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ABSTRACT

We characterized general transcriptional activity and variability of eukaryotic genes from global
expression profiles of human, mouse, rat, fly, plants, and yeast. The variability shows a higher degree of
divergence between distant species, implying that it is more closely related to phenotypic evolution, than
the activity. More specifically, we show that transcriptional variability should be a true indicator of
evolutionary rate. If we rule out the effect of translational selection, which seems to operate only in yeast,
the apparent slow evolution of highly expressed genes should be attributed to their low variability.
Meanwhile, rapidly evolving genes may acquire a high level of transcriptional variability and contribute to
phenotypic variations. Essentiality also seems to be correlated with the variability, not the activity. We show
that indispensable or highly interactive proteins tend to be present in high abundance to maintain a low
variability. Our results challenge the current theory that highly expressed genes are essential and evolve
slowly. Transcriptional variability, rather than transcriptional activity, might be a common indicator of
essentiality and evolutionary rate, contributing to the correlation between the two variables.

EVOLUTION of gene expression, which has long
been a subject of great interest (King and Wilson

1975), is now being studied on a genomic scale with the
help of rapidly growing microarray and genome
sequence data (Enard et al. 2002; Oleksiak et al.
2002; Meiklejohn et al. 2003; Ranz et al. 2003; Rifkin

et al. 2003; Khaitovich et al. 2004; Denver et al. 2005).
Of particular importance, expression level has been
believed to be the best indicator of the evolutionary
rate of encoded proteins. Highly expressed genes were
found to evolve slowly from bacteria to mammals
(Sharp 1991; Duret and Mouchiroud 2000; Pal et al.
2001; Herbeck et al. 2003; Urrutia and Hurst 2003;
Subramanian and Kumar 2004; Drummond et al.
2005). In addition, it has recently emerged as a gov-
erning factor behind the apparent relationships be-
tween evolutionary rate and other important genomic
features. Specifically, the influences of protein–protein
interactions and dispensability on evolutionary rate
have been disputed on the grounds that their effects
may be confounded with gene expression level (Hirsh

and Fraser 2001; Fraser et al. 2002; Bloom and Adami

2003; Pal et al. 2003; Bloom and Adami 2004; Fraser

and Hirsh 2004; Wall et al. 2005). In other words,
when expression level was statistically controlled, the
effects decreased or disappeared. Pal et al. (2003) ar-
gued that essential proteins evolve more slowly only

because they are highly expressed. To rule out the
direct effect of essentiality on evolutionary rate, they
argued on the basis of the following two hypothetical
relations:

1. Essentiality and transcriptional activity: Each protein
molecule may have the same amount of phenotypic
contribution to an organism’s fitness. Under this
hypothesis, proteins that have more phenotypic
contribution should have higher levels of active
molecules in the cell. However, the validity of this
hypothesis is highly questionable as genes involved in
functions such as transcriptional regulation, ligand
binding, and signal transduction are required only
in small quantities even though they are vital for the
organism. High abundance does not necessarily
mean high fitness effect.

2. Transcriptional activity and selective pressure: Highly
expressed genes may prefer translationally efficient
codons, which leads to a slow rate of nucleotide
sequence changes (Akashi 2001, 2003; Akashi and
Gojobori 2002). Recently, using Saccharomyces as
a model organism, Drummond et al. (2005) argued
that selection may act on codon preference (for
translational accuracy) and on amino acid sequence
(for translational robustness) to minimize the detri-
mental effects of protein misfolding. Since they
experience more translation events, highly expressed
genes should be subject to stronger selective pres-
sure. However, this is hardly applicable to higher eu-
karyotes. First, the lack of translational selection on
codon preference in larger genomes is a well-known
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phenomenon (Shields et al. 1988; Sharp et al.
1995; Akashi 1997, 2001; dos Reis et al. 2004).
Second, in a recent study (Wright et al. 2004), it
has been shown that the number of tissues in which
a gene is expressed, not the total amount of trans-
lation events across tissues, is an important determi-
nant of evolutionary rate in Arabidopsis. We expect
that this should be the case with other multicellular
organisms.

Here we propose two alternative relations:

1. Essentiality and transcriptional variability: One can
anticipate that essential proteins should have low
genetic and physiological variation. To perform core
functions in the cell, they are constitutively required
in different individuals and physiological conditions.
This leads to the expectation that transcriptional
variability, which can be expressed as genetic, phys-
iological, or random variation at different levels, may
be a better indicator of essentiality than transcrip-
tional activity. To test this hypothesis, we compared
the transcriptional variability of genes associated with
essential gene ontology (GO) categories to that of
the other genes. For experimental validations, pro-
tein dispensability and interaction data for yeast
proteins were used for a measure of essentiality.

2. Transcriptional variability and selective pressure: The
presence of high variation among individuals in a
population may indicate the action of weak purifying
selection on that gene. One can envision that those
genes have evolved to possess a high transcriptional
variability to be expressed in specific conditions. In
contrast, the genes under strong purifying selection
are likely to exhibit a constant level of expression in
various conditions, maintaining a limited level of
variability. This explains the observation of a corre-
lation between evolutionary rate and tissue specific-
ity (Wright et al. 2004). Duplicates could be used
as a good source for the quantitative measure of a
correlation between expression divergence and se-
quence divergence (Gu 2004; Gu et al. 2004, 2005).
Drummond et al. (2005) demonstrated that diver-
gence in transcriptional activity correlated with
sequence divergence between duplicates in yeast.
However, we speculated that divergence in transcrip-
tional variability would correlate better with se-
quence divergence in eukaryotes. We tested the
second hypothesis with a genomewide analysis fol-
lowed by the duplicates studies.

To provide experimental support for these hypothe-
ses, we made use of a microarray database to extract
general transcriptional properties of each gene. An av-
erage expression level across a wide range of biological
conditions, including different individuals, times, tis-
sues, disease states, environmental conditions, and so

on, defined general transcriptional activity. Coefficient
of variation (CV), the ratio of standard deviation (SD)
over mean, was adopted as a measure of general tran-
scriptional variability. CV has been used as a measure of
stochastic fluctuation or ‘‘noise’’ in gene expression
(Elowitz et al. 2002; Ozbudak et al. 2002; Blake et al.
2003; Raser and O’Shea 2004). According to the
models of stochastic gene expression, noise should in-
crease as the amount of transcript decreases (Hasty

and Collins 2002; Swain et al. 2002). Low expression
level may be coupled with high physiological or genetic
variation as well as stochastic variation. Small changes in
the amount of proteins that are normally expressed at a
low level may have a greater impact on the cell or
organism than large changes in the amount of proteins
whose normal expression level is high. Therefore, it may
be that there is a close correspondence between tran-
scriptional activity and variability.

MATERIALS AND METHODS

Measuring transcriptional activity and variability: Supple-
mental Table 1 at http://www.genetics.org/supplemental/ shows
a compendium of the multispecies microarray data obtained
from the GEO database (http://www.ncbi.nlm.nih.gov/geo/).
The raw Affymetrix data were used without log transformation.
A flooring of the lowest 1% and ceiling of the top 1% was
applied. From the microarray data sets with at least five arrays,
we computed the mean and CV of expression values for each
gene. To integrate different scales of microarray data sets, we
scaled the mean values to zij ¼ ðmij � mjÞ=SDðfmjÞ, where mij is
the mean expression level of ith gene in the jth data set, while
mj and SDðfmjÞ indicate the average and standard deviation of
all mean values in the jth data set. Finally, global transcrip-
tional properties of gene i were obtained as

Pn
j¼1 zij=n andPn

j¼1 vij=n, namely, the mean z-score and mean CV across n
data sets. These final estimates of transcriptional activity and
variability can be downloaded at our supplemental website,
http://centi.kribb.re.kr, along with all of the raw microarray
data.

Evolutionary conservation index: To provide a measure of
evolutionary rate on a macroevolutionary timescale, we used
the HomoloGene database (http://www.ncbi.nlm.nih.gov/
HomoloGene). We assigned each gene a conservation score
defined as the number of its orthologs among 18 eukaryotic
species. Thus, the score ranges from 1, meaning the gene is
specific to one species, to 18, meaning the gene is conserved
among all the 18 species. Rapidly evolving genes, including
recently emerged genes (Long et al. 2003), will probably be
conserved only in a few organisms and thus have a low
conservation score. On the contrary, slowly evolving genes,
such as ancient genes, will have a high conservation score. This
score is expected to reflect selective pressure differently than
substitution rates. As such, we used the conservation score as
an inverse estimate of evolutionary rate. We refer to it as the
evolutionary conservation index (ECI).

Measuring substitution rates: Orthologous relationships
among human, mouse, and rat proteins were obtained from
the HomoloGene database. Synonymous (dS) and nonsynon-
ymous (dN) substitution rates were calculated from the align-
ments of coding sequences using PAML’s codonml (Yang

1997). PAML’s baseml was then used to estimate Jukes–Cantor
distances between orthologous nucleotide sequences. A total
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of 12,671 human–mouse and 7154 mouse–rat ortholog pairs
with observed expression pattern produced appropriate pro-
tein and nucleotide sequence alignments for PAML input.
Paralogs were also identified from the HomoloGene database.
We performed all-against-all comparisons between paralogs
to estimate dN, dS, the transcriptional activity difference, and
transcriptional variability difference. Transcriptional-activity
divergence was measured as jz1� z2j, where z1 and z2 mean the
transcriptional activity of two paralogous genes. Transcrip-
tional-variability divergence was measured as jCV1 � CV2j,
where CV1 and CV2 mean the transcriptional variability of two
paralogous genes.

Principal-component analysis-based regression: Although
similar in principle, the two representative principal-compo-
nent analysis (PCA)-based regression methods have different
purposes. Principal-component regression (PCR) determines
the linear combinations of the predictors that explain most of
the variation in these predictors, ignoring the response vari-
able. Partial least-squares regression (PLS), in contrast, finds
the linear combinations that best explain the response,
yielding different results according to the type of the response
(in this case, ECI, dN, dS, the fitness effect, and protein in-
teraction number). Although practically it produces similar
results to PLS, PCR is not designed to determine the influence
of the predictors on the response. In fact, PCR failed to
distinguish the contribution of the predictors (transcriptional
activity and variability) in many cases in our analysis. The R
package ‘‘pls’’ was used to perform PLS. We scaled the pre-
dictors to zero mean and unit variance before conducting PLS.

Functional category analysis: For each GO category with
.10 genes, we computed a normalized transcriptional vari-
ability (z-score) from the CVs of all members of that category.
The z-score was defined as z ¼ ðvGO � vallÞ=ðSDðgvGOÞ=

ffiffiffiffiffiffiffiffiffi
nGO
p Þ,

where vGO is the average CV for the genes in the GO category,
vall is the average CV for all genes in the species, SDðgvGOÞ is the
standard deviation for the genes in the category, and nGO is the
number of the genes in the category. The z-scores are listed for
each species in the supporting information available at http://
centi.kribb.re.kr. For each category, we obtained a specieswise
z-score as

Pn
k¼1 zk=n, where zk indicates the z-score in the kth

species when n $ 3. The specieswise z-scores are given in sup-
plemental Table 4 at http://www.genetics.org/supplemental/.
The significant categories with more than a total of 100 genes
across the species were selected for presentation in supplemen-
tal Tables 2 and 3 at http://www.genetics.org/supplemental/.

RESULTS AND DISCUSSION

Evolution of general transcriptional properties: We
collected Affymetrix microarray data for the species for
which a considerable amount of expression profiles
have been produced (supplemental Table 1 at http://
www.genetics.org/supplemental/). For example, 177
different data sets containing 16,446 HomoloGene
entries in 4136 arrays were gathered as a human ex-
pression profile. The mean and CV of expression values
were obtained for each gene. The mean value was scaled
to a z-score. The average z-score and CV were computed
across the data sets within a species to represent general
transcriptional activity and variability, respectively.

We needed to check if the expression profiles used
in the analysis contained a sufficient amount of data
to convey information on the universal transcriptional

properties of each gene. To test this, we made compar-
isons of the z-score and CV among the species on the
assumption that the transcriptional properties should
be evolutionarily conserved. Since human, mouse, and
rat had much more microarray data sets than the other
species (supplemental Table 1 at http://www.genetics.
org/supplemental/), we randomly selected 20 data sets
for each species to remove the sample-size effect. For
HomoloGene entries whose transcriptional properties
were observed in more than one species, we calculated
the correlation coefficient for every species pair and
found striking correlations in most cases (Table 1). The
transcriptional activity is well conserved from yeast to
human. Whereas maintaining a high level of similarity
among human, mouse, and rat, the variability shows
some degree of divergence between distant species. Us-
ing the whole data for human, mouse, and rat resulted
in the same patterns. These findings suggest that our
measures of transcriptional activity and variability re-
flect inherent biological features that are highly con-
served among orthologs, while remaining free of sampling
problems. Moreover, the higher level of divergence in
the variability over that measured in the activity implies
that transcriptional variability might play a more impor-
tant role in the evolution of phenotypic variations.

Transcriptional activity vs. transcriptional variability:
To address our main question, we essentially needed to
measure the correlations of these transcriptional prop-
erties with various response variables, namely estimates
of essentiality and evolutionary rate. Spearman’s rank
correlation coefficient was used since it is robust to
outliers and able to properly handle different scales of
various estimates. We denote the correlation of tran-
scriptional activity as Ra and that of transcriptional
variability as Rv. A primary concern during the analysis
was the association between transcriptional activity and

TABLE 1

Correlation of transcriptional properties among orthologs

Human Mouse Rat Fly Plant Yeast

Human 0.460 0.428 0.213 0.246 0.165
Mouse 0.469 0.454 0.240 0.263 0.190
Rat 0.443 0.507 0.256 0.258 0.237
Fly 0.352 0.380 0.404 0.193 0.164
Plant 0.318 0.395 0.387 0.418 0.248
Yeast 0.385 0.446 0.467 0.511 0.511

For 31,046 HomoloGene entries whose expression pattern
was observed in one or more species, the specieswise correla-
tions of transcriptional activity (below the diagonal) and tran-
scriptional variability (above the diagonal) were computed.
To rule out the effect of sample-size bias, we randomly se-
lected 20 data sets for human, mouse, and rat. However,
the use of the selected data did not show differences from that
of the whole data, underscoring that our measures reflect in-
herent biological features without regard to sample size.
Spearman’s rank correlation coefficient was used.
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variability. As mentioned in the Introduction, there
seems to be a correspondence between them. We
observed the pattern as expected in all the species (data
not shown). This led to the use of a partial correlation
with which we can measure the correlation of transcrip-
tional activity (or variability) with the response variables
when controlling for transcriptional variability (or
activity). We denote it as Rajv (or Rvja). We also employed
multivariate regression to compare the influences of the
two predictors on the response variables, as estimated by
the regression coefficient or slope (Ca and Cv).

According to Drummond et al. (2006), noisy variables
may result in spurious partial correlations. In this
regard, they suggest the use of a PCA-based regression
approach. However, if one of the original correlations,
Ra or Rv, is found to be much higher than the other, the
noise problem will not change the conclusion based on
the partial correlations. Therefore, we can simply ask
if jRaj . jRvj (or jRvj . jRaj) when Rajv (or Rvja) is
significant. However, we also made use of a PCA-based
regression method as suggested. We present the per-
centage of contributions of transcriptional activity and
variability to the first principal component as PCa and
PCv in the following sections.

First hypothesis—essentiality and transcriptional
variability: To estimate essentiality, we adopted data
from yeast and mouse deletion experiments. Growth
rates of yeast deletion strains were measured by an array-
based method (Giaever et al. 2004). Using this data set,
Wall et al. (2005) recently reported a positive relation-
ship between dispensability and evolutionary rate. As an
inverse measure of essentiality, we used the fitness effect,
f(i), as 1 � g(i)/g(max), where g(i) is the growth rate of
the strain with gene i deleted, and g(max) is the maxi-
mal growth rate (Hirsh and Fraser 2001). Mouse genes
subject to deletion experiments were obtained from

the Mouse Genome Informatics (MGI) database
(http://www.informatics.jax.org). We selected genes with
the knockout phenotype of lethality (MP:0005373,
‘‘lethality postnatal’’; MP:0005374, ‘‘lethality embryonic/
perinatal’’). The phenotype database included 1427
essential genes (lethality ¼ 1) and 1956 nonessential
genes (lethality ¼ 0) according to our criteria. Ra and
Rv for the fitness effect and lethality were estimated
(Table 2). We observed significant partial correlations
of transcriptional variability (Rvja ¼ �0.244 and�0.115)
while jRvj. jRaj. On the contrary, transcriptional activity
showed weak correlations (Rajv ¼ 0.057 and 0.015). The
regression methods confirmed the disproportionate
contribution of transcriptional variability to fitness effect
and lethality. Hubs in protein networks are known to be
essential, which prompted us to use the number of pro-
tein interactions as an estimate of essentiality (He and
Zhang 2006). The same trend was found in our data
(Table 2), which is in good agreement with the pre-
viously reported negative relationship between genetic
variation in gene expression and the number of protein
interactions (Lemos et al. 2004). It was also shown that
this relationship was not confounded by gene expression
level.

To extend this conclusion to other taxa, a functional
category analysis was carried out. For each GO category,
the average CV of the genes in the category was obtained,
normalized to a z-score in each species, and converted
to a specieswise z-score (see materials and methods).
Significantly negative z-scores indicate that the genes
in the category exhibit a low variability relative to the
average of all genes in the species. Supplemental Table 2
at http://www.genetics.org/supplemental/ lists the GO
terms with significantly low z-scores while supplemental
Table 3 at http://www.genetics.org/supplemental/ shows
those with significantly high z-scores (the full list of the

TABLE 2

Comparative analysis of the influences of transcriptional activity and variability on essentiality in
yeast and mouse

Species Ra Rv Rajv Rvja Ca Cv PCa PCv

Fitness effect
Yeast 0.152 �0.280 0.057 �0.244 �0.698 �15.966*** 21.45 78.55

Lethality
Mouse 0.103 �0.153 0.015 �0.115 0.621 �6.972*** 36.88 63.12

Protein–protein interaction
Yeast 0.123 �0.215 0.049 �0.184 �0.132 �10.786*** 18.30 81.70

Transcriptional activity (a) and variability (v) are the predictor variables. Fitness effect, lethality, and protein–
protein interaction are the response variables. Ra and Rv denote Spearman’s rank correlation. Rajv means Ra

controlling for v and Rvja means Rv controlling for a. Ca and Cv are the t-values of regression coefficients from
multivariate regression analysis. The significance of the t-values is represented in Tables 2–5 as ***P , 10�9,
**P , 10�6, and *P , 10�3. PCa and PCv mean the percentage of contribution of the predictors to the first
principal component estimated from PCA-based regression. The statistics are underlined when they are signif-
icantly greater for one predictor than for the other. Italics are used where the statistics are positive (or negative)
when negative (or positive) values are expected.
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specieswise z-scores is given in supplemental Table 4, and
the species-specific z-scores are available at our supple-
mental website, http://centi.kribb.re.kr). We find that
the GO categories in supplemental Table 2 are biased
toward essential cellular processes such as transcrip-
tional and translational regulation, protein folding and
transport, protein catabolism, protein complexation,
RNA processing, etc. In terms of the cellular compo-
nent, the genes located in the nucleus, cytoplasm,
mitochondrion, and Golgi apparatus show low tran-
scriptional variability. In contrast, supplemental Table 3
is enriched for the GO terms associated with extracel-
lular communication such as immune response, cell–
cell signaling, cell adhesion, surface receptors, growth
factor activity, hormone activity, chemotaxis, etc. In the
same context, the genes located in the extracellular
space and plasma membrane show high variability.
Notably, these findings are strikingly consistent with
the results of a recent study by Chuang and Li (2004).
Most of the GO categories reported to have low sub-
stitution rates are found in our list of the GO categories
with less variable genes, and vice versa. Likewise, there
is a remarkable overlap between the GO categories
with high substitution rates and those with highly
variable genes. These findings are suggestive of cor-
respondence between transcriptional variability and
substitution rate.

Evolutionary conservation on a macroevolutionary
timescale: As this study spans a long evolutionary time
from yeast to human, we needed to estimate evolution-
ary rates differently from substitution rates between
paired nucleotide sequences. One solution was to count
the number of genomes in which the gene is present.
This approach was successfully used in the previous
studies about the relationships between evolutionary
rate and protein–protein interactions or protein dis-
pensability ( Jordan et al. 2002, 2003; Wuchty et al.
2003).

The ECI produced results that are consistent with
conventional substitution rates. Substitution rates be-
tween orthologs cannot be reliably used for distantly

related species. Therefore, we calculated them be-
tween mammalian orthologs and compared them to
the ECI data. Strong inverse correlations were found:
Spearman’s R ¼ �0.362–��0.420 (P-values >10�16).
Moreover, the correlations of ECI with protein–protein
interactions (Spearman’s R ¼ 0.224) and dispensability
(Spearman’s R ¼ �0.270) were compatible with the
reported correlations of substitution rates with protein–
protein interactions (Spearman’s R ¼ �0.21, Fraser

et al. 2002) and dispensability (Spearman’s R ¼ 0.230,
Wall et al. 2005). However, using different reference
species for the computation of substitution rates has
fueled arguments about the association of protein–
protein interactions and dispensability with evolution-
ary rate ( Jordan et al. 2003; Pal et al. 2003; Wall et al.
2005). In contrast, the ECI is expected to offer a global
and unified measure of evolutionary rate for diverse
organisms spanning a long evolutionary time period.

Second hypothesis—transcriptional variability and
selective pressure: Tables 3–5 show the statistical anal-
ysis results regarding the relationship between evolu-
tionary rate and transcriptional properties. First, as a
genomewide analysis, we investigated the influence of
transcriptional activity and variability on ECI. As shown
in Table 3, the correlation, partial correlation, multi-
variate regression, and PCA-based regression analyses
all indicate that the influence of variability is much
stronger than that of activity. This tendency holds true
when we use traditional substitution rates between
mammalian orthologs (Table 4). The only exception
occurred in yeast and is discussed later. Using ECI as the
response variable, all the different statistical techniques
showed the same pattern, in favor of transcriptional
activity in yeast and variability in the other species.
Moreover, the levels of the statistics are comparable
among various species (e.g.,�0.1 , Rvja ,�0.25,�21 ,

Cv , �33).
Next, we extracted paralog information from the

HomoloGene database. Accelerated evolution of dupli-
cate gene expression has been shown in yeast and fruit
fly (Gu et al. 2004). Here, we compared the transcriptional

TABLE 3

Comparative analysis of the influences of transcriptional activity and variability on the
evolutionary conservation index

Species Ra Rv Rajv Rvja Ca Cv PCa PCv

ECI
Human 0.207 �0.242 0.074 �0.146 �0.051 �29.981*** 33.13 66.88
Mouse 0.245 �0.312 0.053 �0.207 2.634 �32.972*** 39.58 60.42
Rat 0.233 �0.273 0.080 �0.166 3.739* �21.267*** 39.85 60.15
Fly 0.259 �0.296 0.099 �0.178 0.383 �23.521*** 37.36 62.64
Plant 0.260 �0.348 0.046 �0.244 5.543** �24.293*** 40.13 59.87
Yeast 0.294 �0.196 0.248 �0.111 12.364*** �9.661*** 53.78 46.22

Transcriptional activity (a) and variability (v) are the predictor variables and ECI is the response variable. See
the Table 2 legend for details.
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variability of duplicates with that of singletons in all
the species for which we obtained data. As shown
in supplemental Figure 1 at http://www.genetics.org/
supplemental/, the distributions shifted toward high
CV values with gene duplications, indicating increased
transcriptional variability among duplicates. We also
observed that overall CV values are relatively lower in

plants and in yeast as compared to higher eukaryotes.
We next asked whether sequence divergence, measured
by dN and dS, is better explained by transcriptional-
activity divergence (jz1 � z2j, where z1 and z2 mean the
transcriptional activity of two paralogous genes) or by
transcriptional-variability divergence (jCV1 � CV2j,
where CV1 and CV2 mean the transcriptional variability

TABLE 4

Comparative analysis of the influences of transcriptional activity and variability on substitution
rates between mammalian orthologs

Species pair Ra Rv Rajv Rvja Ca Cv PCa PCv

dN

Human �0.186 0.201 �0.079 0.111 �6.341*** 18.425*** 41.52 58.48
Mouse �0.222 0.252 �0.079 0.146 �7.389*** 21.011*** 44.01 55.99
Mouse �0.210 0.251 �0.065 0.155 �6.380*** 15.110*** 45.21 54.79
Rat �0.162 0.208 �0.042 0.139 �5.202** 12.695*** 43.63 56.37

dS

Human �0.093 0.165 0.012 0.137 1.034 16.001*** 30.83 69.17
Mouse �0.075 0.128 0.010 0.104 0.628 11.695*** 36.30 63.70
Mouse �0.075 0.133 0.014 0.111 0.028 8.676*** 38.27 61.73
Rat �0.093 0.132 �0.014 0.095 �2.492 8.157*** 41.93 58.07

Jukes–Cantor distance
Human �0.179 0.201 �0.070 0.116 �4.541* 19.266*** 39.35 60.65
Mouse �0.196 0.234 �0.059 0.143 �4.403* 20.752*** 41.97 58.03
Mouse �0.180 0.230 �0.043 0.152 �3.470* 14.960*** 42.63 57.37
Rat �0.148 0.188 �0.039 0.124 �3.738* 12.169*** 42.10 57.90

Substitution rates such as dN, dS, and Jukes–Cantor distance were calculated as described in materials and

methods. Transcriptional activity (a) and variability (v) are the predictor variables and the substitution rates are
the response variables. See the Table 2 legend for details.

TABLE 5

Comparative analysis of the influences of transcriptional-activity divergence and transcriptional-variability
divergence on sequence divergence between paralogous genes

Species Rad Rvd Radjvd Rvdjad Cad Cvd PCad PCvd

dN

Human 0.126 0.258 �0.139 0.264 �2.443 3.322* 20.73 79.27
Mouse 0.140 0.230 �0.119 0.219 �4.489 7.131*** 23.19 76.81
Rat 0.174 0.157 0.093 0.053 �1.466 19.670*** 13.80 86.20
Fly 0.057 0.152 �0.358 0.382 �3.333 10.404*** 4.14 95.86
Plant 0.348 0.351 0.017 0.048 1.338 3.939* 34.71 65.29
Yeast 0.132 0.051 0.124 �0.023 �0.037 0.907 44.21 55.79

dS

Human 0.176 0.298 �0.108 0.265 �0.749 3.140 1.55 98.45
Mouse 0.218 0.250 0.005 0.126 �1.721 3.274 29.65 70.35
Rat 0.164 0.179 0.059 0.093 0.764 18.286*** 19.57 80.43
Fly 0.288 0.354 �0.228 0.310 0.812 6.031** 25.86 74.14
Plant 0.270 0.268 0.036 0.013 2.920 2.338 53.52 46.48
Yeast 0.141 0.097 0.105 0.026 0.721 0.968 49.22 50.78

Transcriptional-activity divergence (ad) and transcriptional-variability divergence (vd) are the predictor var-
iables. Synonymous substitution rate (dS) and nonsynonymous substitution rate (dN) are the response variables.
Transcriptional-activity divergence was measured as jz1 � z2j, where z1 and z2 mean the transcriptional activity of
two paralogous genes. Transcriptional-variability divergence was measured as jCV1 � CV2j, where CV1 and CV2

mean the transcriptional variability of two paralogous genes. See the Table 2 legend for details.
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of two paralogous genes). For human, mouse, and fly,
all the results are supportive of our hypothesis (Table 5).
In the case of rat, although the correlation and partial
correlation analysis failed to detect a specific trend, the
regression analysis results strongly support our hypoth-
esis. The signals are relatively weak in plants and yeast;
nonetheless, in agreement with the ECI results, the
partial correlations indicate that the effect of transcrip-
tional activity is stronger in yeast.

Do highly expressed genes evolve slowly? We have
shown that contrary to the consensus that transcription-
ally active genes evolve slowly, evolution shapes tran-
scriptional variability rather than transcriptional
activity. Selective pressure seems to act primarily on
transcriptional variability. If this is so, how can we
explain the apparent correlation between transcrip-
tional activity and evolutionary rate observed in the
previous studies?

First, as described in the Introduction, translational
selection has mainly explained the correlation (Akashi

2001, 2003; Akashi and Gojobori 2002; Drummond

et al. 2005). Tables 3 and 5 show that evolutionary rate is
still correlated with transcriptional activity in yeast, even
after controlling for transcriptional variability. There-
fore, if we rule out the effect of translational selection
such as in higher eukaryotes (Shields et al. 1988; Sharp

et al. 1995; Akashi 1997, 2001; dos Reis et al. 2004;
Wright et al. 2004), we can conclude that invariable
genes evolve slowly.

Second, from the inverse relationship between the
mean and CV, we can speculate that as transcriptional
activity increases, relative transcriptional variability will
tend to decrease. In biological terms, expression
changes of abundant proteins are likely to have smaller
effects on the cell than those of scanty proteins. High
expression levels may confer tolerance to a fluctuation
in the amount, while low expression levels may enable
delicate transcriptional regulation. From a stochastic
perspective, a high level of transcriptional activity leads
to the reduction of random noise, which means a
reduced variability. This explanation can be also applied
to the correlation of expression level and essentiality.
Indeed, the production of essential proteins was shown
to involve lower levels of noise (Fraser et al. 2004).
These speculations suggest that a high abundance of
slowly evolving or essential proteins may be evolution-
arily favored to maintain a low variability in expression.

Taken together, the two aspects, the action of trans-
lational selection in yeast and the correspondence
between transcriptional activity and variability, may
explain the apparent correlation between transcrip-
tional activity and evolutionary rate in the previous
studies.

Conclusion: In this study, we characterized general
transcriptional activity and variability of eukaryotic
genes from global expression profiles of various species
spanning a long evolutionary time period. While the

transcriptional properties were shown to be remarkably
conserved during the evolutionary processes, the vari-
ability showed a higher degree of divergence between
distant species. Transcriptional variability might be
related to phenotypic variations and thus be more
subject to selective pressure. Indeed, we showed that
transcriptional variability should be a true indicator of
evolutionary rate. If we rule out the effect of trans-
lational selection, which seems to operate only in yeast,
the apparent slow evolution of highly expressed genes
should be attributed to their low variability. Selective
forces may enable phenotypic variations to evolve
mainly by shaping transcriptional variability. Further-
more, we suggest that a high abundance of essential
proteins may be favored to maintain a low variability
in their amount. Transcriptional variability, rather than
transcriptional activity, might be a common indicator of
essentiality and evolutionary rate, contributing to the
correlation between the two variables.
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