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A
poptosis, the morphologically defined form of programmed cell death, is a cellular process

that is of tremendous current interest to clinicians who study and treat cancer.1 Nowhere is

this more true than in the area of colorectal cancer and its management. Abnormalities in

apoptotic function contribute to both the pathogenesis of colorectal cancer and its resistance to

chemotherapeutic drugs and radiotherapy, both of which act, at least in part, by killing cancer

cells. In this article, current knowledge of the mechanisms of apoptosis and their place in the

pathogenesis of colorectal cancer will be reviewed together with the progress that has been made

in the development of therapies designed to target apoptosis.

STRUCTURE OF THE NORMAL COLONIC EPITHELIUMc
Before discussing apoptosis itself it is important to understand the hierarchical organisation of

intestinal epithelium as this is central to any appreciation of the pathogenesis of colorectal cancer.

Colonic epithelial cells are configured in deep invaginations into the wall of the colon called

crypts. These cells arise from stem cells that are located at the base of the crypt and migrate to the

luminal surface of the crypt where they are shed.2 Evidence is accumulating that stem cells do not

have unique intrinsic properties but rather are epithelial cells that acquire self renewal together

with related properties as a result of being located within a specialised niche.3 To date, no markers

for stem cells have been identified although significant advances have been made towards this

holy grail.4 Stem cells divide asymmetrically, with newly synthesised DNA donated to daughter

cells that migrate up the crypt ultimately to be shed while ‘‘old’’ DNA is retained in the stem cell

population.5 This renders the stem cell particularly vulnerable to developing mutations that might

evolve into a malignant clone. To counteract this possibility, cells at the base of crypts, and

therefore presumably stem cells, are highly prone to apoptosis, an altruistic form of cell death that

rids the organism of cells harbouring dangerous mutations.6

APOPTOSIS IN THE NORMAL INTESTINE
In the unstimulated state there is a relatively low background rate of apoptosis that is restricted to

the base of the crypt where stem cells are believed to reside. These epithelial cells have been

shown to have a marked tendency to undergo apoptosis following DNA damage.6 Food

constituents that are known to prevent the development of colorectal cancer have been shown to

enhance apoptosis following DNA damage and this may reflect an important mechanism of

cancer prevention.7 These constituents include butyrate,8 9 flavonoids,10 and glucosinate break-

down products from brassicas.11 The mechanism by which DNA damage induces apoptosis in the

intestine has not been not fully elucidated though the DNA glycosylase MDB4 plays an important

role in detecting damage and coupling this to apoptosis thereby suppressing neoplasia in APCMin/+

mice.12 Furthermore, knockout experiments in mice have shown that apoptosis induced by low

dose gamma radiation (,10 Gy) is mediated by both BAX and p53 and is antagonised by bcl-2

and bcl-w and is restricted to epithelial cells.13–16

High dose (.10 Gy) radiation to mice not only induces apoptosis in epithelial cells but also in

the endothelial cells of blood vessels supplying the intestinal mucosa. Ceramide is an important

mediator of endothelial apoptosis following high dose radiation damage and is antagonised by

basic fibroblast growth factor.17 The ischaemic damage caused by endothelial apoptosis may be a

key mechanism of action of radiotherapy.18 Although it is possible to induce substantial amounts

of apoptosis in crypt epithelial cells it does not appear possible to kill all cells through apoptosis

alone. There remains a population of cells that seems resistant to induction of apoptosis. Total cell

loss is only achieved if a cell cycle arrest mechanism is imposed in addition to induction of

apoptosis. The sterilised cells migrate out of the crypt but are not replaced, resulting in destruction

of the mucosa.19

A fascinating feature of apoptosis in the intestine is that epithelial cells on the villus of the

small intestine and the table of the colon appear to be highly resistant to apoptosis.20 This is

despite the fact these same villus cells having migrated from the crypt only hours earlier. The
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molecular mechanism underlying this loss of ability to

undergo apoptosis is unknown. The only stimulus known

to induce apoptosis on the villus is ischaemia/reperfusion

injury.21 Villus apoptosis has also been observed in the

artificial situation of mice lacking N-cadherin in their

epithelial cells.22

APC, WNT SIGNALS, AND THE STEM CELL NICHE IN
NORMAL INTESTINE
The molecular signals that create the stem cell niche at the

base of the colonic crypt are currently being identified and

have already been implicated in the regulation of apoptosis.

Central to this niche is regulation of b-catenin/T cell factor

(Tcf) activity by the Wnt signalling pathway.23 In the absence

of WNT signals, b-catenin is held in a complex with glycogen

synthase kinase 3b (GSK3b), axin/conductin, and adenoma-

tous polyposis coli (APC) that is rapidly degraded.24 GSK3b

functions to target b-catenin for destruction by ubiquitina-

tion. Wnt proteins, of which 19 have been identified in

humans, are secreted from myofibroblasts surrounding the

base of the crypt.25 On binding to receptors called ‘‘Frizzled’’

on crypt epithelial cells, GSK3b activity is inhibited and

degradation of b-catenin prevented (fig 1). The accumulating

b-catenin translocates from the cytosol to the nucleus where

it binds to members of the Tcf/Lef1 (lymphoid enhancer

factor 1) family. Activation of Tcf/Lef dependent transcription

leads to transactivation of a genetic programme that has a

number of consequences. Firstly, Tcf/b-catenin activity acts

as a switch, which when ‘‘on’’ promotes proliferation and

suppresses differentiation and when ‘‘off’’ suppresses pro-

liferation and promotes differentiation. Transgenic expres-

sion of the secreted Wnt inhibitor dickkopf-2 results in loss of

crypts and a reduction in proliferation.26 c-MYC is a target

gene of TCF transactivation and is one of the mediators of

this switch and drives proliferation. Downregulation of c-Myc

leads to cell cycle arrest through an increase in activity of the

cell cycle inhibitor p21WAF1/CIP1.27 A second output is the

control of cell migration in which cells that will differentiate

into goblet, absorptive, and endocrine cells migrate up the

crypt and Paneth cells migrate downwards. This is achieved

through inverse expression of EphB receptors and their

ligands ephrin-B in opposite directions along the crypt axis.28

Current data do not explain the extreme tendency of cells at

the crypt base to undergo apoptosis following DNA damage.

It seems reasonable to speculate that this property may be

regulated ultimately by Wnt signalling.

INTRINSIC AND EXTRINSIC PATHWAYS OF
APOPTOSIS (TABLE 1)
A remarkable feature of apoptosis is that the essential

features of its regulation are conserved in all metazoans.29

Study of cell death pathways in the nematode worm

Caenorhabditis elegans has proved enormously helpful in

identifying the key elements of cell death mechanisms.

During its development, 131 of its 1090 cells invariably die.30

Pioneering experiments by Horvitz established that two genes

ced-3 and ced-4 were invariably required for death while

ced-9 prevented cell death. Ced-3 proved to be a protease and

a homologue of a mammalian protease family called caspases

that utilise a cysteine nucleophile to cleave aspartate motifs

in target proteins.31 Caspases are synthesised as inactive
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Figure 1 A simplified diagram of the
Wnt/APC pathway. DKK, dickkopf-1;
DSH, dishevelled; APC, adenomatous
polyposis coli; TCF, T cell factor; Eph,
ephrin.

Table 1 Apoptosis pathways

Intrinsic

c Activated by many different types of cellular stress

c Activation controlled by ‘‘BH3 only’’ members of the Bcl-2 family

c Regulated at two sites:

- release of cytochrome c from mitochondria

- caspase activity

c Initiator caspase—caspase 9
Extrinsic

c Important effector mechanism in the immune system

c Activated by the binding of ligands to ‘‘death receptors’’ such as FasR

c Type 1 cells (for example, thymocytes) not regulated by Bcl-2

c Type 2 cells (for example, hepatocytes) regulated by Bcl-2

c Initiator caspase—caspase 8
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zymogens that must be activated in order to function.32 Two

types are recognised. Upstream initiator caspases, such as

caspase 9, are capable of autocatalytic activation while

downstream effector caspases such as caspase 3 and 7 can

only be activated by initiator caspases. The effector caspases

are responsible for all of the morphological features of

apoptosis such as chromatin condensation, membrane

blebbing, and DNA degradation.

Experiments proved that ced-4 was upstream of ced-3 in C

elegans and proved to be the homologue of a mammalian

adapter molecule APAF-1 (apoptotic protease activating

factor 1).33 In mammals, APAF-1 binds to procaspase 9 and

cytochrome c to form a protein complex called the apopto-

some.34 This is achieved through binding of caspase recruit-

ment domains in both APAF-1 and caspase 9. When

cytochrome c binds to APAF-1 on its WD40 domain in the

presence of ATP/dATP, procaspase 9 is activated by auto-

catalyic cleavage and proceeds to activate caspase 3 and

thence the rest of the caspase cascade.35

Ced-9 functions to inhibit ced-4, and remarkably has been

found to be a homologue of the mammalian protein Bcl-2.36

Therefore, in order for cell death to take place in C elegans,

ced-9 must be inhibited. This is achieved by egl-1 which has

homology to the BH3 domain of mammalian bcl-2.37 This

four gene pathway constitutes the functional stages of what

is now known as the ‘‘intrinsic’’ or ‘‘mitochondrial’’ apoptotic

pathway in mammals. In mammals, this pathway is far more

elaborate but the functional stages still remain and retain

remarkable parallels with C elegans (fig 2).

Release of cytochrome c from mitochondria is a key stage

in the intrinsic pathway and this is controlled by the bcl-2

family of proteins. These can be divided into three main

subclasses based on their primary structure.38 The antiapop-

totic members bcl-2, bcl-XL, and bcl-w all have four BH

domains whereas the proapoptotic members bax and bak

contain only BH domains 1–3.29 Bax and Bak act as gateways

to the intrinsic pathway.39 Death signals direct bax from the

cytosol to the mitochondrial outer membrane and bak, which

resides in the mitochondrial membrane in an inactive form,

to be activated.40 Together they allow release of cytochrome c

from the intermembrane space of the mitochondria.41 A third

subclass contains only the BH3 domain and these serve as

upstream sentinels responding to specific death signals. For

example, following DNA damage, p53 controls the transcrip-

tion of Puma and Noxa,42 43 Bid is activated by the death

receptors of the extrinsic pathway,44 while Bad only responds

to absence of growth factors or glucose.45 Activation of these

BH3 only molecules leads to activation of Bax and/or Bak.

The antiapoptotic proteins Bcl-2 and Bcl-XL inhibit apoptosis

primarily, although not exclusively, by sequestering BH-3

only molecules thereby preventing activation of Bax and Bak.

This arrangement of molecules is the same as in C elegans

where the BH3 only homologue egl-1 serves to inhibit the

multidomain ced-9 molecule.
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Figure 2 The intrinsic, or mitochondrial, pathway (after Danial and Korsmeyer29). See text for details.
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Figure 3 The extrinsic, or death receptor, pathway (see text for
details).
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Higher organisms have developed a second ‘‘extrinsic’’

apoptosis pathway that is activated by the death receptor Fas

(APO-1/CD95) and other members of the tumour necrosis

factor (TNF) receptor family (fig 3).29 This pathway is of

importance in colorectal cancer as it is inactivated creating a

state of immune privilege.46 Binding of their cognate ligand

triggers a series of intermediate proteins including FADD/

Mort1 and RIP that bind to the death receptor.47 When

activated, a signalling complex called death inducing signal-

ling complex is formed by the recruitment of procaspase 8

which is processed autocatalytically and activated. In turn

this activates by cleavage the effector caspases 3 and 7.48 Two

classes of cell have been defined by the differential effect of

bcl-2 on the extrinsic pathway. In type I cells such as

thymocytes, bcl-2 does not prevent Fas induced apoptosis

whereas in type II cells such as hepatocytes, bcl-2 blocks Fas

induced apoptosis. This is because in type II cells Fas ligation

also triggers the intrinsic mitochondrial pathways through

activation of the BH3 only protein BID by caspase 8.49 50 This

secondary activation of the mitochondrial pathway acts to

create an amplification loop that appears to be necessary as

caspase 8 is not able to activate sufficient effector caspase

activity by itself to kill the cell.

The TNF receptor can activate both apoptosis and

proliferation. The decision appears to be determined by the

degree of nuclear factor kB (NFkB) activation that occurs. If

sufficient NFkB transcriptional activity is generated, the

inhibitory protein c-FLIP is transactivated. c-FLIP inhibits

caspase 8 and cell survival is ensured. However, failure to

sufficiently activate NFkB leads to caspase 8 mediated

apoptosis. This ingenious mechanism ensures only the

survival of cells with robust NFkB responses.51

HUMAN CANCER DEVELOPMENT
It is important to review current ideas about how human

cancers develop and what phenotypes must be acquired by a

cell to become malignant in order to appreciate fully the

contribution of apoptosis to the development of colorectal

cancer. In contrast with the huge number of genes mutated

in cancer, probably only a few phenotypes are required for

cancer development, each of which can be achieved by a large

number of alternative genetic changes.* Many lines of

evidence have been synthesised by Hahn and Weinberg into

a number of simple ‘‘rules’’ stating the limited number of

phenotypes that a human cell must acquire to become

malignant (table 2).52 Firstly, some of the normal DNA repair

mechanisms must be disabled, creating a state of genetic

instability so that the cell can accumulate sufficient muta-

tions to develop all of the phenotypes essential for

malignancy.53 Other mandatory phenotypes include: resis-

tance to growth inhibition, immortalisation, independence

from mitogenic stimulation, ability to gain a blood supply or

angiogenesis, ability to metastasise and invade and, the

subject of this review, the ability to evade apoptosis.

CHROMOSOMAL INSTABILITY PATHWAY
In the case of colorectal cancer, two distinct types of genetic

instability are recognised; chromosomal (CIN) and micro-

satellite (MIN) instability.54 They are characterised by distinct

types of genetic abnormality and create mutations in distinct

sets of genes that control cell division, differentiation, and

apoptosis. Of course, abnormalities can develop within any

gene but the majority of these abnormalities will either not

create a growth advantage or be so catastrophic to cell

function that cell division becomes impossible. In CIN there

is loss and gain of chromosomes, rearrangements, and a loss

of heterozygosity which has been estimated to occur at a rate

105 times greater than in normal cells (fig 4).55

Approximately 60–80% of colorectal cancers display CIN.56

It has long been assumed that CIN is the result of mutations

in specific genes that control mitosis. Recently, inactivation

of hCDC4 has been identified as an important cause of CIN in

colorectal cancers. CDC4 is an E3 ubiquitin ligase that

regulates the G1-S checkpoint by targeting cyclin E for

destruction. Upregulation of cyclin E following inactivation

of hCDC4 produces the CIN phenotype.57 It is intriguing to

speculate whether inactivation of hCDC4 is coupled with

inactivation of apoptosis in order to prevent elimination of

cells that have developed the CIN phenotype.

APC
Inactivation of the APC (adenomatous polyposis coli) gene is

among the earliest genetic events in the development of

adenomas that arise via the CIN pathway into colorectal

cancer.58 Truncation mutations of APC prevent the ubiquita-

tion and breakdown of b-catenin which thus stabilised

migrates to the nucleus activating Tcf/Lef1 with the

subsequent transactivation of target genes.23 59 The functional

consequences of this are similar to Wnt signalling with one

important exception (fig 1). Cells subject to normal Wnt

signalling are highly prone to apoptosis whereas Tcf/Lef1

activation as a result of APC mutation renders the cell highly

resistant to apoptosis. It may be that the only APC mutant

cells that can survive are those in which apoptosis has been

inactivated. The molecular basis of apoptosis resistance

following mutation of APC is starting to be understood as a

number of important apoptosis regulating genes have been

identified as Tcf/Lef1 targets. Survivin is one such gene and is

a member of the IAP (inhibitor of apoptosis) family. It is a

cytosolic protein that may function to inhibit activation of

effector caspases and also regulates spindle microtubule

function.60 It thereby simultaneously reduces apoptosis and

promotes mitotic progression. b-catenin/TCF pathway activa-

tion also reduces expression of the initiator procaspase 9

together with the effector caspases 3 and 7.61 Microarray

studies suggest that APC mutation also reduces cytochrome c

expression.61 Together, these data suggest an explanation for

the observation that mutation of APC alters the balance

between pro- and antiapoptotic proteins rendering the cell

resistant to apoptotic stimuli such as radiotherapy and

Table 2 Phenotypes proposed by Hahn and Weinberg
to be essential for human malignancy52

c Evasion of apoptosis

c Resistance to growth inhibition

c Immortalisation

c Independence from mitogenic stimulation

c Angiogenesis

c Invasive and metastatic properties

*If we assume there are 30 000 human genes, each of which can exist in
at least two forms, then there are a minimum of 230 000 or 109031

possible combinations of genes. This illustrates that the number of genetic
changes potentially related to malignant transformation is hugely greater
that the minimum number of phenotypic changes required.
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chemotherapeutic drugs. APC has also been shown to bind

directly to microtubules and APC mutation disrupts mitosis,

promoting chromosomal instability thus contributing to the

emergence of CIN.62

c-Myc
c-Myc, a target of the b-catenin/TCF signalling pathway, has

two functional outputs: cell division and apoptosis.27 The

capacity of c-Myc to induce cell division is potent but is not

unleashed in normal cells unless apoptotic mechanisms are

simultaneously inactivated. c-Myc sensitises cells to many

apoptotic stimuli, including DNA damage, which are sensed

through the p53 pathway and mediated by the BH3 only

proteins Puma and Noxa together with Bax.63 Loss of activity

of PUMA, Noxa, or Bax will give c-Myc expressing cells a

significant growth advantage and drives the development of

a malignant clone. c-Myc also augments the effectiveness of

the death receptors Fas and Trail induced apoptosis.64

Adenoma/carcinoma transition, telomere shortening,
and p53
A fundamental biological problem is how DNA strand breaks

which must be repaired are distinguished from the ends of

chromosomes which under no circumstances should be

ligated to other chromosomes. This vital task is achieved by

telomeres, which are stretches of repetitive DNA at the end of

the chromosome. Telomeres shorten with each cell division

such that once the telomeres are lost, cell cycle arrest is

triggered by recognition of a double strand break by

protective mechanisms, including p53.65 As telomeres

shorten, the risk of CIN increases with chromatin bridge

breakage and the fusion of chromosomal ends.52 This

phenomenon of telomere shortening and resultant CIN has

been observed in patients with ulcerative colitis who

subsequently develop colorectal cancer.66 Of course, normally

such a serious genetic error would be expected to trigger

apoptosis and thus eliminate the aberrant cell. Cells with

non-functional p53 are tolerant to CIN arising from telomere

shortening and have a powerful selection advantage. The

adenoma/carcinoma transition of colorectal cancer is one of

the events where failure of apoptosis is decisive in the

development of a malignant clone.67

The tumour suppressor gene p53 is mutated in 70% of

colorectal cancers. p53 functions to integrate a variety of

cellular stresses into a range of responses that include

apoptosis.68 It is a transcription factor that binds to specific

sequences in DNA and regulates expression of a number of

proapoptotic genes. These include Bax and the BH3 only

proteins puma and noxa.69 As discussed above, these

inactivate bcl-2 and bcl-xL and trigger release of cytochrome

c from mitochondria. p53 also increases expression of

components of apoptosis effector mechanisms such as

APAF-1 and caspase 6.70 71 Furthermore, p53 has important

elements of the extrinsic apoptosis pathway as transcrip-

tional targets such as the death receptor Fas and DR5 as well

as the BH3 only protein Bid that couples the extrinsic

pathway to activation of the intrinsic pathway.72 Although

less thoroughly studied, p53 also transrepresses the impor-

tant IAP gene survivin which may directly inhibit caspase

activity.73 In addition to regulation of apoptosis genes, p53

also turns off survival pathways that counteract apoptosis

such as the PI3 kinase/AKT survival pathway by increasing

expression of the PI3 kinase inhibitor PTEN and in doing so

prevents inhibition of p53 by MDM2 (fig 5).74 Little of the

data above have been confirmed in colonic epithelial tissue

and it is possible that p53 will regulate other important genes

in this cell type.

p53 can initiate cell cycle arrest, DNA repair, and

senescence, in addition to apoptosis. Induction of apoptosis,

rather than any of its other effects, mediates the functional

action of p53 in tumours in vivo.75 A variety of factors

determine which outcome is triggered by p53 activation

although this is not well understood. Cell type and cellular

microenvironment are known to be important. Also, the

context of other intracellular signals can be crucial. For

example, Myc can switch p53 signalling from cell cycle arrest

to apoptosis through prevention of p21 activation by Miz1.76

The mechanism by which p53 is inactivated early in the

evolution of cancer can have important consequences on

responsiveness to treatment. For example, lymphomas that

have lost p53 function through mutation of the Ink4a/ARF

pathway,77 which couples mitogenic signals to p53 activation,

have a better response to anticancer therapy than tumours
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that have direct p53 mutations. This is because tumours with

the Ink4/ARF mutation can still respond to DNA damage

even though the apoptotic response to excessive mitogenesis

is disabled.78 These observations may explain why the

functional status of p53 has unpredictable effects on the

response of cancer cells to commonly used chemotherapeutic

drugs. For example, p53 mutation renders HCT116 colon

carcinoma cells more sensitive to adriamycin and radiation

but less sensitive to 5-fluorouracil.79 A further complication is

that p53 appears to respond to RNA damage rather than DNA

damage in response to 5-fluorouracil treatment.79 80

MICROSATELLITE INSTABILITY (MIS) PATHWAY AND
APOPTOSIS
Defective repair of mismatches between nucleotide bases of

DNA constitutes a second pathway to colorectal cancer. This

can occur as an inherited syndrome called hereditary non-

polyposis colorectal cancer in which mutations of the human

mismatch repair genes hMLH1, hMSH2, hMSH6, hPMS1,

and hPMS2 results in frameshift mutations of a number of

cancer associated genes.81 82 The MIN pathway to cancer is

also followed in up to 15% of sporadic colorectal cancers

where mismatch repair gene hMLH1 (human mut-L homo-

logue) expression is abolished through silencing of its

promoter by methylation.83 84 Such aberrant methylation

occurs in what has been termed the CpG island phenotype.85

Some promoters have extensive stretches of cytosine/guanine

dinucleotide sequences or CpG ‘‘islands’’. The principal

enzyme responsible for this aberrant methylation is

DNMT1.86 A wide range of important genes are silenced in

this way, including the DNA repair enzyme MGMT (O-6-

methylguanine-DNA methyltransferase), hMLH1, and

p14ARF (a regulator of p53) (fig 6).87 Defective repair of

mismatch errors in DNA targets genes that contain mono-

nucleotide repeats such as poly(A)n. Genes that are char-

acteristically disabled in this way are transforming growth

factor b receptor II (TGFbRII),88 insulin-like growth factor 2

receptor (IGF2R),89 and the proapoptosis gene BAX.90

Tumours that have developed along this pathway tend to

have wild-type APC and p53 genes and occur typically in the

right colon.87

Jass et al have proposed that colorectal cancers arising

through the MSI pathway, particularly those with a high
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degree of microsatellite instability (MSI-H) which constitutes

some 10% of sporadic colorectal cancers, arise from large

hyperplastic polyps in the right colon (lesions called

‘‘serrated’’ adenoma).87 91 On the basis of shared molecular

defects, Jass and others have argued that the serrated

adenoma is a specialised type of hyperplastic polyp. This is

frequently misdiagnosed as a villous or tubulovillous

adenoma.92 Studies from the 1970s have suggested that

hyperplastic polyps occur as a result of defective cell shedding

from surface epithelium.93 As a result, it have been suggested

that cells within the crypt accumulate causing distortion with

increased folding, assuming a saw tooth or serrated

appearance. Increased crypt fission results, leading to polyp

formation. Many authors claim that cell shedding from the

epithelial surface is the result of apoptosis.94 A critical

evaluation of the literature shows there is little evidence for

this although once detached from the basement membrane

apoptosis is inevitable. Nevertheless, it is possible that

epithelial apoptosis is defective in hyperplastic polyps and

serrated adenomas as mutation of K-RAS or its downstream

kinase BRAF are frequent.95–97 The Ras pathway can regulate

apoptosis through downregulation of the death receptor

Fas.98 Together, these observations suggest that defective

apoptosis plays a critical role in the MSI pathway both at its

initiation and once fully established through inactivation of

Bax.

FUTURE THERAPEUTICS DIRECTIONS
Innumerable studies have demonstrated that anticancer

drugs and gamma radiation induce apoptosis in cancer cells

grown in culture. It is therefore a surprising that there are

few data available on whether apoptosis is an important

mechanism of action in vivo. This question was thrown into

sharp focus by Waldman et al who showed that while cancer

cells undergo cell death in response to anticancer drugs in

vitro, when the same cells were grown as xenografts the

capacity of the cells to circumvent cell cycle arrest was a

stronger determinant of treatment response.99 A major

obstacle to investigating this question more thoroughly is

the lack of fully developed technologies for the non-invasive

detection and measurement of apoptosis in patients.

Currently, most studies rely on histological techniques for

measurement of apoptosis in biopsy samples. This approach

has obvious limitations. The tissue has to be accessible to

biopsy and serial measurements are usually impossible

because of the need for repeated biopsies. These problems

are now being addressed with the development of isotope

based imaging techniques employing labelled reagents such

as annexin V.100 PET scanning holds particular promise

because of its high resolution and capability of scanning

multiple parameters such as cell division, blood flow, glucose

consumption, and drug distribution.101

Cyclooxygenase, NSAIDS, and apoptosis
Perhaps the most clinically important discovery in colorectal

cancer biology in the past 15 years is the role of cyclo-

oxygenase (COX) enzymes in tumour progression. COX

catalyses the conversion of arachadonic acid to prostaglandin

H2 that is subsequently converted to a large number of other

structurally related prostaglandins. There are two principal

isoforms: COX-1, which is constitutively expressed, and

COX-2, which is not normally expressed in most tissues but

induced by a wide range of growth factors and cytokines.102

COX-2 is overexpressed in 40% of adenomas and 85% of

colorectal cancers.103 This occurs in a range of cell types

within cancer, including the neoplastic epithelial cells,

endothelial cells, infiltrating host fibroblasts, and inflamma-

tory cells.104 Decisive evidence of their importance is that

disruption of either the COX-1 or COX-2 gene reduces the

development of colonic tumours in mice.105 106 There is also a

large body of evidence from both clinical trials and animal

models that non-steroidal anti-inflammatory drugs

(NSAIDs) that inhibit either COX-1 or COX-2 reduce the

development of colorectal cancer and even have potential for

the treatment of metastatic disease (table 3).107 Induction of

apoptosis in adenomas is likely to be an important mechan-

ism.108 There is also accumulating evidence that COX-2

inhibitors can treat fully established cancers without toxicity

to the gastrointestinal tract.109

Inhibition of COX enzyme activity can induce apoptosis by

altering the balance between pro- and antiapoptotic members

of the bcl-2 family, particularly through increasing expres-

sion of bcl-2.110 Furthermore, the COX product prostacyclin

can activate the nuclear hormone receptor peroxisome

proliferator activated receptor (PPAR)-d and thereby inhibit

apoptosis and accelerate adenoma growth.111 Inhibition of

COX also increases appropriate cell cycle control, decreases

angiogenesis and invasiveness, and modulates the immune

response.110 A number of groups have also established that

NSAIDs can induce apoptosis through mechanisms indepen-

dent of inhibition of COX. These include an increase in BAX

expression,112 inhibition of IkB kinase beta thereby prevent-

ing activation of NFkB,113 and an increase in the sensitivity to

cell death receptor induced apoptosis.114

Novel apoptosis based therapies
Naturally, many investigators are starting to exploit the

recent discoveries about apoptosis to develop new treatments

(table 3). A variety of strategies have been taken. It has been

estimated that about half of all cancers express the

antiapoptotic proteins Bcl-2 or Bcl-xL.
115 Retinoid, PPARc,

and vitamin D receptor agonists all show potential for

reducing bcl-2 or Bcl-XL expression in specific circum-

stances.116 Caution must be exercised as PPARd agonists

stimulate colonic neoplasia.111 Small molecule drugs have

been developed that mimic BH3-only proteins; these can bind

to and antagonise Bcl-2 and Bcl-xL.
117 Death receptor path-

ways often remain intact in cancer. Attempts to use TNF and

FasL have been thwarted by induction of NFkB mediated

inflammation and fulminant hepatic failure respectively.

However, (TNF) related apoptosis inducing ligand (TRAIL) is

well tolerated and is now in phase 1 trials, although not for

colorectal cancer.118 119 Some tumours are resistant to death

receptor induced apoptosis. This is being tackled by the

development of synthetic triterpenoids that antagonise the

extrinsic pathway inhibitor c-Flip thus triggering the intrinsic

pathway via a Ca2+ mechanism.120 The downstream effector

caspases represent a further therapeutic target. These key

enzymes are inhibited by IAPs such as survivin that are

Table 3 Targets for apoptosis directed therapy

c Cyclooxygenase isoforms

c Death receptors including TRAIL

c BCl-2 family members

c Inhibitor of apoptosis (IAP) proteins
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overexpressed in colorectal cancer. The endogenous antago-

nists SMAC (Diablo) and HtrA2 (Omi) can by mimicked by

synthetic peptides and show promise in tumour xenograft

models.121 122

CONCLUSION
There has been remarkable progress in our understanding of

apoptosis in cancer and how it is related to genetic instability,

cell cycle control, and other crucial processes. As more

research is reported, a recurring theme is the importance of

the genetic and environmental context in determining the

precise behaviour of apoptotic pathways and their functional

outcome. This will be a central focus of future research in

colorectal cancer whose results will shape the development of

therapies that target apoptosis.
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