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ABSTRACT

We have developed a Bayesian version of our likelihood-based Markov chain Monte Carlo genealogy
sampler LAMARC and compared the two versions for estimation of Q ¼ 4Nem, exponential growth rate,
and recombination rate. We used simulated DNA data to assess accuracy of means and support or
credibility intervals. In all cases the two methods had very similar results. Some parameter combinations
led to overly narrow support or credibility intervals, excluding the truth more often than the desired
percentage, for both methods. However, the Bayesian approach rejected the generative parameter values
significantly less often than the likelihood approach, both in cases where the level of rejection was normal
and in cases where it was too high.

A number of statistical methods attempt to recover
information about a population’s past history

(population size, subdivision, population growth, re-
combination, etc.), using samples of genetic data from
the current population. The most potentially powerful,
though computationally expensive, methods involve
considering many possible genealogical relationships
among the sampled individuals. This allows estimates
that correctly incorporate uncertainty about the true
genealogy. Such estimators generally work by Monte
Carlo sampling of possible genealogies.

The usual framework for such samplers is Kingman’s
(1982a,b) n-coalescent, which relates the timing of co-
alescence (common ancestry) events in a genealogy to
the size of the population in which it is embedded.
Kingman’s original work has been extended to cases
with population subdivision and immigration, recom-
bination, population growth, and splitting of popula-
tions (see, for example, Kaplan et al. 1991; Griffiths

and Marjoram 1996; Bahlo and Griffiths 2000;
Nielsen and Wakeley 2001).

Several groups have developed coalescent geneal-
ogy samplers in a maximum-likelihood framework.
Two major approaches are the independent-sample
(IS) approach of Griffiths and colleagues (Griffiths

and Tavaré 1993; Griffiths and Marjoram 1996;
Bahlo and Griffiths 2000) and the correlated-sample
Metropolis–Hastings Monte Carlo approach of Kuhner
and colleagues (Kuhner et al. 1995, 1998, 2000a; Beerli

and Felsenstein 1999, 2001).

Other groups have designed similar samplers in a
Bayesian framework. Drummond and colleagues de-
veloped a correlated-sample Bayesian approach focused
particularly on sequentially sampled data (Drummond

et al. 2002). Nielsen and Wakeley (2001) applied a
similar approach to population divergence with sub-
sequent migration among the daughter populations.
Bayesian independent-sample algorithms are also pos-
sible, although we are not aware of any examples.

In a likelihood-based sampler, genealogies are sam-
pled using an arbitrary set of parameter ‘‘driving values’’
as input to an importance-sampling function. The re-
lative likelihood of other parameter values is calculated
from the genealogies, applying a correction for the
influence of the driving values. This process may be
iterated to produce better driving values, since it is in-
efficient and potentially biased if the driving values are
far from the true values being estimated (Stephens

1999).
In contrast, in a Bayesian sampler genealogies and

parameter values are sampled concurrently, with the
parameter values chosen from a specified prior dis-
tribution. The set of parameter values visited by the
sampler represents the Bayesian posterior on the pa-
rameter values. A prior must be specified by the ex-
perimenter; typically bounded flat priors (on either
a linear or a logarithmic scale) have been used, al-
though, of course, more complex priors incorporating
experimenter-supplied information would be possible.

Comparison of likelihood and Bayesian approaches
has been hampered by the tendency of investigators
in this area to design algorithms for previously un-
explored scenarios. While this leads to useful software
for a wide variety of scenarios, it hampers direct com-
parisons between likelihood and Bayesian analysis. Such
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a comparison should ideally involve the same heuristics
and implementation to avoid being confounded by
implementation-specific differences.

To our knowledge, only two existing programs pro-
vide both Bayesian and likelihood analysis. The IM
sampler described by Nielsen and Wakeley (2001) for
estimating divergence time and migration rate offers
both, but their article does not present a systematic
comparison. The MIGRATE likelihood sampler (Beerli

and Felsenstein 1999, 2001) has recently been aug-
mented with a Bayesian version. Beerli (2006) pres-
ents a comparison between likelihood and Bayesian
MIGRATE for coestimation of Q and migration rate. He
found an advantage to the Bayesian approach, par-
ticularly in accuracy of the support intervals, on the
more difficult migration matrices. In cases where almost
no power was available for estimation of a given param-
eter, the Bayesian method sampled successfully from its
prior whereas the likelihood method gave erratic results
with too-narrow support intervals.

In this article, we describe a Bayesian version of
the existing correlated-sample likelihood algorithm of
Kuhner et al. (1995, 1998, 2000a). The likelihood and
Bayesian versions are implemented in the same com-
puter program, LAMARC, and share their genealogy
rearrangement algorithms and mutational models.
Thus, differences in their performance are likely to
reflect the underlying strengths and weaknesses of the
two approaches.

METHODS

Likelihood LAMARC: We have previously described
(Kuhner et al. 1995, 1998, 2000a; Beerli and Felsen-

stein 1999, 2001) likelihood-based samplers for esti-
mating Q ¼ 4Nem and one additional type of parameter
(exponential growth rate, migration rate, or recombi-
nation rate), using a correlated-sample approach. The
basic statistical approach is Metropolis–Hastings sam-
pling (Metropolis et al. 1953, extended by Hastings

1970).
The program LAMARC v. 2.0 combines the capabilities

of these previous programs. Briefly, the genealogy is
rearranged according to the coalescent distribution for
the chosen mix of evolutionary forces and the driving
parameter values P0. The rearrangement algorithm is
the same as that in MIGRATE (Beerli and Felsenstein

1999) and RECOMBINE (Kuhner et al. 2000a). One line-
age is erased at random and resimulated by drawing
events from the chosen coalescent distribution, condi-
tional on the structure of the remainder of the geneal-
ogy. The newly constructed genealogy is then accepted
or rejected on the basis of the probability of the data
on old and new genealogies, using an appropriate mu-
tational model. The effect of this is to sample from a
distribution proportional to Prob(D j G)Prob(G j P0),
where the P0’s are the driving values, D is the observed

genetic data, and G is the genealogy, including its
branch lengths, migration events, and recombination
events. An importance-sampling correction is then used
to compensate for the influence of the driving values.

The sampler is most efficient and least biased when
the driving values are close to the underlying true val-
ues. We therefore do repeated cycles (‘‘chains’’) of ge-
nealogy generation followed by parameter estimation,
each chain providing improved driving values for the
next one.

The probability of a genealogy given the scaled
population size Qi, the immigration rate Mij from
population i into population j, the population expo-
nential growth rate gi, and the per-site recombination
rate r is composed of two types of terms. A ‘‘waiting-
time’’ term accounts for the probability of the observed
times between successive events (where an event is a co-
alescence, a migration, or a recombination). A ‘‘point-
probability density’’ term accounts for the probability
density of the actual event. Each time interval in the ge-
nealogy generates a waiting time and a point probability,
and these are multiplied to give the probability of the
whole genealogy. Waiting-time and point-probability
density terms are given in appendix a.

Parameterizing migration rates in this way corre-
sponds to a model in which the chance of a given line-
age immigrating into a population does not depend on
the population size of either the source or the recipient
population. This model may not be biologically correct
in many situations, but it is simple, and the literature has
little apparent consensus on how rates of immigration
depend on population size. It would be possible to re-
parameterize so that immigration depended on source
population size, recipient population size, or a function
of both sizes as desired.

Once a set of genealogies has been generated, we find
the maximum of the multidimensional likelihood space
described by

P
G ProbðG jPÞ=ProbðG jP0Þ. We initially

used the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm (described in Press et al. 2002) for this max-
imization, but found it to perform poorly in cases with
growth due to the tendency of surfaces involving Qi

and gi to form long, slightly curving ridges with nearly
flat tops. Such surfaces are difficult for the BFGS
algorithm and it converged very poorly. We substituted
a hand-tuned version of the method of steepest as-
cents and were able to obtain reasonable maximization
performance.

‘‘Heating’’ or Metropolis-coupled Markov chain
Monte Carlo (Geyer 1991a) can be used to improve
searching by allowing results from a search of a flattened
likelihood surface to provide proposals to the normal
search. The application of heating to Markov chain
Monte Carlo (MCMC) samplers is described in Kuhner

and Felsenstein (2000).
The method of reweighting mixtures (Geyer 1991b)

can be used to combine results from replicate runs into

156 M. K. Kuhner and L. P. Smith



a single estimate. Replicate runs with somewhat differ-
ent driving values may help to obtain better confidence
intervals, since the likelihood curve is best estimated
near its driving value and thus the outer tails of the
confidence interval for a single driving value may be
poorly estimated (Stephens 1999).

Bayesian LAMARC: Likelihood LAMARC rearranges
genealogies by drawing from a distribution whose
density is proportional to Prob(G j P0) and accepting
or rejecting on the basis of Prob(D j G). The driving
parameters are changed only at the end of a chain, on
the basis of maximization over the genealogies sampled
during the chain. Bayesian LAMARC also conducts such
genealogy-changing steps, using the current param-
eter values as driving values. However, it introduces a
parameter-changing step as well. The output of a chain
is no longer a sample of genealogies, but a sample of
parameter combinations that the chain has visited.

When a parameter change is proposed, one param-
eter is chosen at random and a new value for it is drawn
from the appropriate prior. We allow flat priors on
either a logarithmic or a linear scale, except for the
growth-rate parameter g, which can take on both pos-
itive and negative values and therefore cannot use a
logarithmic-scale prior. The probability of the current
genealogy based on the parameters [Prob(G j P)] is
computed for the old and new parameter sets. The new
parameters are accepted if a uniform random fraction
U , Prob(G j Pnew)/Prob(G j Pold); otherwise the old
parameters are retained.

The ratio of genealogy-proposal steps to parameter-
proposal steps can be set at any desired value as long
as steps of both kinds occur, although this ratio does
affect the efficiency of the sampler. Preliminary simula-
tion suggests that 50% effort to each type of proposal is
satisfactory.

At intervals during this process, the current values of
the parameters are recorded for analysis. Genealogies
need not be recorded, although they could be if desired.

To estimate the parameters and their Bayesian sup-
port intervals, we construct a histogram for each pa-
rameter in turn and apply a standard curve-smoothing
algorithm using the biweight kernel as described by
Silverman (1986). (See appendix b for details.) It
would be possible to simultaneously estimate multiple
parameters, but curve smoothing in a space of high
dimensionality is a data-hungry procedure, and pres-
ently we do not attempt this.

Tree-size change steps: We have added a new type of
genealogy rearrangement step to both likelihood LA-
MARC and Bayesian LAMARC, although it was motivated
by Bayesian LAMARC. We observe that when the driving
parameter values change (which happens frequently in
Bayesian LAMARC and at the end of each chain in like-
lihood LAMARC), the genealogy is sometimes slow to
‘‘adapt’’ to the new conditions. The branch lengths and
numbers of events (migrations, recombinations, etc.)

throughout the genealogy will reflect the previous driv-
ing values to some extent, and considerable rearrange-
ment will be necessary to produce a genealogy more
typical of the current driving values.

The tree-size genealogy rearrangement chooses a
portion of the genealogy and replaces all of its interval
lengths with lengths drawn from the coalescent dis-
tribution under the current driving values, leaving the
topology and migration structure unchanged. The af-
fected portion of the genealogy is chosen as follows: We
construct a triangular distribution in which the first
(tipward) time interval has a relative weight of 1 and the
nth interval has a relative weight of n. These are nor-
malized by the total of all weights to give the probabil-
ities of choosing the time intervals. All interval lengths
from that interval down to the root are replaced by
draws from the appropriate coalescent distribution, and
a standard Metropolis acceptance/rejection test is ap-
plied to the resulting new genealogy.

The new genealogy is then accepted or rejected ac-
cording to the ratio of the probabilities of the data on
the old and new genealogies in standard Metropolis
fashion. Since the genealogy is unchanged except for its
branch lengths, and the branch lengths are chosen from
the coalescent distribution without regard to their pre-
vious values, this rearrangement is fully reversible and
requires no ‘‘Hastings term.’’

The choice of a triangular distribution was arbitrary;
any distribution that does not depend on the current
interval lengths should work. We chose the triangular
distribution because it emphasizes reconsideration of
the lower portions of the genealogy, which are more
strongly affected by parameter changes.

Tree-size rearrangement may allow the genealogy to
more rapidly adapt to a different driving value of Q and/
or g. It is not expected to be helpful in adapting to new
values of M or r, but may improve convergence even in
cases where migration or recombination is being esti-
mated because of its effects on Q and g.

Simulation conditions: Evolutionary trees were simu-
lated under a coalescent model with growth and recom-
bination using the program gentrees_mig.c (an early
version of the ms program, Hudson 2002) provided
by Richard Hudson and modified by Jennifer Williams
(R. Hudson and J. Williams, personal communications)
to accommodate exponential population growth. DNA
sequence data were simulated along each tree using the
program treedna.c provided by Joseph Felsenstein and
modified by Peter Beerli ( J. Felsenstein and P. Beerli,
personal communications). We used the Kimura two-
parameter mutational model (Kimura 1980) with a
transition/transversion ratio of 2.0.

For cases without recombination, we simulated two
unlinked loci of length 1000 bp each and generated 40
haplotypes from each locus. For cases with recombina-
tion we simulated a single locus of length 2000 bp and
generated 10 haplotypes.
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We considered Q-values of 0.1 and 0.01. By way of
comparison, data sets of 40 haplotypes generated
without growth or recombination averaged 333 variable
sites per 1000 bp with the higher value and 41 variable
sites per 1000 bp with the lower value. Estimation of
growth was tested with g ¼ 100 and estimation of
recombination with r ¼ 0.04 and r ¼ 0.

Conditions of the runs were chosen to be similar to
those in previously published studies (Kuhner et al.
1995, 1998, 2000) to facilitate comparison between
studies. For all runs, we sampled from the chains every
20th step of the sampler. Runs without recombination
were heated using five temperatures (T ¼ 1, 1.1, 2, 3,
and 8; the likelihood is raised to the power of 1/T),
attempting swaps among temperatures every 10 steps;
recombination runs were unheated to save computer
time. In Bayesian runs, 45% effort was put into geneal-
ogy rearrangement, 45% into parameter changes, and
10% into genealogy-size changes. In likelihood runs,
83% effort was put into genealogy rearrangement and
17% into genealogy-size changes. Bayesian and likeli-
hood run conditions were chosen so that the expected
number of genealogy rearrangements would be equal,
disregarding burn-in (unsampled steps at the beginning
of each chain, used to ensure that it reaches equilib-
rium). The estimator of Watterson (1975) was used for
starting values for Q. The starting values for g and r were
arbitrarily chosen as g ¼ 1 and r ¼ 0.01.

In cases without recombination, the Bayesian sampler
was run for 162,000 steps, discarding the first 2000. The
likelihood sampler was run for 10 initial chains of 3000
steps each, discarding the first 1000, and for 2 final
chains of 31,000 steps, discarding the first 1000. Only
the last final chain was used to make the final parameter
estimates.

In cases with recombination, the Bayesian sampler
was run for 402,000 steps, discarding the first 2000. The
likelihood sampler was run for five initial chains of
21,000 steps each, discarding the first 1000, and for two
final chains of 51,000 steps each, discarding the first
1000.

Additional runs were done to explore the case of
moderate recombination, since its confidence intervals
proved to be poorly estimated. One set of additional
runs kept all run conditions the same except that no
tree-size rearrangement was done. Further runs in-
creased the number of steps (disregarding burn-in) in
all chains by 2-fold and 10-fold. A final set used the
original number of steps, but replicated each chain
three times and combined the results using the
‘‘method of reweighting mixtures’’ (Geyer 1991b).

Bayesian priors for the parameters are shown in Table
1. They were set deliberately broad because we expect
that biologists will not be able to provide narrow priors
on many of these parameters.

John Huelsenbeck (personal communication) pointed
out that repeatedly testing the Bayesian sampler on data

with the same true underlying parameters is not a fully
correct test. Use of the Bayesian estimator implies that we
believe that the underlying parameters are randomly
drawn from the prior, but we know they are not. To test
whether this affected performance of the Bayesian
sampler we did an additional simulation estimating Q,
drawing the underlying values of Q from a prior. We did
not want to use the very wide prior used in our other
analyses because it would generate too many invariant
data sets, so we chose a logarithmic prior from 0.05 to
0.2 (mean Q � 0.108) or from 0.005 to 0.02 (mean Q �
0.0108) and drew the Q of each data set independently
from that prior. These priors were chosen to have a mean
Q very close to the conditions in Table 1, for comparison
purposes. Bayesian runs on these data used the same prior
used to generate the data.

Summary statistics: We measured, for each estimated
parameter, the mean estimate (maximum-likelihood
estimate or maximum-probability estimate), mean up-
per and lower 95% credibility or support interval
boundaries, and mean boundary width. We also assessed
in what proportion of runs the underlying simulation
value of the parameter was rejected at the 95% level.
This differs from the procedure used in Kuhner et al.
(1998), where we assessed rejection of the entire set of
parameters simultaneously, as our implementation of
Bayesian LAMARC is not able to score such rejections.

Effective zero for recombination rate: We include
cases in which the recombination rate r is zero. These
cases provide some difficulty of interpretation. The
logarithmic prior used by Bayesian LAMARC cannot
include zero, and while likelihood LAMARC can in
theory return a support-interval boundary at zero, in
practice numeric precision issues cause a higher value to
be returned. Therefore, in assessing whether the sup-
port or credibility intervals exclude zero it is helpful to
use an ‘‘effective zero’’ rather than actual zero.

We defined an effective recombination rate of zero as
a recombination rate at which an average-sized co-
alescent genealogy of the given number of tips, with
the given number of sites, would have only a 5% chance
of containing even one recombination. A value of r that
produces a genealogy with no recombinations clearly
cannot be distinguished from zero (which would also
produce no recombinations). The effective zero for our
higher value of Q¼ 0.1 was 8.8 3 10�5 and for our lower

TABLE 1

Priors for population parameters

Parameter
Lower
bound

Upper
bound Scale

Q 10�5 10.0 Logarithmic
Growth rate (g) �500.0 1000.0 Linear
Recombination rate (r) 10�5 10.0 Logarithmic

All priors were flat priors on the indicated scale.
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value of Q was 8.8 3 10�4. We have interpreted intervals
including these values as including zero and intervals
excluding these values as excluding zero.

When the true value lies at one boundary of the
allowable values, as in this case, the appropriate test is
one-tailed rather than two-tailed, so we report the lower
5% rather than the lower and upper 2.5% regions of the
likelihood or posterior probability curve. (Use of an
effective zero makes it formally possible that the entire
interval would be below effective zero, but this was never
observed. It would presumably reflect either an in-
correct choice of effective zero or a program failure.)

We do not report lower bounds of the intervals when
the true value is zero, as they are often arbitrary program
choices rather than actually calculated bounds.

Validation of runs: There is not, and probably cannot
be, a fully reliable method for detecting convergence
of MCMC samplers of this kind. In addition to varying
run lengths, we used the TRACER program of Rambaut

and Drummond (2003) to compute effective sample
sizes (ESS) for a subset of our Bayesian runs. Rambaut
and Drummond recommend a minimum ESS of 100 for
every parameter but suggest that 200 might be a safer
cutoff.

RESULTS

Parameter estimates: For all combinations of un-
derlying parameters we considered, Bayesian and likeli-
hood analyses gave extremely similar mean parameter

estimates. Accuracy was similar to that seen in previous
studies (Kuhner et al. 1995, 1998, 2000a).

On the basis of previous results with likelihood
LAMARC, we expected that the parameter estimates
would be nearly unbiased in all cases considered except
for growth rate, which is biased when only a few loci are
analyzed (Kuhner et al. 1995). This expectation was met,
with both Bayesian and likelihood analyses showing
an upward bias in growth rate (Table 3). This bias is due
to nonlinearity in the relationship between inferred
branch length and growth rate and is not specific to
Markov chain Monte Carlo analysis (Kuhner et al. 1995).

Support and credibility intervals: There was no
consistent difference between the mean width of
Bayesian credibility and likelihood support intervals,
with the Bayesian intervals being wider in seven cases
and the likelihood intervals wider in five cases. (We
estimated the interval widths from Table 4, B and C, by
assuming that their lower bounds were zero.)

An unexpected pattern was seen in how often the
underlying parameter values were rejected. Some cases
rejected much more often than the nominal signifi-
cance level, whereas others were close to the nominal
level or somewhat below it. These results were repeat-
able with different data sets from similar parameter
values (compare Table 2A and 2C with 2B and 2D) and
with repeated analysis of the same data sets (compar-
isons within Table 4A.) In general, when rejection was
high for one method of analysis it was also high for the
other (Figure 1).

TABLE 2

Estimation of Q

Method True Q Mean Q̂ Mean interval Mean int. width % rejecting

A. High Q

Bayesian 0.1 0.0968 0.0764–0.1273 0.0509 3 (1, 2)
Likelihood 0.1 0.0998 0.0791–0.1278 0.0487 4 (2, 2)

B. High Q from log prior 0.05–0.2
Bayesian 0.106 0.1062 0.0807–0.1404 0.0606 3 (2, 1)
Likelihood 0.106 0.1055 0.0789–0.1447 0.0644 4 (2, 2)

C. Low Q

Bayesian 0.01 0.0100 0.0065–0.0157 0.0095 11 (6, 5)
Likelihood 0.01 0.0102 0.0072–0.0143 0.0070 8 (4, 4)

D. Low Q from log prior 0.005–0.02
Bayesian 0.0106 0.0104 0.0072–0.0150 0.0070 8 (4, 4)
Likelihood 0.0106 0.0104 0.0068–0.0159 0.0083 13 (2, 11)

Mean Q̂ is the maximum-likelihood estimate (likelihood) or most probable estimate (Bayesian) averaged
over 100 independent data sets. Mean interval shows the mean lower and upper 95% boundaries of the support
interval (likelihood) or credibility interval (Bayesian). Mean int. width is the mean difference between upper
and lower 95% boundaries for each run. % rejecting is the proportion of runs in which the true value of the
parameter lies outside the 95% limits; values in parentheses indicate how often the true value lies, respectively,
below or above the interval. In B and D, the true Q was drawn from the indicated logarithmic prior, and Bayes-
ian runs were analyzed with this prior rather than with the broader prior used elsewhere in this study. Mean ESS
for A was 524 with a minimum of 215.
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It is striking that the growth-rate estimates (Table 3),
which were strongly biased upward, were nonetheless
associated with rejection rates close to the nominal level.

The Bayesian sampler rejected the underlying param-
eter value less often than the likelihood sampler (P ¼
0.021, two-tailed binomial test). This occurred both
when the rejection rate was high for both methods and
when it was not and was somewhat surprising given the
lack of a significant difference in interval width.

Influence of the Bayesian prior: The similarities
between Bayesian and likelihood results suggested that
the Bayesian prior was not strongly influencing the
results, except in one case. For estimation of a recom-
bination rate of 0.04 (Table 4A), the Bayesian credibility
intervals were displaced downward from the likelihood
support intervals, and almost all of the Bayesian
method’s rejections were underestimates rather than
overestimates. Examination of the curves produced by
the Bayesian sampler (Figure 2) suggested that the
sequence data were unable to distinguish between
various low values of r, and the logarithmic-flat prior
was therefore dragging the credibility intervals down-
ward. However, the rate of rejection of the underlying
values was still similar to that for likelihood LAMARC.

Results when the underlying values were drawn from
the same prior used in the analysis (Table 2, B and D)
and when the underlying values were arbitrarily fixed
and a much wider analysis prior was used (Table 2, A and
C) were not substantially different.

Adequacy of run lengths: We used TRACER to test
the ESS of Tables 2A and 4, A (original run length) and

B. Satisfactory ESS does not guarantee convergence of
the sampler, but unsatisfactory ESS strongly suggests
nonconvergence. In all cases the ESS was well over the
recommended cutoff. Mean and minimum ESS values
are noted in the appropriate table legends.

DISCUSSION

Comparison among cases: Some parameter combi-
nations showed high rejection rates in both the Bayesian
and the likelihood samplers, whereas other combina-
tions were consistently lower. The case with Q¼ 0.1 and
r ¼ 0.04 has particularly high rejection. This cannot
be attributed to the high value of Q (which was well
estimated on its own in Table 2, A and B) or to esti-
mation of r (as rejection rates were not elevated in Table
4B or 4C). It is not clear why some cases lead to so much
higher rejection than others.

The Bayesian sampler had somewhat lower rejection
in Table 4A, leading us to wonder if the x2-approxima-
tion used in the likelihood support intervals might be
inaccurate (it is only asymptotically correct). We ex-
plored this possibility by treating the Bayesian posterior
probability curve as an estimate of the likelihood curve
and applying a likelihood-ratio test (LRT) to it. If the
LRT is contributing to the higher rejection rate of
likelihood LAMARC, applying it to the Bayesian sampler
should increase rejection. This was not found. In Table
4A, first row, the LRTrejected the underlying value of Q

14 times (compared to 13 rejections using the 95%
boundaries of the Bayesian support interval) and the
underlying value of r 19 times (compared to 20). In
Table 2A the LRT rejected the underlying value of Q 2
times (compared to 3). Apparently use of the LRT on
the Bayesian curve produces results very similar to direct
use of the support interval.

This focuses attention on inadequacy of the MCMC
search as an explanation for high rejection rates. We
experimented with longer searches (Table 4A) but
there was little sign of improvement; however, it is
possible that all of the search lengths tried were still
inadequate. Use of multiple replicates did improve the
rejection rate somewhat for the likelihood sampler.
Replication is a longer search, but it also combines re-
sults from multiple driving values, which simply length-
ening the search does not.

TABLE 3

Estimation of Q and growth rate

Method Parameter Mean Mean interval Mean int. width % rejecting

Bayesian Q ¼ 0.01 0.0099 0.0065–0.0154 0.0089 11 (4, 7)
Likelihood Q ¼ 0.01 0.0105 0.0068–0.0167 0.0099 14 (7, 7)
Bayesian g ¼ 100 154.42 �127.79–480.34 608.13 2 (2, 0)
Likelihood g ¼ 100 161.17 �104.66–493.30 597.96 4 (3, 1)

Figure 1.—Percentage rejecting truth at the 5% level for
results in Tables 2A, 2C, 3, and 4. For Table 4A, only results
from the default analysis conditions are shown. Bars with dark
shading indicate likelihood analysis, and bars with light shad-
ing indicate Bayesian analysis. The vertical line indicates the
5% level.
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Lengthening the search produces a better sample of
‘‘common’’ genealogies characteristic of the maximum
parameter values, but if the boundaries of the credibility
or support intervals are best explored by using ‘‘rare’’
genealogies, longer searches may not quickly improve
the situation. The Bayesian sampler might have an
advantage in that it will be able to produce rare
genealogies during periods where it has accepted un-
usual driving parameters (Stephens 1999), but such
periods may themselves be rare. One possible approach
for likelihood LAMARC would be to run multiple
replicates whose driving parameters were deliberately
set near the expected 95% boundaries, in the hopes that
these replicates would produce genealogies informative
about the boundaries.

No signs of nonconvergence were found using
TRACER, but TRACER cannot detect failure to explore

entire regions of the genealogy search space, and satis-
factory ESS scores do not, therefore, guarantee a suc-
cessful search.

We do not recommend the Bayesian search strategy
used in this article for the analysis of individual data sets
of biological interest; in the interests of speed we have
not put stringent efforts into guaranteeing convergence
in each analysis. A biologist with a single data set to
analyze would be well advised to perform many inde-
pendent searches with overdispersed random starting
parameters and test that between-search variance was
not significantly greater than within-search variance. If
the results of this test were satisfactory, results from
all searches could then be combined to give a final
estimate.

Comparison between Bayesian and likelihood sam-
plers: The striking general result is that the two methods

TABLE 4

Estimation of Q and recombination rate

Method Parameter Mean Mean interval Mean int. width % rejecting

A. High Q, moderate recombinationa

Bayesian Q ¼ 0.1 0.0993 0.0645–0.1873 0.1228 13 (7, 6)
Bayesian 23 Q ¼ 0.1 0.0947 0.0623–0.1722 0.1099 12 (5, 7)
Bayesian 103 Q ¼ 0.1 0.0909 0.0605–0.1523 0.0908 12 (3, 9)
Likelihood Q ¼ 0.1 0.0949 0.0634–0.1487 0.0854 17 (5, 12)
Likelihood 23 Q ¼ 0.1 0.0918 0.0612–0.1430 0.0818 14 (4, 10)
Likelihood 103 Q ¼ 0.1 0.0896 0.0596–0.1401 0.0804 18 (3, 15)
Likelihood NTSR Q ¼ 0.1 0.0995 0.0674–0.1537 0.0863 18 (10, 8)
Likelihood rep Q ¼ 0.1 0.0943 0.0612–0.1535 0.0923 12 (5, 7)
Bayesian r ¼ 0.04 0.0368 0.0073–0.0606 0.0534 20 (0, 20)
Bayesian 23 r ¼ 0.04 0.0417 0.0098–0.0662 0.0565 16 (0, 16)
Bayesian 103 r ¼ 0.04 0.0456 0.0190–0.0726 0.0531 13 (3, 10)
Likelihood r ¼ 0.04 0.0396 0.0232–0.0622 0.0389 22 (7, 15)
Likelihood 23 r ¼ 0.04 0.0427 0.0254–0.0668 0.0415 25 (12, 13)
Likelihood 103 r ¼ 0.04 0.0466 0.0277–0.0737 0.0460 27 (16, 11)
Likelihood NTSR r ¼ 0.04 0.0360 0.0211–0.0564 0.0353 20 (4, 16)
Likelihood rep r ¼ 0.04 0.0416 0.0204–0.0676 0.0472 15 (4, 11)

B. High Q, no recombinationb

Bayesian Q ¼ 0.1 0.1020 0.0568–0.2231 0.1663 4 (3, 1)
Likelihood Q ¼ 0.1 0.1017 0.0559–0.2126 0.1568 4 (2, 2)
Bayesian r ¼ 0.0 0.000118 (upper) 0.005026 — 1
Likelihood r ¼ 0.0 0.000183 (upper) 0.004980 — 2

C. Low Q, no recombinationc

Bayesian Q ¼ 0.01 0.0100 0.0051–0.0230 0.0179 4 (2, 2)
Likelihood Q ¼ 0.01 0.0105 0.0027–0.0231 0.0204 4 (2, 2)
Bayesian r ¼ 0.0 0.000554 (upper) 0.053506 — 0
Likelihood r ¼ 0.0 0.001478 (upper) 0.057981 — 2

Column headings are as in Table 2.
a Runs marked 23 are twice as long as the original runs; runs marked 103 are 10 times longer than the orig-

inals. Likelihood NTSR represents runs without use of the tree-size rearrangement step. Likelihood rep rep-
resents runs where three replicates contributed to the final estimate. Mean ESSs for the original-length
runs were 676 with a minimum of 214 for Q and 509 with a minimum of 157 for r.

b Only the upper boundary of the interval for r is reported, and the cutoff value is 5% rather than 2.5% to
reflect the one-tailed nature of its distribution. Mean ESSs were 3486 with a minimum of 2563 for Q and 4369
with a minimum of 929 for r.

c Only the upper boundary of the interval for r is reported, and the cutoff value is 5% rather than 2.5% to
reflect the one-tailed nature of its distribution.
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performed similarly both in easy cases and in more
difficult ones. The only case to show marked differences
between Bayesian LAMARC and likelihood LAMARC
was the high-recombination case of Table 4A, in which
the Bayesian sampler characteristically produced poste-
rior probability curves with long ‘‘shoulders’’ in the
direction of low r (see Figure 2 for an example) and this
displaced the confidence interval boundaries down-
ward. The choice of a logarithmic-scale prior that spans
a wide range of indistinguishable values is the culprit
here. The prior claims that the range of ln(r) values
between, say, �10 and �9 is collectively as likely as the
range of values between �5 and �4. The data can
distinguish between the values in the latter case, but not
in the former, resulting in a section of the posterior
probability curve with no more information in it than
the corresponding section of the prior curve. The net
result is the frequently observed shoulder or flat section
between �11 and �7, which, when integrated, contains
a substantial part of the probability at the expense of the
upper section of the curve. Use of a narrower prior
would almost surely move the credibility intervals closer
to the support intervals of likelihood LAMARC.

The Bayesian sampler rejected the underlying param-
eter values significantly less often than the likelihood
sampler, both when rejection was high and when it was
low. However, because of the inclusion of both high and
low cases this did not lead to a studywide advantage to
the Bayesian sampler: It was closer to the nominal 5%
level four times, likelihood was closer six times, and two
cases were ties. We do not regard this as showing an

advantage to the likelihood sampler either, as the result
clearly depended on how many of the included cases
were high rejection. Bayesian LAMARC had better
rejection behavior in high-rejection cases and worse in
low-rejection cases. As we do not understand what leads
a given case to be high or low rejection, it is difficult
to generalize about the overall performance of the
samplers.

Beerli (2006) finds a larger advantage for Bayesian
analysis in estimating a four-population case with 4
Q-parameters and 12 migration-rate parameters. His re-
sults suggest a particular advantage to Bayesian estima-
tion in dealing with cases where there is almost no power
available for estimating some parameters. Further work
will be needed to establish whether the differences be-
tween the results of Beerli (2006) and the current study
are due mainly to the different evolutionary forces con-
sidered, the much larger number of parameters in his
study, or his inclusion of relatively uninformative cases.

Given their similar results, the choice between the
Bayesian and the likelihood sampler could invoke other
qualities such as run time. The Bayesian sampler re-
quires additional steps to vary its parameters, but re-
gains some time because its curve smoothing is faster
than the likelihood sampler’s multidimensional maxi-
mization. In practice neither sampler had a clear speed
advantage when making the same number of genealogy
rearrangements. On an Athlon 20001 (2 GHz, 4 MB of
RAM) Linux system the runs in Table 2A (Q only) took
an average of 195 min for the likelihood sampler and
168 min for the Bayesian sampler, whereas the runs in
Table 4A (Q and r) took 126 min for the likelihood
sampler and 139 min for the Bayesian sampler. These
results rely on the assumption that the Bayesian sam-
pler requires equal numbers of parameter-change and
genealogy-rearrangement steps; however, parameter-
change steps are inexpensive and their frequency could
be increased substantially at little time cost. We would be
surprised if the amount of genealogy rearrangement
needed for good estimates were to vary substantially
between the Bayesian and likelihood samplers, espe-
cially given that their genealogy-rearrangement accep-
tance rates are similar (data not shown).

The likelihood sampler is able to compute multidi-
mensional profiles while the Bayesian sampler is cur-
rently limited to considering one parameter at a time,
and this can lose information about correlation between
parameters. While multidimensional curve smoothing
is possible, it is likely to be too data hungry to succeed on
short runs of the sampler. Currently, likelihood meth-
ods can be recommended when information about cor-
relation is required.

For implementers of new MCMC samplers, Bayesian
or likelihood methods may reasonably be chosen on
the basis of programming difficulty. In our hands the
Bayesian algorithm was substantially easier to imple-
ment. Some of its advantage may have been due to our

Figure 2.—Two posterior probability curves in r from the
Bayesian analysis in Table 4A (Q¼ 0.1, r¼ 0.04). Note the pro-
nounced ‘‘shoulder’’ to the left in A, from a case that rejected
the truth. The vertical line shows the generating value of r.
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previous experience with the likelihood algorithm, but
its curve smoothing is also more computationally ro-
bust than the likelihood algorithm’s multidimensional
search. However, the relative ease of implementation is
likely to vary with the problem domain.

For users of MCMC programs, this study suggests that
the Bayesian and likelihood approaches are similar
and either one can reasonably be chosen if both are
available. Agreement of results between Bayesian and
likelihood analysis is not, unfortunately, evidence of
correctness as the methods appear strongly correlated.
It is probably best to make extensive runs with one
algorithm rather than shorter runs with both.

Validity of comparing likelihood LAMARC and Bayes-
ian LAMARC: Other than the differences described in
methods, Bayesian LAMARC and likelihood LAMARC
represent a single unified code base, using the same
models for genealogy rearrangement and data likeli-
hood evaluation and the same formulas for the co-
alescent priors for each evolutionary force. Therefore,
their results should be readily comparable.

Points on which the two methods differ, which should
be considered in interpreting their results, include
choices specific to one model or the other. The Bayesian
approach requires the experimenter to choose appro-
priate priors. The likelihood approach requires the
experimenter to choose initial driving values and the
frequency with which driving values are reconsidered.
In a Bayesian run, effort must be allocated between ge-
nealogy changes and parameter changes. These choices
could influence the results of comparing the two meth-
ods. For example, if our run conditions were optimal for
one algorithm and not for the other, the results could be
misleading.

Likelihood LAMARC uses its collected genealogies to
evaluate the multidimensional likelihood surface and
find the maximum. When this surface has a trouble-
some shape (particularly likely, in our experience, when
estimating growth rate) the maximization routines may
not find the true global maximum. Bayesian LAMARC
substitutes a single-dimensional curve-smoothing pro-
cess, so is vulnerable to a different class of problems. If it
does not smooth enough it may falsely select a jagged
point as its maximum. If it smoothes too aggressively it
may smooth away a genuine but narrow peak. Thus,
differences between the methods could be due to dif-
ferences in the way they form their final estimates, even
if they are both effectively traversing the same search
space.

Likelihood LAMARC computes a maximum-likeli-
hood estimate of the best parameter values. Approxi-
mate support intervals are constructed on the basis of
the shape of the likelihood curve and assume that a x2-
approximation is valid, which is only asymptotically
correct. Bayesian LAMARC computes a most probable
estimate (the mode of the distribution of sampled
parameters, after smoothing) and uses the posterior

probabilities to construct credibility intervals. While we
have treated the likelihood-based and Bayesian interval
information as directly comparable, the two methods
are answering different statistical questions. Experience
with Bayesian phylogeny estimators shows that the cred-
ibility intervals do not always agree with estimates of
confidence obtained in other ways, such as by boot-
strapping (see, for example, Alfaro et al. 2003). This
should be kept in mind when reading and interpreting
our results.

Motivation for the Bayesian sampler: A theoretical
advantage of the Bayesian sampler is that it can cover
search space more extensively because it is not limited to
a single driving value. While the likelihood sampler
considers a new driving value for each chain, within a
chain it uses a single driving value to guide its sampling.
Stephens (1999) has shown that this can lead to biased
support intervals. This is not a problem simply of using a
poor driving value, but of using genealogies sampled at
one parameter value to evaluate the likelihood at a far-
distant parameter value for which they may be un-
informative. The Bayesian sampler considers a range of
driving values throughout its run and combines in-
formation from all of them into its estimates, and this
offers a theoretical advantage, especially in construction
of credibility intervals.

However, if this advantage exists, it was not dramatic
in our study. The most striking result was the great
similarity between Bayesian and likelihood results,
showing that the two methods are clearly exploring
the same underlying probability surface and are both
encountering difficulties with the same cases.
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APPENDIX A

Waiting-time terms without growth are as follows:

exp
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With nonzero growth the term involving Q becomes

exp �
X

u

X
i

kiðuÞðkiðuÞ � 1Þ
Qigi

expðgitðuÞ � gitðu � 1ÞÞ
� �" #

:

The point probability densities for migration and recombination are simply proportional to the appropriate rates.
The point probability density, up to a constant, for a coalescence in the absence of growth is 1/Qi and in the presence
of growth is

1

Qiexpð�gitðuÞÞ
:

In these equations, u refers to the time interval and t to the time at the rootward end of that time interval (where
times start at 0 at the tips and increase toward the root). s(u) is the count of eligible recombination locations in all
lineages in interval u. Populations are indicated by i; ki(u) is the count of lineages in population i during interval u.
Because time is observed only by the accumulation of mutations, the population parameters are scaled by the neutral
mutation rate per site m, which therefore cannot be estimated separately. Population parameters are Qi ¼ 4Nem for
population i, immigration rate Mij ¼ mij/m indicating immigration from i to j, exponential growth rate gi defined by
the relationship Qt ¼ Q0exp(�gtm), and recombination r ¼ C/m (not allowed to vary among populations).

APPENDIX B

Posterior-likelihood curves are smoothed using a biweight kernel of the form

ð15=16Þð1� t2Þ2

164 M. K. Kuhner and L. P. Smith



for abs(t) , 1.0. The width of the kernel is set as

2:5sn�1=5;

where n is the number of points in the data set, and s is the smaller of the interquartile distance divided by 1.34, or the
standard deviation of the sampled points.

This value can be too small (for example, if all of the sampled parameters were identical). In that case, for
logarithmic priors we impose a kernel width of 0.001, and for linear priors we impose a bin width equal to

10log10ðu�lÞ�4;

where u and l are the upper and lower bounds of the prior.
The biweight kernel was chosen because it is bounded (unlike a Gaussian kernel) and simple to calculate. Its

drawback is that, while it is bounded, it can spread slightly beyond the bounds of the prior. This is quite notable when
the maximum of the posterior distribution is very close to one bound of the prior. A strictly constrained kernel might
provide better results at the cost of increased computational complexity.

The formula for the kernel width is given by Silverman (1986) under the assumption that the function to be
estimated is Gaussian:

hopt ¼ 2:78sn�1=5:

Silverman recommends that in cases where the function is unknown instead of definitely Gaussian, the coefficient
should be reduced slightly (we have reduced it from 2.78 to 2.5) and s should be replaced by the lesser of s and the
interquartile distance.
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