinases
ERK, JNK, and p38 are also activated in epithelial cells
infected with Salmonella typhimurium and may be involved in
the full expression of the inflammatory response. This activa-
tion is dependent on invasion associated type III secretion.
Inhibition of p38 by SB203580 reduces S typhimurium induced
IL-8 secretion.' Other investigators have found that although
ERK1/2 and JNK are activated in Caco-2 cells by S typhimurium
infection, inhibition of their activation by bromelain does not
prevent IL-8 secretion, invasion of Caco-2 cells, or the drop in
transepithelial resistance caused by Salmonella. In fact,
bromelain paradoxically causes a synergistic increase in IL-8
production with Salmonella infection."” In a monocyte cell line
(U937), Salmonella typhimurium porins activate the transcrip-
tion factors activating protein 1 (AP-1) and NFKB through
activation of the MAP kinase cascade. There is a porin
mediated increase in Raf-1 phosphorylation, which is accom-
panied by phosphorylation of MAPK kinase 2 (MEK1/2), p38,
ERK1/2, and JNK. Inhibition of p38, but not MEK1 or Raf-1,
attenuates porin mediated activation of AP-1 and NFkB."”
Collectively, this information provides evidence that although
the MAP kinases are activated in S typhimurium infection, per-
haps only p38 is involved in modulation of IL-8 expression.
The role of the remaining activated MAP kinases remains to be
determined. In vitro studies suggest that Salmonella invasion
can be uncoupled from its ability to induce PMN transmigra-
tion. Consistent with this, the release of PEEC does not require
bacterial entry but does require SPI-1. The SPI-1 encoded pro-
tein SipA was shown to be required and sufficient for inducing
PMN transmigration but not for bacterial entry."" Following
infection, SipA induces the recruitment of the GTPase ARF6
and its guanine exchange factor ARNO to the apical
membrane.'” Activation of ARF6 results in activation of phos-
pholipase D at this site. The phosphatidic acid generated by
this enzyme is converted to DAG which then recruits PKC to
the apical membrane. This in turn triggers a signalling cascade
that results in the release of PEEC into the lumen. PEEC, a
small stable molecule (<1 kDa), induces a signal transduction
cascade involving the G protein G, and elevation of intracellu-
lar calcium."”” Thus ARF6 appears to act independently of the
IL-8 pathway.

Enteropathogenic Escherichia coli

The pathogenesis of EPEC involves complex host-bacterial
interactions including intimate attachment, type III secretion,
and delivery of effector molecules into host cells.'™ Like Salno-
nella, EPEC induces 1L-8 secretion through activation of NFKB.
However, unlike Salmonella, this occurs in a calcium independ-
ent manner.” " EPEC also activates the MAP kinases
ERK1/2, p38, and JNK. Inhibition of these kinases does not
however affect EPEC induced disruption of TJs or actin accu-
mulation beneath the site of bacterial attachment, but does
significantly decrease IL-8 secretion.'” "”” PKCC also appears to
be involved in EPEC induced inflammation by interacting
with and activating IKK."”” EPEC has also been shown to
stimulate other signal transduction pathways in IEC including
tyrosine kinase,'” phosphatidylinositol 3-kinase,"”” and con-

ventional PKCs."" The contribution of these signalling
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pathways to EPEC pathogenesis or the host response has not
been defined.

Clostridium difficile

Clostridium difficile is the pathogenic organism responsible for
pseudomenbranous colitis and some milder forms of anti-
biotic associated diarrhoea. C difficile causes dramatic inflam-
mation through the elaboration of several toxins. Toxin A for
example has been shown to induce IL-8 secretion in intestinal
epithelial cells." "** Although toxins A and B have both been
shown to induce IL-8 secretion in monocytes through activa-
tion of NFkB, the pathways involved in epithelial cells remain
to be characterised.'”

Shigella

Shigella species infect the basolateral membrane of epithelial
cells and induce the elaboration of a broad range of cytokines,
including: IL-1, TNF-a, IL-6, IL-8, 1L-4, IL-10, interferon v,
TNF-B, and transforming growth factor B." ' Epithelial cells
are responsible for the secretion of IL-6 and IL-8, with the
subsequent recruitment of neutrophils.”” '™ Shigella induced
IL-8 secretion results from NFKB activation.'” This involves
activation of NIK, IKK1/2, and possibly ERK1/2 in an LPS
dependent manner."” *** Shigella are invasive pathogens that
localise to host cell cytosol. It was recently shown that epithe-
lial cells that are refractory to extracellular bacterial LPS
respond to this molecule when it is delivered directly into the
cytosol.” LPS delivered into the cytosol by invasive Shigella
Slexneri was able to stimulate NFKB, possibly via the JNK path-
way (see above). This response was dependent on a cytosolic
protein called CARD4/Nodl and was blocked by dominant
negative CARD4. On S flexneri infection, CARD4 oligomerises
and forms a transient complex with RICK and the IKK com-
plex. It is possible that other CARD-4-like proteins may play a
role in the recognition of, and response to, other bacterial
determinants.

Helicobacter pylori

Helicobacter pylori is a gram negative bacteria capable of
colonising the gastric mucosa. Colonisation induces chronic
gastritis and increases the risk of peptic ulcer disease, gastric
adenocarcinoma, and MALT lymphomas."” "' The risk of such
complications may be related to the presence of the cag (cyto-
toxin associated antigen) pathogenicity island in certain
strains of H pylori."”*"** CagA positive H pylori have a much
more profound effect on IL-8 secretion and mucosal inflam-
mation than cag4 negative strains.”*" H pylori induced I1L-8
secretion occurs through activation of NFKB and AP-1 and
requires proteins encoded by the cag pathogenicity
island."””"” The upstream activators of NFKB appear to involve
TRAF2 and TRAF6 activation of NIK with the subsequent
activation of IKK, leading to IkB degradation and NFkB
release.”” The MAP kinase pathway also plays a key role. CagA
positive H pylori rapidly activates ERK, p38, and JNK MAP
kinases.”” Simultaneous inhibition of MEK-1 and p38
completely abolishes IL-8 production but has no effect on
NFKB activation suggesting that alternative mechanisms are
responsible. The MAP kinase JNK is involved in the activation
of AP-1 which along with NFKB may be required for full IL-8
gene expression.” In addition to IL-8 secretion, H pylori also
induces epithelial cell derived neutrophil activating protein 78
(ENA-78).”” However, unlike IL-8, ENA-78 expression does
not appear to be correlated with the presence or absence of the
cagA phenotype.

SUMMARY

The effects of pathogenic organisms on host intestinal epithe-
lial cells are vast. Innumerable signalling pathways are
triggered leading ultimately to drastic changes in physiologi-
cal functions. We have attempted in this review to touch on
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ways in which enteric bacterial pathogens utilise and impact
upon the three major physiological functions of the intestinal
epithelium: the TJ barrier, active ion transport, and induction
of the inflammatory response. This field of investigation,
which was virtually non-existent a decade ago, has now
exploded, thus rapidly expanding our understanding of bacte-
rial pathogenesis. Through increased delineation of the ways
in which microbes alter host physiology, we simultaneous gain
insight into the normal regulatory mechanisms of the intesti-
nal epithelium.
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