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ABSTRACT

The standard temporal method for estimating effective population size (Ne) assumes that generations
are discrete, but it is routinely applied to species with overlapping generations. We evaluated bias in the
estimates N̂e caused by violation of this assumption, using simulated data for three model species: humans
(type I survival), sparrow (type II), and barnacle (type III). We verify a previous proposal by Felsenstein
that weighting individuals by reproductive value is the correct way to calculate parametric population
allele frequencies, in which case the rate of change in age-structured populations conforms to that
predicted by discrete-generation models. When the standard temporal method is applied to age-
structured species, typical sampling regimes (sampling only newborns or adults; randomly sampling the
entire population) do not yield properly weighted allele frequencies and result in biased N̂e. The
direction and magnitude of the bias are shown to depend on the sampling method and the species’ life
history. Results for populations that grow (or decline) at a constant rate paralleled those for populations
of constant size. If sufficient demographic data are available and certain sampling restrictions are met, the
Jorde–Ryman modification of the temporal method can be applied to any species with overlapping
generations. Alternatively, spacing the temporal samples many generations apart maximizes the drift
signal compared to sampling biases associated with age structure.

BECAUSE effective population size (Ne) is an im-
portant parameter in evolutionary biology but is

notoriously difficult to measure in natural populations,
considerable interest has focused on genetic methods
for estimating Ne (reviewed by Beaumont 2003; Leberg

2005; Wang 2005). By far the most widely used genetic
approach for estimating contemporary Ne is the tem-
poral method (Krimbas and Tsakas 1971; Nei and
Tajima 1981), so called because it depends on estimates
of allele frequency taken from a population at two or
more points in time. In addition to other simplifying
assumptions, the standard temporal method assumes
that generations are discrete, whereas many species are
age structured and hence have generations that overlap.
Two variations of the temporal method can account for
effects of age structure, at least in some circumstances.
Waples (1990) developed a modified temporal method
for species with life histories like Pacific salmon
(semelparous with variable age at maturity), but this
model is not intended for use with iteroparous species.
A more general model for age-structured, iteroparous
species was developed by Jorde and Ryman (1995), who
showed that the magnitude of allele-frequency change is
determined not only by effective size and the sampling
interval, but also by age-specific survival and birth rates.

They derived an adjustment to the standard model to
account for age-structure effects, and subsequent eval-
uations (e.g., Jorde and Ryman 1996; Palm et al. 2003)
documented the biases in estimates of effective size that
can result from application of the standard temporal
method without accounting for overlapping genera-
tions. However, the Jorde–Ryman method requires de-
tailed demographic information and the ability to age
individuals or group them into single-cohort samples
and perhaps for these reasons has not been widely
applied (but see Turner et al. 2002 and Palm et al. 2003
for examples). In spite of its obvious limitations, the
discrete-generation temporal method has been and
continues to be widely applied to species with over-
lapping generations (e.g., Scribner et al. 1997; Johnson

et al. 2004; Hoffman et al. 2004; Kaeuffer et al. 2004;
Poulsen et al. 2006). A priori, we expect bias in the
resulting estimate of Ne when an otherwise unbiased
method is applied to situations that violate assumptions
of the model. With respect to application of the stan-
dard temporal method to species with overlapping
generations, it is possible that the biases could be small if
the elapsed time between samples is long enough that
the drift signal strongly dominates sampling consider-
ations (as suggested by Jorde and Ryman 1995 and
assumed, for example, by Miller and Kapuscinski

1997 and Hauser et al. 2002). However, under what
specific circumstances this might be true cannot be
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determined without a quantitative analysis, nor can the
magnitude and direction of biases associated with sam-
ples more closely spaced in time.

In this article we evaluate performance of the stan-
dard temporal method when it is applied to iteroparous
species with overlapping generations. Central to our
evaluations is establishing a point of reference for eval-
uating the true Ne of such a population. For this we draw
on two important contributions of previous authors.
First, Hill (1972) showed that discrete-generation mod-
els for Ne can be modified to apply to organisms with
overlapping generations, provided that the population
is of constant size (N ) and demographically stable. This
means, for example, that over t generations of genetic
drift, a population with overlapping generations should
experience the same amount of allele-frequency change
as a population with discrete generations and the same
effective size per generation. But to test this, one must
be able to measure (or estimate) the population allele
frequency at a given point in time. This is straight-
forward if generations are discrete, but how can one
measure the parametric allele frequency of a popula-
tion when generations overlap? Felsenstein (1971)
proposed that the correct way to calculate a population
allele frequency in this case is to weight each individual
by its reproductive value. We first show that this method
correctly predicts the rate of allele-frequency change
in simulated, iteroparous populations of constant size.
Next, we evaluate bias of estimates of Ne using the stan-
dard temporal method and how they vary as a function
of the species’ life history and various commonly used
sampling strategies.

Populations that change in size are of particular in-
terest to evolutionary biologists and conservation biol-
ogists. Changing population size does not present a
problem for the standard, discrete-generation temporal
model (if population size varies the method estimates
the harmonic mean Ne over the time between samples),
but most models for Ne in species with overlapping gen-
erations depend on the assumption of constant pop-
ulation size. However, Felsenstein (1971) derived an
expression for the variance-effective size in species with
overlapping generations that grow (or decline) at a
constant rate, in which case age structure remains con-
stant. To complete our evaluations, we used Felsenstein’s
model to establish the benchmark ‘‘true’’ effective size
in populations that deterministically change in size
and evaluated performance of the standard temporal
method under these conditions.

METHODS

Definition of Ne when generations overlap: Constant
N: The models developed by Felsenstein (1971) and
Hill (1972, 1979) both have features that are useful
for our analyses. Notation is consistent with that used
by Felsenstein (1971) and is summarized in Table 1.

The species is a monoecious diploid with the possibility
of selfing. Demographic parameters are fixed; exactly
N1 individuals are born in each time period, so the
population will eventually reach a stable age distribu-
tion. Time units, indexed by t, are in years except as
noted. The fraction of newborns that survive to age x

TABLE 1

Notation used

t Time units (generally in years)
N1 No. of age-1 individuals (newborns) produced in

one time interval
Nx No. of individuals of age x in the populationP

Nx Total no. of individuals in the population
j Age at first maturity
q Age at senescence
N Population size, expressed as the total census size

(
P

Nx), no. of reproductive adults (Nadult ¼P
Nx;q.x$j ), or no. of newborns (N1)

T Generation length (mean age of parents)
bx Mean no. of offspring produced in one time

interval by individuals of age x
lx Fraction of a cohort that survives to age x
sx Fraction of individuals of age x that survive to

age x 1 1
dx Fraction of individuals of age x that die before

reaching age x 1 1; dx ¼ 1� sx

vx Reproductive value for individuals of age x
ax Fraction of a cohort that reaches age x and then

dies; ax ¼ lxdx

l Population growth rate per time period
k No. of gametes contributed to the next generation

by an individual over its lifetime
�kx Mean lifetime k for individuals that die between

ages x and x 1 1
sx

2 Variance in lifetime k of individuals that die
between ages x and x 1 1

�k Mean lifetime k for all individuals breeding
within a generation

Vk Variance in lifetime k among all individuals
within a generation

Ne Effective population size for a generation
N̂e An estimate of effective size based on genetic data

for two samples taken 1 or more time units apart
Ne

*ðtÞ Instantaneous effective size that describes the
actual rate of change in the population at a
point t in time

S No. of individuals per time interval sampled for
genetic analysis

L Time interval between samples
g Elapsed no. of generations between samples;

g ¼ L/T
F Standardized variance of allele frequencies
Px(t) Allele frequency in age class x at time unit t
P SðtÞ Population allele frequency at time t, weighting

each individual equally
P WðtÞ Population allele frequency at time t, weighting

each individual by its reproductive value
C A constant that depends on life-history parameters

of the population, used to estimate Ne in the
temporal method of Jorde and Ryman (1995)
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is lx ¼ Nx/N1, where Nx is the number in age class x.
During a single time interval, individuals of age x pro-
duce an average of bx offspring that survive to the begin-
ning of age class 1, so the probability that a newborn
has a parent of age x is lxbx. The cohort size of newborns
is N1 ¼

P
bxNx . In this model,

P
lxbx ¼ 1, generation

length is given by T ¼
P

xlxbx, and reproductive value
(Fisher 1958; Felsenstein 1971) can be calculated as
vx ¼ ð1=lxÞ

P
i$x libi .

Felsenstein (1971) showed that Ne in species with
overlapping generations can be calculated directly from
the age-specific survival and fecundity parameters con-
tained in a standard Leslie matrix. In his model, each
year within each age class there is random (binomial)
variation among individuals in reproductive success,
random survival of individuals between age classes, and
no correlation between mortality and fecundity. Under
these conditions, and assuming constant population
size, inbreeding and variance-effective sizes are the same
and are given by

Ne �
N1T

1 1
P

lxsxdxv2
x11

ð1Þ

(Felsenstein 1971, Equation 10), where dx is the
probability of death at the end of age x and sx ¼ 1 � dx.

Hill (1972, 1979) considered variance Ne in a model
similar to Felsenstein’s except that Hill made no partic-
ular assumption about variation in reproductive success
among individuals. For monoecious diploids with ran-
dom selfing, Hill showed that effective size is given by

Ne �
4N1T

Vk 1 2
; ð2Þ

where N1 and T are as defined above and Vk is the life-
time variance in reproductive success (production of
newborns) by the N1 individuals making up a cohort of
newborns. With random variation in (lifetime) repro-
ductive success (Vk� 2), Ne¼ N1T, which is the number
of individuals entering the population over a period of
one generation. In general, however, age structure leads
to Vk . 2 and Ne , N1T.

Equation 2 is more general than Equation 1 but the
latter is more convenient to use with data from a typical
life table. However, if one assumes that the distribution
of reproductive success is Poisson within each age class,
Equations 1 and 2 are comparable ( Johnson 1977).
Under this assumption, a reformulation of Equation 2
(see appendix a) provides a way of implementing Hill’s
model on the basis of population vital rates,

Ne �
4N1TP

lxdx
�kxð1 1 �kxÞ � 2

; ð3Þ

where �kx ¼
P

i¼1;x bi is the average lifetime reproductive
success of individuals that die between years x and x 1 1.
Effective size calculated from Equation 3 is referred to
as Ne(H ).

Changing N: Felsenstein (1971) also developed an
expression for variance Ne in populations that are
changing size at a constant rate l per time period. l is
the dominant eigenvalue of the Leslie matrix and is the
unique real solution to the discrete-time version of the
Euler–Lotka equation

P
lxbxl�x ¼ 1. When population

size changes deterministically, analogs to the life-history
parameters described above are T ¼

P
xlxbxl�1 and

vx ¼ ðli�1=lxÞ
P

j$x lj bj l
�j , and effective size is given by

Ne �
N19T

1 1
P

lxsxdxv2
x11l�i �

P
lxb2

x l�i ð4Þ

(Felsenstein 1971, Equation 24), where N19 is the
number of newborns in the next time interval. If l ¼
1, N19 ¼ N1 and Equation 4 is identical to Equation 1
except for the last term in the denominator, which is
zero if the number of offspring per parent in one time
interval is Poisson (Felsenstein 1971). Effective size
calculated from Equation 4 is referred to as Ne(F ).

Model species: We chose three model species (Figure
1; Table 2), each representative of one of the three basic
survival schedules. Humans are a classic type I survivor-
ship species, with high survival well into adulthood
followed by a period of rapidly increasing mortality. The
white-crowned sparrow (Zonotrichia leucophrys nuttalli;
Baker et al. 1981) has a modified type II survivorship
curve, with a constant survival rate after an episode of
high early mortality. The barnacle (Balanus glandula;
Connell 1970) exhibits a classical type III survivorship
curve with very high early mortality, even after we
reduced fecundity and age-1 mortality by an order of
magnitude from published values to make the simula-
tions more tractable. We used the human demographic
data analyzed by Felsenstein (1971), which are ar-
ranged into 5-year age classes. For the other two species,
life-history parameters were modified slightly from pub-
lished values to provide for a constant population size

Figure 1.—Survivorship curves for the three model species.
See Table 2 for data sources.
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and integer generation lengths in units of years (T ¼ 3
years for the sparrow and 4 years for the barnacle). The
published data for all three species are for females only,
so for the purposes of this exercise we assumed that the
same values apply to the entire population.

Computer simulations: We used computer simula-
tions to model drift variance in allele frequency in
populations with demographic parameters characteris-
tic of the three life-history types. We considered both
stable and growing populations.

Constant population size: For each species we consid-
ered a ‘‘small’’ and a ‘‘large’’ population size, indexed by
N1, the number of newborns produced each year
[‘‘newborns’’ were enumerated as the number of live
births (humans), clutch size (sparrow), and plankton
just after hatching (barnacle)]. The small and large N1

values were: human, 102, 103; sparrow, 103, 104; and
barnacle, 105, 106 (Table 3). These population sizes
translated into Ne values of order 102 for the small pop-
ulation sizes and of order 103 for the large population

TABLE 2

Life-history parameters for the model species, scaled to constant population size

Human Sparrow Barnacle

Age (x) lx bx vx lx bx vx lx bx vx

1 1.000 0 1.000 1.000 0 1.000 1.00000 0 1.0
2 0.979 0 1.022 0.180 2.546 5.556 0.00062 359.2 1612.9
3 0.978 0.017 1.023 0.095 2.754 5.679 0.00034 679.4 2279.4
4 0.975 0.290 1.009 0.051 2.921 5.518 0.00020 898.1 2666.6
5 0.972 0.344 0.720 0.027 3.130 4.899 0.00016 991.8 2267.2
6 0.968 0.215 0.378 0.014 3.339 3.339 0.00011 991.8 1771.4
7 0.964 0.114 0.164 — — — 0.00007 991.8 1299.3
8 0.957 0.045 0.050 — — — 0.00002 991.8 991.8
9 0.946 0.006 0.006 — — — — — —
10 0.928 0 0 — — — — — —
Generation (T ) 5.26 3.0 4.0

Sources: humans, Felsenstein (1971), based on data for United States white females taken from U. S.
Department of Health, Education, and Welfare (1969, Vol. II, Part A, Table 5-2); white-crowned sparrow,
modified from Baker et al. (1981); barnacle, modified from Connell (1970). Ages are 5-year units in humans
and 1 year in the other two species.

TABLE 3

Fixed numbers in each age class and effective population size for constant populations of the
three model species

Age Human Sparrow Barnacle

1 100 1,000 1,000 10,000 100,000 1,000,000
2 98 979 180 1,800 62 620
3 98 978 95 954 34 341
4 97 975 51 506 20 205
5 97 972 27 268 16 160
6 97 968 14 142 11 115
7 96 964 — — 7 69
8 96 957 — — 2 21
9 95 946 — — — —
10 93 927 — — — —
.10a 628 6,283 — — — —P

Nx 1,502 15,020 1,367 13,670 105 106

Nadult 676 6,760 367 3,670 152 1,521
Ne (F) 511.8 5,118.1 370.2 3,702.2 120.0 1,199.6
Ne (H) 511.8 5,118.1 370.3 3,702.8 119.9 1,199.2
Ne ( JR) 511.8 5,118.1 370.1 3,702.1 119.8 1,199.1
Ne (F)/

P
Nx 0.34 0.34 0.27 0.27 0.0012 0.0012

Ne (F)/N1 5.12 5.12 0.37 0.37 0.0012 0.0012
Ne (F)/Nadult 0.76 0.76 1.01 1.01 0.79 0.79

Nadult ¼
P

Nx;q.x$j ; Ne (F), Equation 4 from Felsenstein (1971); Ne (H), Equation 3 modified from Hill

(1972); Ne ( JR), equilibrium value calculated by iterating Equations 2–8 in Jorde and Ryman (1995).
a Proportion of human females in age classes .10 based on estimate by Felsenstein (1971).
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sizes (Table 3), on the basis of application of Equations 1
and 3 to the life-history data in Table 2. Given a fixed
value of N1, the stable age distribution (and hence
the number in each age class) is given by the right
eigenvector of the Leslie matrix, which we calculated
using the power method described by Caswell (2001).
For the simulations, we rounded the number of indi-
viduals in each age class to the nearest integer, yielding
(for each population size in each species) a vector of Nx

values representing the (fixed) number of individuals
in age class x.

For each fixed demographic trajectory, we modeled
the stochastic process of genetic drift by randomly draw-
ing genes to represent birth of newborns and survival
from one age class to the next. At each time t, we cal-
culated the frequency of a ‘‘gamete pool’’ of infinite
size as the weighted mean of the allele frequencies in
each age class of reproductive adults: Pgameteðt11Þ ¼Pmax age

x¼1 2bxNxðtÞPxðtÞ=2N1ðt11Þ. In generating this gamete
pool, all individuals within an age class contribute
equally, but the total contribution differs among age
classes on the basis of age-specific survival and birth
rates. Therefore, the process for reproduction simu-
lated an array of Wright–Fisher subpopulations with
the possibility of selfing, stratified by age. [Whether a
species is monoecious or dioecious, and whether or not
selfing is allowed, has a negligible effect on Ne (Crow

and Denniston 1988; Caballero 1994); therefore, this
aspect of the model should not have appreciably in-
fluenced the results.] Next, we calculated the allele
frequency in the N1 newborns in time unit t 1 1 (P1(t11))
by drawing 2N1 genes binomially from this gamete pool.
Finally, for each age class x . 1, allele frequency at time
t 1 1 was calculated by sampling hypergeometrically
(without replacement) from the 2Nx�1 genes represent-
ing the frequency in age class x� 1 at time t. This entire
random process of sampling genes due to births and
deaths was then repeated to generate an age-structured
vector of allele frequencies for the next time unit.
Simulated populations were initialized using the stable
age distribution and with the same allele frequency in all
age classes at time 0 [Px(0) ¼ 0.5, x ¼ 1, 2, . . .]. Each
replicate simulation was run for 100 time units. Each
run of 100 time units was taken to represent the tra-
jectory of one gene locus, and the entire procedure was
repeated for each additional locus (5000 loci total).

At each time unit, population allele frequencies were
computed parametrically (by exhaustivepopulation cen-
sus) and estimated by sampling subsets of individuals.
Parametric frequencies were computed two ways: (1) the
standard method, which involves counting alleles in
all individuals in the population and leads to an un-
weighted frequency P S, and (2) the weighted method, in
which each individual is weighted by its reproductive
value (P W ¼

P
x vxNxPx=

P
x vxNx ; Felsenstein 1971).

Sampling of individuals was simulated by random
draw of the required number of genes from specified

age classes, and sample allele frequencies were com-
puted by counting alleles (hence the sample frequen-
cies were unweighted). We considered three different
sample sizes (S1 ¼ S2 ¼ 25, 50, and 100) and three dif-
ferent sampling regimes: (a) all individuals are at equal
risk of being sampled regardless of their age, (b) only
reproductive adults (those in age classes with bx . 0) are
subject to sampling, and (c) only newborns are subject
to sampling (so sampling is from a single cohort). In all
cases, genes were counted without replacement, so no
individual could be sampled more than once in any time
period. However, after the sampling (or enumeration)
was completed, all genes were returned to the popula-
tion, so sampling did not affect the future demographic
or genetic trajectory of the population.

After initializing all age classes at the same frequency
(P0 ¼ 0.5), a period of time is needed before the
population reaches a dynamic equilibrium with respect
to the amount of random allele-frequency variation
among years and among age classes within years. In
agreement with results reported by previous authors
( Jorde and Ryman 1995; Waples 2002), we found that
this dynamic equilibrium was reached quickly (within a
few generations) under the conditions we modeled
(data not shown). Therefore, we allowed each replicate
to ‘‘warm up’’ for 20 time periods (periods 0–19) before
collecting data.

Beginning in period 20, parametric or estimated
population allele frequencies were compared at several
different time intervals (L): 1 time unit and 1, 5, or 10
generations (T, 5T, and 10T time units, respectively).
For each time interval, we used the method of Nei and
Tajima (1981) to estimate F, the standardized variance
of allele frequencies at two points in time. For diallelic
loci such as those considered here, this measure is
calculated as

F̂c ¼
1

a

Xa

i¼1

ðPi1 � Pi2Þ2
ðPi1 1 Pi2Þ=2� Pi1Pi2

; ð5Þ

where a is the number of loci and Pi1 and Pi2 are gene
frequencies at the ith locus in the first and second sam-
ples, respectively. We also considered a closely related
measure (F̂k) proposed by Pollak (1983). As previous
authors have shown that the two measures generally
lead to comparable results, we focused on F̂c because
it has a smaller variance for diallelic loci (Tajima and
Nei 1984; Waples 1989). However, we found that in
some circumstances N̂e differed substantially depend-
ing on which estimator of F was used, and these cases
are noted below.

For each time interval, we computed an overall F̂ as
the mean across the 5000 replicate loci. After advancing
the initial time period by one generation (e.g., first
sample occurs in time period 20 1 T ), this process was
repeated for each interval of L years, generating a vector
of mean F̂ values for a number of intervals of the same
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duration equally spaced one generation apart across the
last 80 years of each replicate. For some analyses, we also
averaged across the elements of these vectors to arrive at
an overall mean F̂ characteristic of a particular sampling
interval of L years.

To evaluate accuracy of the demographic formula for
Ne, we compared observed rates of allele frequency
change in simulated populations with the magnitude of
change expected assuming that true Ne was as given in
Table 3. The expected variance of parametric popula-
tion allele frequency at time period t among replicate
populations or gene loci is given by

VarðPt jP0Þ ¼ EðP0 � PtÞ2 ¼ P0ð1� P0Þ½1� ð1� 1=ð2NeÞÞg �; ð6Þ

where P0 ¼ initial allele frequency (0.5) and g ¼ t/T ¼
elapsed time in generations. For the simulated popula-
tions, we calculated an observed variance in allele fre-
quency at time period t as the variance in P WðtÞ among
5000 replicate gene loci.

Estimating Ne with the temporal method: In the
temporal method, effective size is estimated by relating
the observed amount of allele frequency change to
that expected under pure drift. The standard temporal
method (Krimbas and Tsakas 1971; Nei and Tajima

1981; Pollak 1983; Waples 1989) is commonly referred
to as the moment method because it relies on an esti-
mate of F. Under a pure drift model, the expected value
of F̂ depends on Ne, the number of generations be-
tween samples (g), and the sampling regime. Here we
consider nonlethal sampling of the population (with re-
placement, as in collecting a biopsy for DNA analysis).
This corresponds to sampling plan I described by Nei

and Tajima (1981) and Waples (1989). Under these
conditions,

EðF̂ Þ � g

2Ne
1

1

2S1
1

1

2S2
� 1

N

and

N̂e ¼
g

2ðF̂� 1=ð2S1Þ � 1=ð2S2Þ1 1=N Þ
;

where S1 and S2 are the sample sizes at times 1 and 2, N
is the number of individuals at risk of being sampled at
the time of the first sample, and g¼ L/T¼elapsed time
in generations. Because sample sizes S1 and S2 were the
same in our analyses of constant population size, the
above equation simplifies to

N̂e ¼
g

2ðF̂� 1=S 1 1=N Þ
: ð7Þ

The term 1/N accounts for the covariance of allele
frequencies at times 1 and 2 that arises in plan I sam-
pling because some individuals in the initial sample can
also contribute genes to future generations. The appro-
priate value of N depends on the sampling scheme. If
sampling is random with respect to the entire popula-
tion, the estimator of Ne becomes

N̂e ¼
g

2
�

F̂� 1=S 1 1=
P

Nx

� ð8Þ

(sampling from entire population). For an exhaustive
population census, S ¼

P
Nx , leading to

N̂e ¼
g

2F̂
¼ L

2TF̂
ð9Þ

(complete population census). If only reproductive
adults are sampled, then the number subject to sam-
pling is the total in age classes equal to or older than the
age at first maturity ( j) and younger than the age of
senescence, q (at which age bx ¼ 0 again):

N̂e ¼
g

2
�

F̂� 1=S 1 1=
P

q.x$j Nx

� ð10Þ

(sampling mature adults). Finally, if each sample is
taken from a single cohort of N1 newborns, the ap-
propriate estimator is

N̂e ¼
g

2ðF̂� 1=S 1 1=N1Þ
ð11Þ

(sampling newborns). Assuming that survival among
age classes is random, Equation 11 also applies to any
random sample of a single cohort; it is necessary to
substitute for N1 only the total number remaining in the
cohort at the time of sampling.

Jorde and Ryman (1995) modified the standard
temporal method to account for overlapping genera-
tions. Their modified estimator is (in current notation
and assuming plan I sampling)

N̂e ¼
C

2T ðF̂� 1=ðSÞ1 1=N1Þ
; ð12Þ

where C is a constant that depends on life-history
features of the population. Jorde and Ryman’s model
assumes that population size and demographic param-
eters are constant and is based on a comparison of
consecutive cohorts, which can be achieved by sampling
single cohorts or sampling mixed cohorts and sorting
individuals by age to reconstruct single-cohort samples.
We sampled randomly from the N1 newborns in suc-
cessive years and used Equation 12 to estimate Ne us-
ing the Jorde–Ryman method. The recurrent formulas
(10–13) and (23) in Jorde and Ryman (1995) were used
to calculate C. This iterative process rapidly converged
on a constant C value for each life-history scenario we
considered.

Changing population size: We also modeled ‘‘human’’
and ‘‘sparrow’’ populations that grew deterministically,
increasing each time period by the multiplicative factor
l. We used the l values estimated from the original
published data (1.037 for humans and 1.063 for the
sparrow). In addition, we considered a human popula-
tion that declined at the rate l¼ 0.994 per time period.
These populations were initiated and allowed to run for
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20 time periods (periods 0–19) at constant size (de-
termined by low N1) and demographic parameters given
in Table 2. At time period 20, population growth was
generated by scaling the birth rates to provide the
desired l, while the lx values remained unchanged. At
time period 20 the age structure was also adjusted to
conform to the stable age distribution for a growing (or
declining) population. In each successive time period,
the vector of Nx values was obtained by applying the
birth and death rates (Table 6) to the current popula-
tion: the newborn cohort was generated according to
N1ðt11Þ ¼

Pmax age
x¼1 bxNxðtÞ, and random mortality as de-

scribed above determined which genes survived from
one age class to the next. We generated 100 time periods
of population sizes using real numbers for the Nx but
rounded these to integers in each time period before
conducting the simulations. Under the modeled growth
rates, the human population (excluding senescent
individuals) increased from 826 to .31,000, and the
sparrow population size climbed from 1326 to .5 3 105

(Table 6). In the human decline scenario, population
size dropped from 5118 to 2807.

With changing population size, effective size also
changes every time interval. At a given time t, Equation
4 gives a per-generation effective size (Ne(Ft)) that
characterizes the expected amount of gene frequency
drift that occurs between times t and t 1 T (Felsenstein

1971). This definition creates an analytical difficulty
here. Because there is a different Ne(Ft) for every time
period, genetic change in the population is described by
an array of Ne(Ft) values that apply to partially over-
lapping periods of one generation each, and it is not
immediately clear how to determine the appropriate Ne

value for any given point in time. In the present context,
we need to evaluate genetic change over one or more
individual time units that are fractions of a generation.
Therefore, we need a way to calculate E(Ne(t)), which is
the effective size that describes genetic change between
times t and t 1 1. As shown in appendix b, E(Ne(t)) is just
the instantaneous Ne for the point midway between
times t and t 1 1,

EðNeðtÞÞ ¼ Ne*ðt10:5Þ ¼ NeðFt�T=210:5Þ ¼ geomean½Ne*ðtÞ;Ne*ðt11Þ�;
ð13Þ

where Ne*(t) is an instantaneous effective size that
describes the actual rate of change in the population
at time t. E(Ne(t)) from Equation 13 can be compared
with N̂e estimated from samples taken in time periods
t and t 1 1. For longer time intervals, let E(Ne(t,t1x))
represent the effective size that determines the rate of
change in the population between time periods t and
t 1 x. Then E(Ne(t,t1x)) can be calculated as the har-
monic mean of the E(Ne(t)) values for time periods t
through t 1 x � 1.

When effective size changes over time, the expected
variance of parametric population allele frequency at

time period t among replicate populations or gene loci
is

VarðPt j P0Þ ¼ EðP0 � PtÞ2 ¼ P0ð1� P0Þ½1�
Y

i¼0;t�1

f1� 1=ð2NeðiÞÞg�;

where Ne(i) is the effective size for the time period i to i 1

1. We used Equation 13 to calculate E(Ne(i)) for each
time period.

To estimate Ne, we used the procedure described
above to calculate F̂ for various time intervals and sam-
pling regimes. With changing population size, however,
it is necessary to adjust the terms for N to correspond to
the correct time period. Therefore, in Equations 8, 10,
and 11 we used the values for

P
Nx,
P

Nxðq.x$jÞ, and N1,
respectively, that applied to the time period of the first
sample. The sample sizes of 25, 50, and 100 were fixed,
but when complete population enumeration was done
to calculate parametric population allele frequencies
in growing populations, the sample size at time 2 was
larger than that at time 1: S2 . S1 ¼

P
Nx . Therefore,

Equation 9 was modified as follows:

N̂e ¼
g

2ðF̂� 1=ð2S1Þ � 1=ð2S2Þ1 1=
P

NxÞ
¼ g

2ðF̂� 1=ð2S2Þ1 1=ð2
P

NxÞÞ
ð14Þ

(complete population census; growing population).

RESULTS

Constant population size: For the three model
species, we compared the demographic calculations of
Ne (based on Felsenstein 1971) with values calculated
by two other methods (Equation 3, modified from Hill

1972, and Jorde and Ryman 1995). The three methods
produced essentially identical values of Ne under both
low and high N1 (Table 3). For simplicity, in what fol-
lows we use only Equation 4 to calculate Ne from demo-
graphic data.

Comparison of expected and observed rates of change in
allele frequency: As shown in Figure 2, the observed var-
iance in weighted population allele frequencies P WðtÞ
very closely tracked the expected variance in all three
model species, indicating that the putative Ne values in
Table 3 accurately describe the variance effective size
of these populations. For the remainder of this sec-
tion, therefore, we refer to the values in Table 3 as the
‘‘true’’ Ne.

Genetic estimates of Ne: Figure 3 compares true Ne

values with estimates of Ne based on the standard tem-
poral method, using complete population census to
calculate weighted allele frequencies (P WðtÞ). For both
small and large cohort sizes in all three species, agree-
ment of expected and true Ne was very good. Under
every scenario, N̂e for a given time interval fluctuated
randomly around the true value. Figure 3 shows results
for low N1 for samples taken 1 year apart; similar results
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were found for high N1 and longer time between sam-
ples (L ¼ 1, 5, or 10T; Table 4). At the extreme, devia-
tions of N̂e from true Ne were ,3% (sampling interval of
10T in humans and barnacle).

We also estimated Ne using the temporal method
based on a complete population census using un-
weighted allele frequencies (P SðtÞ); this produced esti-
mates of Ne that were substantially biased in all cases:
�50% too high for humans and �50% too low for the
other two species (Figure 3; Table 4). That is, complete
enumeration of all individuals alive at a given time does
not provide a reliable way of calculating parametric
population allele frequencies in species with overlap-
ping generations.

The array of different sampling regimes produced a
range of outcomes in the three species (Table 4). Two
general patterns can be identified. First, small samples
(S ¼ 25) produced estimates of Ne that had large bi-
ases under many scenarios, even when F̂ was averaged
across 5000 replicate gene loci. Sample sizes of 50 or 100
produced Ne estimates that were less variable and more
accurate.

Second, under most sampling regimes in most
species, N̂e was severely biased when F was estimated
over short time intervals but approached true Ne as the
sampling interval increased. For example, Figure 4 plots
N̂e=EðNeÞ as a function of time between samples for
random samples from either newborns or the entire
population. In all six scenarios, the longest sampling
interval (10T ) produced the most accurate estimate of
Ne. In five of the six cases the estimates for shorter time
intervals were biased more strongly downward; however,
sampling from the entire population for humans led to
overestimates of Ne, and the bias was high for L ¼ 1
generation (Figure 4). Figure 4 shows results for con-
ditions under which the temporal method has the most
power: large sample size (S ¼ 100) and low N1 (hence

relatively small Ne). The same basic pattern (more ac-
curate estimates of Ne over longer time periods) is
seen, albeit sometimes less clearly, in the scenarios with
smaller sample sizes and larger N1 (Table 4). Sampling
only from adult age classes produced results qualita-
tively similar to those for sampling from the entire
population under all scenarios (Table 4).

Finally, we evaluated estimates of Ne from samples
(rather than complete population census) of individu-
als weighted by reproductive value. These estimates
were consistently biased downward (data not shown), a
result that we determined arises because weighting the
samples increases the sampling variance of allele fre-
quency beyond that expected for the nominal sample
size S. Although it is possible, for a given set of individual

Figure 2.—Comparison of observed and expected Var(Pt)
for the three model species under constant population size
and low N1. Comparable results were found for high N1 (data
not shown).

Figure 3.—Comparison of estimated Ne (N̂e) and expected
Ne [E(Ne)] for the low N1 simulations of the three model spe-
cies under constant population size. Expected Ne uses Equa-
tion 4 and the life-table data in Table 2. Estimated Ne was
calculated using the standard temporal method (Equation
9) on the basis of samples taken 1 year apart; F̂c was computed
by complete population enumeration, using either un-
weighted allele frequencies or frequencies weighted by repro-
ductive value.
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weights, to account for this increase in variance to arrive
at an effective sample size, in natural populations the
information necessary to do so will rarely be available.
Consequently, attempting to weight samples by repro-

ductive value is unlikely to be a practical solution and we
did not pursue this idea further.

The Jorde–Ryman method was designed for applica-
tion to data for two successive cohorts (equivalent to

TABLE 4

Effective population size estimated for the three model species using the standard temporal method

Sampling
interval

Human Sparrow Barnacle

N1: 100 1,000 1,000 10,000 100,000 1,000,000
Sampling regime S Ne (F): 511.8 5,118.1 370.2 3,702.2 120.0 1,199.6

Complete census
Unweighted P

P
Nx 1 874 8,761 175 1,755 67 673

1T 893 8,868 289 2,867 96 955
5T 568 5,708 353 3,535 116 1,126
10T 547 5,536 365 3,631 121 1,142

Weighted P
P

Nx 1 511 5,116 370 3,709 120 1,203
T 510 5,094 371 3,683 120 1,195
5T 519 5,173 370 3,718 122 1,182
10T 522 5,271 372 3,726 123 1,174

Random sampling
All age classes 25 1 Inf Inf 1,826 Inf 116 Inf

1T Inf Inf 572 Inf 122 Inf
5T 626 Inf 446 Inf 129 1,801
10T 606 26,676 414 8,228 131 1,435

50 1 Inf Inf 226 Inf 74 Inf
1T 1,320 Inf 320 Inf 102 1,631
5T 645 12,865 367 4,679 120 1,270
10T 580 5,509 377 5,004 125 1,316

100 1 1,139 Inf 184 5,838 73 838
1T 1,076 5,268 285 2,179 100 992
5T 577 5,881 358 3,618 118 1,159
10T 563 4,940 371 3,650 123 1,162

Adults 25 1 Inf Inf 222 Inf 60 Inf
1T 82,131 Inf 377 Inf 106 Inf
5T 711 Inf 401 76,308 122 1,706
10T 607 Inf 404 9,308 127 1,415

50 1 2,579 Inf 135 Inf 51 Inf
1T 846 Inf 278 Inf 100 1,620
5T 552 11,641 359 6,463 119 1,223
10T 554 8,161 367 5,222 124 1,154

100 1 538 Inf 131 3,863 49 566
1T 893 29,797 251 5,103 97 896
5T 563 6,041 348 3,820 117 1,150
10T 555 5,880 365 3,847 122 1,178

Newborns 25 1 10 1,811 118 Inf 141 Inf
1T 64 2,991 240 Inf 123 Inf
5T 195 5,655 352 156,798 127 1,591
10T 280 5,260 390 9,502 131 1,519

50 1 9 119 82 Inf 80 3,838
1T 60 922 201 Inf 101 1,437
5T 184 1,754 329 5,138 119 1,169
10T 264 2,834 351 4,591 125 1,199

100 1 9 93 75 1,109 69 892
1T 59 618 189 3,323 96 997
5T 181 1,884 321 3,489 118 1,137
10T 265 2,790 350 3,571 123 1,153

Allele frequencies were computed on the basis of either a complete population census (using weighted or unweighted allele
frequencies) or unweighted allele frequencies in random samples from the population as a whole (all age classes), only adults, or
only the cohort of newborns. Samples of size S individuals were taken at the indicated time intervals. Results are based on mean F̂c

values calculated over 5000 replicate gene loci. Inf, a point estimate of infinity.
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sampling newborns in two consecutive years in our
model), and under that scenario N̂e for the Jorde–
Ryman method asymptotically approached the true Ne

as sample size increased (Table 5). In their published
example (which was for a species with type I survivor-
ship), Jorde and Ryman found that with S¼ 30, N̂e based
on F̂c was �10% too high. With the human life history,
we found comparable results for S¼ 25 and low N1 (8%
upward bias in N̂e; Table 5), but this bias was consider-
ably less for larger samples. For the sparrow and
barnacle life histories, the Jorde–Ryman method also
produced accurate estimates for large sample size but
the upward bias was more extreme (up to 100%) for S¼
25. A more pronounced upward bias was also found for
high N1 simulations, especially for small sample sizes
(Table 5). When we used the Jorde–Ryman method with
Pollak’s measure F̂k , we found the same general pattern

(N̂e asymptotically accurate for large samples) except
that small samples led to underestimates (rather than
overestimates) of Ne (data not shown).

Ne/N ratio: As pointed out by previous authors (e.g.,
Nunney 1993; Frankham 1995), the Ne/N ratio is
sensitive to the choice of which age classes to include
in calculating N. Results in Table 3 illustrate this point.
For the barnacle, Ne/N is 1.2 3 10�3 if population size
is taken to be all individuals alive at a given time
(N ¼

P
Nx) but is 0.79 (almost three orders of mag-

nitude higher) if only mature adults are counted
(N ¼ Nadult). [Note that to make our simulations more
tractable we reduced fecundity and increased age-1
survival of the barnacle by an order of magnitude; the
difference between Ne/N ratios would be even more
extreme using the published data]. The effects are not
as dramatic in the other species, but even for humans
the ratio Ne/N is over twice as high if N is taken to be the
number of reproductive adults rather than the total
population size (0.76 vs. 0.34; Table 3).

Changing population size: Comparison of expected and
observed rates of change in allele frequency: For all three
scenarios (human growth and decline and sparrow
growth; see Table 6), the observed variance in weighted
population allele frequencies P WðtÞ closely tracked the
expected variance (data not shown, but results are
comparable to those shown in Figure 2), indicating that
Equation 13 accurately predicts the effective size as it
changes over time.

Genetic estimates of Ne: Agreement between N̂e and
E(Ne) for populations that changed in size was excellent
for all three scenarios considered. Median N̂e=EðNeÞ
ratios were almost exactly 1.0 for all time periods when
weighted population allele frequencies were used to
calculate F̂ (Table 7). Other sampling regimes produced
results that roughly paralleled those for populations of
constant size. In humans, a population census with
unweighted frequencies led to overestimates of Ne for
short time periods, with lower bias over longer time
periods. Conversely, sampling newborns led to gross
underestimates of Ne for short time periods (Table 7).
In the sparrow, a complete population census using

Figure 4.—The ratio N̂e=EðNeÞ for the three model species
under constant population size and low N1. E(Ne) was com-
puted using Equation 4 and the life-table data in Table 2.
N̂e was calculated using F̂c in the standard temporal method,
using random samples either from the population as a whole
(Equation 8; solid symbols) or only from the cohort of new-
borns (Equation 11; open symbols). Sample sizes at times 1
and 2 were fixed at S1 ¼ S2 ¼ 100 but the interval between
samples varied from L ¼ 1 to 10 generations.

TABLE 5

Effective population size estimated for constant populations of the three model species using the
method of JORDE and RYMAN (1995)

Human (C ¼ 56.80) Sparrow (C ¼ 4.947) Barnacle (C ¼ 1.793)

N1: 100 1,000 1,000 10,000 100,000 1,000,000
Sampling regime S Ne (F): 511.8 5,118.1 370.2 3,702.2 120.0 1,199.6

Newborns 25 553 102,835 583 Inf 251 Inf
50 523 6,778 405 Inf 143 6,848

100 515 5,286 372 5,488 124 1,591

Estimates are based on unweighted allele frequency differences between samples taken in two consecutive time periods; other
conditions are as described in Table 4. Parameter C is calculated by iterating Equations 10–13 in Jorde and Ryman (1995).
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unweighted allele frequencies and random sampling
from newborns both produced severe underestimates of
Ne for short time intervals, but N̂e approached E(Ne) for
longer time intervals. In contrast, sampling from the
entire population or only adults led to substantial
overestimates for short time periods. These patterns
are all consistent with those found for constant pop-
ulation size (Tables 4 and 7).

DISCUSSION

Felsenstein (1971) proposed, but did not prove, that
weighting each individual by its reproductive value is the
correct way to calculate parametric population allele
frequencies in species with overlapping generations.
Our results demonstrate that this is indeed the case,
regardless of the species’ life history and regardless of
whether the population is fixed or changing in size at a
constant rate. In contrast, measuring the magnitude of
population change using unweighted population allele
frequencies led to large departures from expected
values in all scenarios considered, even when the entire
population was sampled.

These results indicate that caution is needed in
interpreting standard-model temporal estimates of
effective population size in species with overlapping
generations. The resulting estimates will be biased
unless the entire population is sampled and individual
genotypes are weighted by their reproductive value.
Unfortunately, this is not a practical solution to the
problem of estimating Ne. Rarely is it feasible to sample
an entire population, and, even if this were possible
(e.g., as might be the case in small captive populations),
the age-specific life history data needed to compute
individual reproductive values typically are not avail-
able. As discussed above, taking samples and weighting
allele frequencies by reproductive value also are gener-
ally not feasible. One solution to this problem is to use
the Jorde–Ryman method (Jorde and Ryman 1995),
which we found generally performed well when it was
applied to situations for which it was designed: analysis
of samples from consecutive cohorts. This method can
be used with any age-structured species, but in practice
it has not been widely applied, perhaps because it
requires both detailed demographic information to
compute the correction factor C and samples from
single cohorts in successive years. Most applications of
the temporal method for species with overlapping

TABLE 6

Life-history parameters for the model species in populations that change in size

Human growth Human decline Sparrow growth

Age (x) lx bx vx lx bx vx lx bx vx

1 1.000 0.000 1.000 1 0 1 1.000 0.000 1.000
2 0.979 0.000 1.059 0.979 0 1.016 0.180 3.050 5.905
3 0.978 0.021 1.100 0.978 0.017 1.010 0.095 3.300 6.090
4 0.975 0.352 1.123 0.975 0.281 0.990 0.051 3.500 5.987
5 0.972 0.416 0.816 0.972 0.333 0.705 0.027 3.750 5.404
6 0.968 0.260 0.432 0.968 0.208 0.370 0.014 4.000 3.763
7 0.964 0.138 0.189 0.964 0.110 0.160
8 0.957 0.054 0.059 0.957 0.043 0.049
9 0.946 0.007 0.007 0.946 0.006 0.006
10 0.928 0 0.000 0.928 0 0

T ¼ 5.2105 T ¼ 5.2695 T ¼ 2.919
l ¼ 1.037 l ¼ 0.994 l ¼ 1.063

TABLE 7

Ratio of estimated (N̂e) to expected [E(Ne)] effective size for
the three model species in populations that change in size

Sampling
regime L

Human
growth

Human
decline

Sparrow
growth

Census
Unweighted 1 1.22 1.80 0.44

T 1.42 1.79 0.75
5T 1.03 1.12 0.94
10T 1.00 1.08 0.97

Weighted 1 1.00 1.00 1.01
T 1.01 1.00 1.01
5T 1.01 1.01 1.01
10T 1.01 1.01 1.02

Samplinga

All age classes 1 Inf Inf 3.19
T 5.28 1.83 1.28
5T 1.12 1.21 1.02
10T 1.06 1.15 1.00

Adults 1 Inf Inf Inf
T Inf Inf Inf
5T 1.17 1.27 2.56
10T 1.02 1.11 1.36

Newborns 1 0.12 0.11 0.23
T Inf Inf 0.66
5T 1.25 1.04 0.91
10T 1.06 1.07 0.97

Values shown are median N̂e=EðNeÞ ratios for samples taken
L time units apart; other conditions are as in Table 4.

a Sample size ¼ 100; unweighted allele frequencies.
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generations continue to use the standard discrete-
generation model, so it is important to consider the
nature and magnitude of the bias that is likely to result
from common sampling schemes. These results are
complex, but some patterns are apparent.

First, bias in N̂e is largest for short time intervals and
in many cases largely disappears after 5–10 generations
between samples (Figure 4; Table 4). This pattern,
which was also seen in analyses of growing populations
(Table 7), can be understood by noting that the mag-
nitude of F̂ (and hence N̂e) is determined by two major
components: a component related to drift (the signal)
and one related to sampling a finite number of individ-
uals (the noise). The bias arises because the adjustment
for sampling derived for the discrete-generation model
does not capture all of the complexities associated with
sampling from age-structured populations ( Jorde and
Ryman 1995). The magnitude of this sampling bias is
fixed by the sample size and the nature of the sampling
in relation to the species’ life history; it does not change
with the amount of time between samples. In contrast,
a longer sampling interval allows more episodes of
genetic drift to influence F̂, thus increasing the signal-
to-noise ratio in the data.

The second noteworthy pattern is that the direction
of bias in N̂e based on F̂c differs markedly between the
human and the barnacle: random sampling from the
population (or a complete population census with
unweighted allele frequencies) leads to an overestimate
of Ne in humans but an underestimate in the barnacle.
In the barnacle, the vast majority of individuals alive at
any time are newborns, so a random sample will pri-
marily reflect frequencies in the newborns, which are
derived only from the fraction of the population that
reproduced the previous year. The result is a sampling
variance greater than would be expected from a ran-
dom sample from the generation as a whole, with the
consequence that F̂ is higher than expected and Ne is
underestimated. Humans are much more evenly distrib-
uted across age classes, including a substantial contin-
gent of older individuals with low reproductive value
that represent a sort of genetic inertia in the population.
If their frequencies are weighted equally with younger
individuals that have higher reproductive value, the
result will be an underestimate of the rate of genetic
change and an overestimate of Ne. Sampling only hu-
man newborns, however, leads to an underestimate of
Ne, as it does in the barnacle, because the progeny are
drawn from a relatively small fraction of the population
that reproduces in any given time period. Use of F̂k

exacerbates the downward bias in N̂e for the barnacle
(data not shown), because with diallelic loci F̂k is always
larger than F̂c (Waples 1989), resulting in a lower N̂e.
Use of F̂k with humans led to quite variable results, with
N̂e being biased either upward or downward depending
on the sampling regime, sample size, and elapsed time
between samples (data not shown).

Results for the sparrow are somewhat intermediate
but closer to the barnacle than to the human and consis-
tent between the constant size and growth scenarios
(Figures 3 and 4; Tables 4 and 7). Presumably this reflects
high mortality in the sparrow between ages 1 and 2, which
causes a large fraction of the population to have low re-
productive value, as in the barnacle. Thus, although the
sparrow displays a classical type II survival curve after age
1, the episode of high juvenile mortality has important
consequences for estimation of effective population size.

Finally, an interesting result is that, at least for small
N1, the magnitude of bias in N̂e was larger for the human
than for the other two species (Table 4, Figure 4). This
might mean that species with type I survivorship are
particularly prone to bias with use of the standard
temporal method. However, the generality of this result
requires further evaluation, as other factors such as
longer generation time could also be involved.

Precision: Our analyses have focused on bias, but
precision is also an important consideration for any
genetic method of estimating Ne. Although it is beyond
the scope of this article to evaluate precision in any
comprehensive way, some general observations can be
made on the basis of previously published results (Nei

and Tajima 1981; Waples 1989; Jorde and Ryman

1995). First, the same proportional increase in sample
size, elapsed time between samples, and number of
independent alleles used in the estimate of N̂e all have
approximately the same effect on precision. Our results
show that in some cases it is possible to get largely
unbiased estimates of Ne from samples taken only a
fraction of a generation apart. In general, however, such
estimates would have very low precision unless Ne were
very small and samples of individuals and loci very large.
As the number of alleles used to compute F̂ increases,
the mean contributions from sampling and drift both
stabilize around their expected values and precision
increases. With existing technology it is quite feasible to
collect data for 10–20 highly polymorphic microsatellite
loci in many natural populations, which can produce
precise estimates of Ne under certain conditions.

Second, the temporal method can be used most
effectively to study populations with small Ne, because
the signal from drift is large relative to sampling error.
With any genetic method it can be difficult to distin-
guish a large population from a very large one. For
example, under many scenarios with high N1 the point
estimates of Ne were infinity, even when F̂ was averaged
across 5000 gene loci (Tables 4 and 5). A similar effect
was seen in growing populations, which reached a large
size before the end of the simulations (Table 7).

Finally, results obtained by Jorde and Ryman (1995)
suggest that the coefficient of variation of F̂ when gener-
ations overlap is comparable to that for the discrete-
generation model, so parametric confidence intervals
for N̂e for the standard temporal method (Waples

1989) should also be applicable to iteroparous species.
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Likelihood-based methods for estimating Ne: In
recent years a number of likelihood-based methods
(Williamson and Slatkin 1999; Anderson et al. 2000;
Wang 2001; Berthier et al. 2002) have been proposed
for estimating Ne. In general, results for these methods
are roughly comparable to the standard temporal
method for moderate allele frequencies but are less
biased and more precise when many low-frequency
alleles are considered. These methods are all computa-
tionally demanding and were not evaluated here.
However, all depend on estimates of allele-frequency
change in samples taken at two or more points in time.
Therefore, they should all be affected in the same
general way by the various age-structure biases consid-
ered in this article. This conjecture should be tested
empirically. The empirical Bayesian method proposed
by Tallmon et al. (2004) should be able to deal with
overlapping generations by modifying life-history pa-
rameters of the modeled species.

Fluctuating population size: Our results confirmed
the basic elements of Felsenstein’s (1971) model for
populations that change in size at a constant rate,
regardless of whether they are increasing or decreas-
ing. However, many populations fluctuate around a
‘‘mean’’ population size. Waples (2005) evaluated per-
formance of the temporal method for semelparous, age-
structured species following the Pacific salmon model,
but comparable analyses have not been done for
iteroparous species. The model recently developed by
Engen et al. (2005) for defining Ne in populations with
overlapping generations that fluctuate in size could
form the basis for such an evaluation in the future.

Conclusions: Results discussed above lead to the fol-
lowing conclusions regarding application of the tempo-
ral method to iteroparous, age-structured species:

The Jorde–Ryman method (Jorde and Ryman 1995) is
perhaps the best option if appropriate samples and
demographic data are available. Ideally, samples from
a number of consecutive cohorts can be analyzed, so
that an overall mean F̂ (and associated N̂e) can be
calculated that accounts for small variations over time
in population size and demographic parameters
( Jorde and Ryman 1996; Palm et al. 2003). If single-
cohort samples cannot be collected directly, it might
be possible to reconstruct them by ageing individuals.
Jorde and Ryman (1995) suggested that if it is not
possible to reconstruct consecutive cohorts, the correc-
tion factor C might be modified to reflect a different
timing of the samples. Some uncertainty in demo-
graphic parameters might not seriously affect the
results, depending on the species’ life history (Jorde

and Ryman 1995). Biases associated with small sam-
ples can be minimized by using at least 50 individuals
in each cohort.

If the available data do not allow use of the Jorde–
Ryman model, sampling biases can be minimized

(and precision enhanced) by taking samples spaced
far apart in time (at least three to five generations,
preferably more). This in fact has been the assump-
tion adopted by some authors who have used the
temporal method with age-structured species, and
our results show that it can be a reasonable one in at
least some cases. Recent improvements in the ability
to extract DNA from historical material can provide
opportunities for retrospective analyses that span
large numbers of generations (Hauser et al. 2002;
Johnson et al. 2004; Poulsen et al. 2006).

In some cases (e.g., for species with type I survivorship),
estimates of Ne using the standard temporal method
for closely spaced, random samples might not be
severely biased, but precision of such estimates is
unlikely to be satisfactory for most applications.
Therefore, when generations overlap and samples
are closely spaced in time, standard temporal esti-
mates of Ne should be interpreted with extreme
caution. This is particularly true because in these
cases the choice of which estimator of F to use can
have a profound effect on N̂e. The minor differences
between F̂c and F̂k have less impact on N̂e when a
longer time elapses between samples and the drift
signal is stronger. As a precaution, those employing
the temporal method should compute N̂e using both
F̂c and F̂k and use considerable caution in interpreting
scenarios under which the estimate of effective size
depends heavily on the estimator of F.

Large samples of individuals are important, not only for
precision but also to help minimize bias arising from
various violations of implicit sampling assumptions.

Understanding as much as possible about the species’
life history is important to design a sampling strategy
to minimize potential biases.

We thank Per Erik Jorde, Nils Ryman, and two anonymous reviewers
for insightful comments on an earlier draft of the manuscript, and we
are grateful to Shuichi Kitada and Toshihide Kitakado for stimulating
discussions.
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APPENDIX A

Consider a population with constant demographic
parameters that produces N1 newborns per time period.
The cohort of newborns can be partitioned into x de-
mographic classes of individuals on the basis of age at
death. The number of individuals living to age x, repro-
ducing, and then dying before the next time interval is
N1lxdx. The average lifetime reproductive success of
individuals that die at the end of year x is �kx ¼

P
i¼1;x bi .

Population size is constant, so the mean reproductive
success of the entire cohort of N1 individuals is �k ¼ 2,
which is equal to the weighted mean for each age.

Now let sx
2 be the variance in lifetime reproductive

success of individuals that die at the end of age x, and let
ax¼ lxdx be the fraction of the initial cohort that reaches
age x and then dies. It can be shown (see online
Appendix A in Waples 2006 for details, and see Hill

1972 for a related treatment based on continuous time
intervals) that the overall variance in reproductive
success for the entire cohort is

Vx ¼
P

axN1s2
x 1

P
axN1

�k2
x

N1
� �k2

¼
X

axs2
x 1

X
ax

�k2
x � 4: ðA1Þ

If the distribution of reproductive success is Poisson
within each age class, so that sx

2 ¼ �kx , this simplifies to
Vx ¼

P
ax

�kxð1 1 �kxÞ � 4 and (from Equation 2)

Ne �
4N1TP

ax
�kxð1 1 �kxÞ � 2

¼ 4N1TP
lxdx

�kxð1 1 �kxÞ � 2
: ðA2Þ

APPENDIX B

The objective is to calculate E(Ne(t)), which is the ef-
fective size that describes genetic change between times
t and t 1 1. This can be accomplished by treating Ne as a
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continuous function of time. Effective size is directly
proportional to total reproductive value of the popula-
tion, which increases at the rate l per time unit
(Felsenstein 1971). Therefore, Ne can be described
by the exponential growth model

NeðFtÞ ¼ NeðF0Þlt ; ðB1Þ

where Ne(F0) is the effective size in the generation
immediately preceding population growth (506.2 in our
human model after adjusting to stable age structure in
a growing population). Ne(Ft) describes the ‘‘average’’
rate of change over the generation that starts at time
t and ends at time t 1 T; however, since the population is
growing geometrically, the actual effective size must be
smaller early in the generation and larger later in the
generation. Let us define an instantaneous effective
size, denoted by Ne*(t), that describes the actual rate of
change in the population at a point t in time. Ne*

increases exponentially over the interval t to t 1 T, and it
can be shown that Ne* ¼ Ne(Ft) at the midpoint of the
interval. That is, Ne*(t1T/2) ¼ Ne(Ft), which is also equal
to the geometric mean of the Ne* values over the period
of the generation. It follows that the instantaneous
Ne for any time period t can be calculated as

Ne*ðtÞ ¼ NeðFt�T=2Þ: ðB2Þ

That is, instantaneous Ne at time t is just Ne(F ) from one-
half generation earlier.

We want to find E(Ne(t)), which is analogous to Ne(Ft)
except that it describes genetic change over the next
time period rather than the next generation. The above
logic indicates that E(Ne(t)) is just the instantaneous
Ne for the point midway between times t and t 1 1:

EðNeðtÞÞ ¼ Ne*ðt10:5Þ ¼ NeðFt�T=210:5Þ
¼ geomean½Ne*ðtÞ;Ne*ðt11Þ�: ðB3Þ

Temporal Method With Overlapping Generations 233


