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Cotransformation frequencies of 16, 39, 51, and 60% were observed when donor alleles were separated by
distances of 9.2, 7.4, 6.3, and 5.1 kb, respectively, in donor Acinetobacter calcoaceticus DNA. A different and
unexpected pattern was observed when the distance between recipient alleles was reduced from 9.2 to 5.1 kb.
Ligation of unlinked chromosomal DNA fragments allowed them to be linked genetically through natural
transformation.

Natural transformation (12) has been useful in the analysis
of catabolic pathways in Acinetobacter calcoaceticus (1, 3–8, 10,
14, 15, 18), but, as yet, there has been little evidence correlat-
ing cotransformation frequencies with the physical distance
between alleles (11). An opportunity to investigate such cor-
relations was presented by elucidation of the pca-qui-pob gene
cluster. The pca genes encode enzymes required for growth
with protocatechuate (15), and this metabolite can be pro-
duced by either the action of qui gene products on quinate (7,
8) or the pobA-encoded metabolism of p-hydroxybenzoate (3).
Null pca mutations prevent growth with both p-hydroxybenzo-
ate and protocatechuate (9), whereas null pob mutations allow
growth with protocatechuate (1). Cotransformation frequen-
cies can be determined by transforming recipient strains,
blocked in both pca and pob, with DNA containing the wild-
type alleles. Wild-type pca DNA can be selected by demand-
ing growth with protocatechuate, and cotransformation of
wild-type pob DNA can be assessed as the frequency of the
selected transformants that grow with p-hydroxybenzoate. En-
gineered deletions removing segments of qui DNA do not
impede the growth of cells with either protocatechuate or
p-hydroxybenzoate (7, 8). Therefore, we were able to examine
how variations in distance caused by the deletion of DNA
between pca and pob influenced their cotransformation fre-
quencies.
Organization of wild-type and mutant genes in the investi-

gated strains is presented in Fig. 1. In the wild-type background
of strain ADP4021, pcaH19 and pobR5 are separated by about
9.2 kb, and transformation with donor DNA in which the
wild-type alleles were identically separated yielded a cotrans-
formation frequency of 16% (Fig. 2). The frequency increased
to 39, 51, and 60% when the donor alleles were separated by
7.4, 6.3, and 5.1 kb, respectively (Fig. 2). This information may
provide a rough guide to the correlation between cotransfor-
mation frequencies and the linear distances between trans-
formed alleles in a wild-type background, but the results must
be regarded with caution because a different pattern was ob-

served when DNA from the same donors was provided to
recipient strain ADP699, in which pcaH19 and pobR5 are sep-
arated by only 5.1 kb. As shown in Fig. 2, the cotransformation
of markers in ADP699 was essentially invariant at 35% when
the separation of donor alleles ranged between 5.1 and 7.4 kb
(Fig. 2). The most remarkable finding was the difference in the
cotransformations of ADP4021 and ADP699 when donor
DNA provided alleles separated by 5.1 kb. In this comparison,
shortening the distance between the alleles in the recipient
strain by 45% reduced the frequency of cotransformation by
42% (Fig. 2). There is no obvious reason why an engineered
increase in the chromosomal linkage of two alleles would result
in a decrease in their linkage as observed by transformation,
but it is possible that the observation is a consequence of a
change in chromosomal conformation brought about by the
designed deletion.
The results show that 9-kb transforming DNA fragments are

readily assimilated by A. calcoaceticus, and further analysis
gives an indication of the extent to which recombination may
segregate alleles from donor DNA. Selection for growth of
strain ADP4021 with p-hydroxybenzoate demands acquisition
of wild-type DNA corresponding to both pcaH19 and pobR5.
Strains containing qui deletions were used as donors; the seg-
regation of qui deletions from donor DNA was determined
with growth of the recombinants with 5 mM quinate. The
frequency of segregation of the nonselected qui alleles in-
creased through observed levels of 9, 24, and 27% as the
distance between the selected markers increased through dis-
tances of 5.1, 6.3, and 7.4 kb, respectively.
To explore further the segregation of alleles introduced in a

single donor DNA fragment, genes known to be unlinked in
the wild-type chromosome were joined by ligation. A 1.6-kb
SalI-KpnI fragment in pIB1345 (16, 17) contains A. calcoace-
ticus catA. The insert was removed as a SalI fragment and
introduced into the XhoI site of pZR405 (3), giving rise to
pobRpobA1::catA within an insert of 4.9 kb of A. calcoaceticus
DNA in pZR439. DNA released by linearization of pZR439
with EcoRI and HindIII was used to transform strain ADP
4022, which contains both catA3139 (17) and pobR5 (3). Of
strains selected for the wild-type catA allele, 3% had acquired
wild-type pobR. After selection for pobR, 7% of the transfor-
mants had acquired wild-type catA. Such transformants were
not observed when a strain from which the catA-containing
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SalI-KpnI chromosomal segment had been deleted was used as
recipient. Therefore, the acquisition of wild-type catA depends
upon homologous recombination in the catA region. As ex-
pected, no linkage of catA and pobR was observed when DNA

from wild-type strain ADP1 was used as the donor for the
transformation of strain ADP4022.
The creation of cotransforming DNA fragments by the liga-

tion of chromosomally unlinked genes presents opportunities
to expand the genetic investigation of A. calcoaceticus. A ge-
netic marker for which selection procedures are not available
may be linked to a selectable marker, which can then be used
as a Trojan horse to introduce DNA into recipient strains by
transformation followed by selection. If, as present results sug-
gest, the nonselectable marker is present in several percent of
the transformants, its detection by screening should not be
arduous.
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