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Dendritic cells are antigen presenting cells that are likely to
be pivotal in the balance between tolerance and active
immunity to commensal microorganisms that is
fundamental to inflammatory conditions, including Crohn’s
disease and ulcerative colitis. Interactions between
dendritic cells and microbial products are discussed and
how they contribute to regulation of immune responses.
The concept that interactions between dendritic cells and
commensal organisms may be responsible for maintaining
intestinal immune homeostasis is also explored.
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SUMMARY
Dendritic cells (DC) are antigen presenting cells
that act as sentinels, acquiring antigen and
transporting it to lymphoid tissue where they
have the unique ability to activate naı̈ve T cells.
From this pivotal position at the intersection of
innate and adaptive immunity, DC shape many
aspects of the developing immune response. They
can determine whether non-responsiveness (tol-
erance) or an active immune response occurs,
whether a type 1 or type 2 response predomi-
nates, and they may control tissue specific
homing of antigen specific effector cells.
Microbial products play a central role in mod-
ulating DC function and influencing these
different immune outcomes. Using molecules
including toll-like receptors, DC recognise and
respond to microbe specific molecular structures.
DC can distinguish between and initiate different
responses to even closely related organisms.
Emerging evidence suggests that intestinal DC
are critical for regulation of immunity in the gut.
They are likely to be pivotal in the balance
between tolerance and active immunity to
commensal microorganisms that is fundamental
to inflammatory conditions, including Crohn’s
disease and ulcerative colitis. Here, we describe
how interactions between DC and microbial
products contribute to regulation of immune
responses and explore the concept that interac-
tions between DC and commensal organisms
may be responsible for maintaining intestinal
immune homeostasis.

INTRODUCTION
The balance between tolerance and an active
immune response to antigens in the intestine is
fundamental to the pathogenesis of inflam-
matory gastrointestinal conditions, including

Crohn’s disease and ulcerative colitis. One of
the immune cells central to this process, the
‘‘conductor of the immune orchestra’’, is the
dendritic cell (DC) (fig 1). DC sample enteric
antigens and present them to the immune
system. They can control whether an immune
response occurs to a particular antigen and shape
the nature of any response. Modulation of
dendritic cells by bacterial products influences
these different outcomes and therefore interac-
tions between dendritic cells and bacteria are
central to the regulation of intestinal immunity.

In this review, we initially briefly discuss the
immunobiology of DC, drawing mostly on work
on cells from outside the gut, and then consider
how DC are modulated by bacterial products. The
focus then moves to the emerging information
on intestinal DC and their importance for
immunoregulation. Finally, we discuss the inter-
action between DC and the commensal micro-
flora, to speculate how this interaction may be
responsible for maintaining intestinal immune
homeostasis.

THE BIOLOGY OF DENDRITIC CELLS
What are dendrit ic cells?
DC are bone marrow derived antigen presenting
cells. They are present in small numbers in most
tissues but have a disproportionately large
influence on immune responses. For example,
one DC can influence the function of between
300 and 1000 T cells. For a detailed discourse on
DC biology, the reader is referred to a number of
recent reviews.1–5 DC have two major functions:
acquisition of antigen and stimulation of lym-
phocytes.6 Usually antigen acquisition occurs in
peripheral tissues by ‘‘immature’’ DC which are
endocytically active cells expressing low levels of
cell surface MHC class II and costimulatory
molecules (for example, CD80, CD86, and
CD40). These immature DC are weak stimulators
of T cell proliferation. As illustrated in fig 2, most
immature tissue DC are replenished from circu-
lating blood precursors that arise in the bone
marrow and may include monocytes as well as
the blood DC population.
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DC undergo maturation and migrate to draining lymph
nodes in response to signals that indicate local ‘‘danger’’ or
tissue damage. These signals include microbial products
and/or cytokines such as tumour necrosis factor a (TNF-a).
During maturation, DC upregulate their expression of
MHC class II and costimulatory molecules and acquire
the ability to stimulate naı̈ve T cells. Communication
between DC and T cells is a two way process with
important interactions occurring particularly between mem-
bers of the TNF and TNF receptor protein families.7 8 These

interactions serve to further activate the DC and regulate
their survival.

Control of immune responses by DC
Both the maturational state and type of DC influence the
subsequent T cell response. Immature or partially mature DC
that traffic from peripheral to lymphoid tissue presenting self
antigens9 inhibit potentially autoreactive T cells that have
escaped thymic deletion.10 11 Non-responsiveness is not
confined to self antigens but can also be induced to foreign
antigens if they are delivered in a way that avoids activation
of DC.12

In contrast, ‘‘mature’’ DC can activate and drive clonal
expansion of proliferative T cells. They also shape the
functional differentiation of these dividing T cells. DC derived
signals are a major influence on the generation of polarised
Th1 and Th2 responses.4 DC can produce interleukin (IL)-12,
IL-18, and IL-23 contributing to a Th1 response.13 They can
produce IL-4(Kelleher and colleagues14 and Maroof, personal
communication) or IL-10,15 contributing to a Th2 response or
the generation of regulatory T cells. Some activated DC
induce regulatory T cells or tolerance16 17 and may act to limit
an established immune response in order to minimise
inflammatory collateral damage.

DC can be divided into subsets that differ with regard to
phenotype, function, and anatomical location.3 5 18 19 These
subsets may have predetermined functions or display
plasticity, depending on their local environment.

Two major DC populations are present in human periph-
eral blood. CD11c+ DC are termed DC1 or myeloid DC. They
express high levels of the granulocyte macrophage-colony
stimulating factor (GM-CSF) receptor but low levels of the
IL-3 receptor (CD123). In contrast, CD11c2 DC are called
plasmacytoid or lymphoid DC. They express high levels of
CD123 but little GM-CSF receptor and require activation
before displaying characteristic stimulatory activity in vitro.
They are sometimes called precursors of DC2 (pDC2) because

Figure 1 Scanning electron micrograph of a human dendritic cell (from
the work of Brigid Balfour, courtesy of Nick English).
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Figure 2 The life history of dendritic cells (DC). DC precursors derived from the bone marrow (BM) migrate via peripheral blood to lymphoid tissue or
non-lymphoid tissue where they briefly reside as ‘‘immature’’ cells capable of efficient antigen uptake but expressing low levels of costimulatory
molecules. In response to cytokines and microbial products, these DC migrate to draining lymph nodes and mature into highly immunostimulatory cells.
Some DC constitutively migrate as non-activated or partially activated cells and these DC may play a role in tolerance.
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of their relative immaturity. In contrast, in the mouse there
are three major DC populations, all of which are CD11c+:
myeloid, plasmacytoid, and ‘‘lymphoid’’ DC populations. The
lymphoid population, for which there is currently no human
equivalent, is characterised by expression of a homodimer of
the CD8a molecule. The relationship between these CD8aa+
‘‘lymphoid’’ DC and other mouse DC populations remains
controversial20 but progenitors have been identified that can
give rise to all subtypes of DC.19 21–23

‘‘Many studies have linked DC subsets with particular
functions, such as Th1/Th2 differentiation or tolerance
induction’’

Many studies have linked DC subsets with particular
functions, such as Th1/Th2 differentiation or tolerance
induction. For instance, production of large amounts of type
1 interferons (IFN-a/b) in response to viral antigens is
characteristic of plasmacytoid DC in both humans and
mice.24–26. In general, murine CD8aa+ DC and human myeloid
DC are associated with elevated IL-12 production and the
generation of IFN-c producing Th1 cells.27 28 However, the
concept of DC subtypes producing fixed patterns of response
is probably an oversimplification. Indeed, myeloid DC from
mice have been reported to favour the generation of either
Th1 or Th2 responses.28–30 Human CD11c2 plasmacytoid DC
can produce IFN-a leading to the generation of IFN-c
producing T cells, but can also generate Th2 responses.27 A
role for murine plasmacytoid DC in generating Th1 responses
is indicated by their ability to make IL-12.26 It is likely that
the profile of DC cytokine production is not fixed but
regulated by environmental signals, including microbial
products.31

MODULATION OF DENDRITIC CELL FUNCTION BY
MICROBIAL PRODUCTS
Microbial products such as lipopolysaccharide (LPS) sti-
mulate DC maturation. However, the full complexity of
the interaction between DC and microbes is only now
being recognised. Exposure of DC, grown from mouse
bone marrow, to an antigen from the nematode
Acanthocheilonema viteae promoted the generation of a Th2
response whereas exposure to LPS favoured a Th1 response.32

In human studies using monocyte derived DC, an extract
from the heliminth Schistosoma mansoni, or to a bacterial toxin
from Vibrio cholerae, favoured Th2 responses, whereas Bordella
pertussis toxin or the viral mimic poly(I:C) generated Th1
responses.33

As illustrated in fig 3, DC can distinguish between closely
related microbial structures or organisms. LPS from
Escherichia coli stimulated IL-12 production and generated a
Th1 response in mice whereas LPS from Porphyromonas
gingivalis did not stimulate IL-12 production and generated
a Th2 response.34 Murine DC lines produced IL-12 and primed
Th1 responses when they ingested Candida albicans as a
unicellular yeast whereas IL-4 was produced, IL-12 inhibited,
and Th1 priming downregulated when the hyphal form of the
fungus was ingested.35 A single amino acid change appears
sufficient to account for the ability of a Theiler’s virus variant
to stimulate IL-10 production from mouse spleen DC rather
than the production of IL-12 observed with the wild-type
virus.36

‘‘By responding differentially to different types of
microbes, DC can signal the nature of the pathogen’’

Oligonucleotide microarrays have been used to compare
gene expression profiles of human monocyte derived DC

exposed to Candida, influenza virus, or E coli (or components
thereof).37 Of approximately 6800 genes on an array, 1330
were altered in expression in the presence of at least one of
the stimuli. Some response occurred to all antigens but others
were stimulus specific. By responding differentially to
different types of microbes, DC can signal the nature of the
pathogen.31 This type of study demonstrates the principle that
DC can discriminate between microbes. However, monocyte
derived DC may not be representative of all DC populations
and microarray analysis has yet to be performed on DC from
the intestine. Gut DC may interact with microbial products in
a distinct manner (see below).

How do DC sense their microbial environment?
DC express a series of promiscuous surface receptors (pattern
recognition receptors) that recognise common structural
elements of microorganisms. Cell wall components such as
LPS or peptidogycan, umethylated CpG motifs in bacterial
DNA, or double stranded viral RNA are recognised by Toll-
like receptors (TLRs) which take their name from the
structurally related Drosophila receptor called Toll. Ten
members of the TLR family have currently been reported
and for some the microbial product recognised has been
reported.38 TLR4 is required for recognition of LPS from E coli,
TLR2 is required for recognition of Gram positive cell wall
components including peptidoglycan and certain lipopro-
teins39 and LPS from Porphyromonas gingivalis, TLR5 recognises
flagellin from Gram negative bacteria, and TLR9 recognises
GpG motifs from bacterial DNA. TLR4 is essential for both
maturation and cytokine production in LPS stimulated
murine DC.40 Signalling through different TLRs generates
distinct biological responses and differential expression of
TLR by different subsets of DC41–44 may allow DC subsets to

Th1

Th1

Th1

Th2

Th2

Th2
IL-10

IL-12

IL-4

IL-12

No IL-12

IL-12

Murine spleen DC

Murine DC line

Murine CD8αα+ DC

E coli

P gingivalis

LPS

Candida albicans

Theiler's virus

Unicellular
yeast

Hyphae

Wild-type

Variant

Figure 3 Closely related organisms or microbial products can stimulate
dendritic cells (DC) to make different cytokines and as a consequence
can shape a developing T cell response. IL, interleukin; LPS,
lipopolysaccharide. (See text for details.)
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respond to particular microbial structures in a specific
manner.

DC also express several C-type lectin receptors.45 The best
characterised of the C-type lectins is DC-SIGN (DC specific
intercellular adhesion molecule 3 grabbing non-integrin).
DC-SIGN interacts with intercellular adhesion molecule
(ICAM)-2 on vascular endothelium to promote extravasation
of immature DC46 and with ICAM-3 on T cells to stabilise the
immunological synapse and enhance T cell activation.47 DC-
SIGN also binds a number of micobial products.48–51 Binding
of the mycobacterial cell wall component lipoarabinomannan
to DC-SIGN inhibits DC maturation in response to other
microbial signals, possibly by interfering with TLR signal-
ling.50 Therefore, the functional activity of a DC population in
a given anatomical site may depend on the balance of
conflicting microbial signals as well as other environmental
signals.

DENDRITIC CELLS IN THE INTESTINE
The specialised immune system of the gut needs to respond
appropriately to the large antigenic load normally present in
the form of food antigens and commensal bacteria as well as
to occasional pathogenic organisms. DC are likely to be
central to this process. They are present in organised
lymphoid tissue associated with the intestine—that is,
Peyer’s patches, mesenteric lymph nodes, and the more
recently described cryptopatches and isolated lymphoid
follicles/lymphocyte filled villi.52–54 DC are also present in
the lamina propria and possibly in the epithelium.30 55

Reflecting the specialised environment of the intestine, gut
DC have distinct properties and functions.15 56–58

‘‘The population of gut DC is a dynamic one, with cells
constantly trafficking into and out of the gut compartment’’

The population of gut DC is a dynamic one, with cells
constantly trafficking into and out of the gut compartment.
In the steady state, DC transit through the gut with a
turnover time of a few days.59 This is comparable with
estimates for survival at other mucosal sites but is consider-
ably more rapid than the turnover of Langerhans’ cells in the
skin.60 61 Migration of gut DC can be further increased by
inflammatory stimuli, including TNF-a.62 Our recent studies
on DC in the murine colon have demonstrated the presence
of both CD11b+ and CD11b2 DC subpopulations but no
CD8a+ DC. In the human colon, lamina propria DC are
largely CD11c+ ‘‘myeloid’’ cells63 with few identifiable
plasmacytoid (CD11c-CD123hi) DC. However, these CD11c+
human colonic DC are themselves heterogeneous. The
functional significance of this variation in DC subsets is
currently under investigation.

Sampling of luminal contents by dendritic cells
Intestinal DC are in close apposition with the gut contents
and can sample antigens from the intestinal lumen (fig 4).64 65

Traditionally, much emphasis has been placed on sampling
via M cells of the follicle associated epithelium in the Peyer’s
patch of the small intestine but additional routes of antigen
sampling are also likely to be involved. Firstly, DC in the
lamina propria may open tight junctions between epithelial
cells sending processes into the lumen to sample antigen
directly.66 Expression of tight junction proteins by DC
themselves preserves the integrity of the intestinal barrier.
Secondly, DC may acquire antigen indirectly. DC internalise
apoptotic epithelial cells57 or may take up antigen bearing
exosomes shed from epithelial cells.67 68 Thirdly, antigenic
material interacts directly with DC in underlying tissue.
This may occur particularly when epithelial integrity is
compromised.

Control of intestinal immune responses by dendritic
cells
In laboratory mice, the intestinal mucosa is particularly
conducive to induction of helper T cells producing type 2 (IL-
4, IL-5, and IL-10) and type 3 (transforming growth factor b
(TGF-b)) cytokines. This pattern of cytokine production
creates an environment that favours the production of IgA
and T cell non-responsiveness to fed antigens (oral toler-
ance), two characteristic features of immunity in the gut. In
turn, the pattern of T cell cytokine production is probably
controlled by signals from the activating gut DC. Murine
Peyer’s patch DC upregulate IL-10 rather than IL-12p4015 69

and generate T cells that produce high levels of IL-4 and IL-10
and less IFN-c. In contrast, DC from the spleen produce IL-
12p40, but little IL-10, and generate T cells producing
predominately IFN-c.15 Gut DC may also have the ability to
make TGF-b.15 58 70

It is currently unclear whether the immune environment in
the human intestine is the same as that in the laboratory
mouse. In the human gut, responses may be biased towards a
type 1 profile rather than a type 2 pattern,71 possibly as a
result of differences in the commensal microflora between
the two species.72 Ways in which interactions between DC
and bacteria may differ between mice and men remain to be
explored.

‘‘DC are involved in the generation of oral tolerance in
mice’’

DC are involved in the generation of oral tolerance in mice.
Treatment with the growth factor Flt3L, which increases DC
numbers in the gut associated lymphoid tissue, reduces the
concentration of antigen required to oral tolerance.73 The
expanded DC population is of a resting or ‘‘immature’’
phenotype. This immature state is critical for enhanced oral
tolerance because coadministration of IL-1a, as a DC
activating stimulus, converts a tolerogenic response into an
active one.74

Gut DC may also be able to influence migration and tissue
specific homing of the lympocytes that they activate.
Lymphocytes that have been activated in lymphoid tissue
have a propensity to home back selectively to the gut and to

Lumen

Epithelium

Lamina
propria

DC

DC4

3 1
2

M
cell

Figure 4 Sampling by dendritic cells (DC) of antigens in the intestinal
lumen. At least four pathways have been described by which DC can
acquire gut antigens: (1) following transport of antigens by M cells; (2)
by reaching between epithelial cells directly into the lumen; (3) via the
epithelium, either by uptake of material transported by epithelial cells or
following uptake of apoptotic epithelial cells; and (4) by direct access to
antigens as a result of breaks in the integrity of the epithelium.
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other mucosal sites.75 Interactions between the addressin
MAdCAM-1 on endothelial cells and the integrin a4b7 on
lymphocytes contribute to entry of these lymphocytes into
intestinal tissue.76 77 We have observed that threefold more T
cells express high levels of a4b7 if they are activated in vitro
by mouse DC from mesenteric lymph nodes than if they are
activated by DC from peripheral lymph nodes.58 Thus gut DC
may target T cells back to intestinal tissue (fig 5).

Accumulating evidence that gut DC have distinct func-
tional properties raise questions about whether these proper-
ties are determined by effects on DC of the local
microenvironment or whether there may be functionally
committed DC precursors that home selectively to intestinal
tissue (fig 6). Locally acting factors may include cytokines,
arachidonic acid metabolites, or direct action of microbial
products in the gut lumen. Blood precursors of skin
Langerhans’ cells have a distinct phenotype78 79 providing a
precedent for the concept of tissue specific precursors.

The b7 integrins may be important in the migration of
committed DC precursors into the gut (fig 6). DC precursors
in human peripheral blood are heterogeneous in their level of
expression of a4b7.80 a4b7 may therefore contribute to a
generalised mechanism of cell entry into intestinal tissue and
provide a mechanism to direct subpopulations of DC
precursor to the gut.

ALTERATION OF DENDRITIC CELLS IN
INFLAMMATORY BOWEL DISEASES
Given that the inflammatory bowel diseases (IBD) are related
to dysregulated immune responses to intestinal flora, an
examination of the role of the DC as a central mediator
demands investigation. It is now possible to extract sufficient
numbers of DC from the human gut to perform phenotypic
and functional studies.63

‘‘DC from inflamed Crohn’s disease lamina propria
express higher levels of CD40 than DC from non-inflamed
Crohn’s disease or from healthy control tissue’’

DC from inflamed Crohn’s disease lamina propria express
higher levels of CD40 than DC from non-inflamed Crohn’s
disease or from healthy control tissue.81 Elevated levels of
CD40 returned to normal following treatment with anti-TNF-a.
These findings on isolated cells are consistent with
immunohistological studies showing increased numbers of
DC expressing CD40, CD86,82 CD83,83 84 and CD8084 in
mucosal tissue from Crohn’s disease and ulcerative colitis
patients. CD40 is thought to play an important role in DC
activation and inflammation; signalling via CD40 causes DC
IL-12 production, upregulation of CD134L (OX40L),
increased DC maturation, and enhanced DC survival. The
ligand for CD40 is also upregulated in the mucosa of IBD
patients.85

A number of other studies in human IBD have identified
changes in myeloid-type antigen presenting cells that
probably include DC.86–90 However, the markers used to
identify cells did not always permit DC and monocyte/
macrophage populations to be fully discriminated. These
issues will be clarified by detailed functional analysis of
separated cells in conjunction with histological studies.
Currently, comparison of immunohistological analysis of
DC with studies on isolated cells is made difficult by the use
of different markers to identify the cells in the two
experimental settings.

Colonic lamina propria DC also show evidence of activation
in murine models of colitis91 and recent experiments suggest
that DC play an early and fundamental role in disease. In
immune deficient mice, DC aggregates were identified under
the basal crypt epithelium at the mucosa/submucosa junc-
tion. When pathogenic T cells were transferred to these mice
they clustered and proliferated in these aggregates 5–10 days
before overt colitis could be detected, suggesting that the DC
were involved in the initial activation or restimulation of
pathogenic T cells.92 In a model in which colitis was induced
by transfer of CD45RBhi T cells into immune deficient mice,
there was a 15–36-fold increase in the number of activated
(CD134L+) DC in the mesenteric lymph nodes.93 Antibody to
CD134L blocked development of colitis, supporting an
important role for CD134L+ DC. DC accumulating in the
colon of these colitic mice were not CD134L+, implicating the
mesenteric nodes as the likely site of interaction between
CD134+ T cells and CD134L+DC. Although these two studies
place a different emphasis on the location of T cell-DC
interaction, they both support a central role for this
interaction in the development of disease.

INTERACTION OF GUT DENDRITIC CELLS WITH
COMMENSAL BACTERIA
The preceding sections have provided evidence for the central
role of DC in immunoregulation, the specialised functions of
gut DC, and the crucial ways in which bacteria modulate DC
function. It remains to be determined how gut DC are
influenced by the intestinal bacterial flora and whether
coexistence with this large number of bacteria requires
functional adaptation on the part of intestinal DC. DC are
present in the GALT of germ free animals57 but detailed
functional analysis of these DC populations has not been
performed.

Sampling of luminal contents will expose DC to potentially
activating microbial products. DC bearing antigens from
intestinal bacteria are present in MLN but not other nodes or
spleen of normal mice94 and this could result from
constitutive sampling of the flora. Specific IgA95 and T cell
responses96 indicate immune recognition of antigens from the
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Figure 5 Control of tissue specific lymphocyte homing by dendritic cells
(DC). DC draining from the intestine, but not the skin, can induce
expression of the mucosal homing integrin a4b7 on naı̈ve T cells that
they activate. In conjunction with the possible induction of other
molecules associated with homing to the intestine (for example, CCR9)
this expression may allow DC to target effector cells efficiently to the site
of intestinal antigenic challenge. By analogy, molecules associated with
lymphocyte homing to the skin (for example, CLA, P-selectin ligand,
CCR4, or CCR10) may be induced by skin draining DC.102
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flora. Moreover, translocation or penetration of intestinal
bacteria into the underlying tissue does occur,97 making them
available to DC deeper in the tissues. Translocation does not
normally harm the host because the organisms are removed
by phagocytic cells; abdominal abscesses containing enteric
commensals develop in mice whose phagocytic killing is
severely impaired.98

Gut DC may regulate responses to the normal flora in a
way that is analogous to the induction of tolerance to self
antigens by other immature DC populations. But how would
immature gut DC avoid becoming activated by gut bacteria, a
state that would be predicted to result in active immunity
rather than non-responsiveness? This area requires much
further study but work from our unit has shown that colonic
DC can produce both IL-12 and IL-10 when cultured with
bacteria.99 The predominant cytokine depends on the nature
of the stimulus: cell walls from Bifidobacterium longum
stimulate predominately IL-10 production whereas LPS
stimulates production of IL-12 but little IL-10. This differ-
ential modulation of DC by microbial products suggests that
treatment with probiotic bacteria may function in part by
modulating the function of gut DC.58 100 101

CONCLUSIONS
Two aspects of gut immune regulation are now well
established: (i) the intestinal microflora plays a critical role
in the maintenance of health and disease in the gut; and (ii)
DC play a central role in regulating immunity. The recogni-
tion that DC function is highly plastic and regulated by
microbial products provides a potential link between these
two sets of findings. Understanding the interaction between
specialised populations of gut DC and the commensal flora
may prove a key to understanding immune regulation in the
gut and open the way for new therapeutic approaches for
inflammatory bowel diseases.
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