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Autoregulation of iclR, the Gene Encoding the Repressor
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The aceBAK operon was partially induced by a multicopy plasmid which carried the promoter region of the
gene which encodes its repressor, iclR. Gel shift and DNase I analyses demonstrated that IclR binds to its own
promoter. Disruption of iclR increased the expression of an iclR::lacZ operon fusion. Although aceBAK and iclR
are both regulated by IclR, aceBAK expression responds to the carbon source, while expression of iclR does not.

For Escherichia coli, adaptation to growth on acetate or fatty
acids requires the induction of the glyoxylate bypass. This path-
way, consisting of isocitrate lyase (aceA) and malate synthase
(aceB), is essential for growth on these carbon sources because
it prevents the quantitative loss of the entering carbon as CO2
in the Krebs cycle (9, 11). Once induced, the flow of isocitrate
through this pathway is controlled by the phosphorylation of
isocitrate dehydrogenase (IDH), the Krebs cycle enzyme which
competes with isocitrate lyase for isocitrate (1, 8, 15). This
phosphorylation cycle is catalyzed by a bifunctional protein,
IDH kinase/phosphatase (aceK) (12, 14).
The aceBAK operon is expressed from a single promoter

during growth on acetate (2). Expression is regulated by a
repressor protein encoded by iclR (10, 16, 19, 29). IclR binds to
a site which overlaps the 235 region of the aceBAK promoter
(2, 19). In this paper, we demonstrate that IclR also regulates
its own expression.
iclR appears to compete with aceBAK for a common regula-

tory protein. During a deletion analysis of a clone of the iclR
gene, we obtained a surprising result: a truncated derivative of
this gene activated expression of aceBAK under repressing
conditions in an iclR1 background (Table 1). Further deletion
analysis localized the region responsible for this effect to se-
quences between 245 and 13 relative to the start of transla-
tion. Activation of aceBAK expression was also observed in
cells carrying the upstream region from aceBAK on a multicopy
plasmid. These observations suggested that iclR and aceBAK
were competing for a common repressor protein.
IclR binding to iclR. Examination of the region upstream of

iclR revealed a site (243 to 224 relative to the translational
start site) which bears a strong resemblance to the binding site
for IclR from aceBAK (Fig. 1). Gel shift analysis was used to
test for IclR binding near this site. Purified IclR produced a
single shifted band when added to a probe which contained the
predicted IclR binding site of iclR (2152 to 13) (Fig. 2, lanes
2 and 3). DNA containing the IclR binding site from aceBAK
prevented formation of this complex (Fig. 2, lanes 6 and 7).
The approximate location of the IclR binding site was de-

termined by competition. An unlabeled fragment of iclR which
included the predicted IclR binding site (2152 to 13) pre-
vented the binding of IclR to the probe (Fig. 2, lanes 4 and 5).
In contrast, an overlapping fragment of iclR which did not
contain the predicted binding site (2152 to 245) failed to

compete for binding (Fig. 2, lanes 8 and 9). Thus, sequences
between 245 and 13 were required for effective competition.
The precise location of the IclR binding site on iclR was

determined by footprint analysis with DNase I (Fig. 3). A
single protected region was detected. This region corresponds
to the proposed IclR binding site presented in Fig. 1. This site
is within the region which was found to activate aceBAK ex-
pression when it was carried by a multicopy plasmid (see
above).
Transcriptional start site for iclR. Primer extension analysis

was used to determine whether the IclR binding site was near
the transcriptional start site of iclR. Two major extension prod-
ucts were obtained (Fig. 4). It seems likely that the longer
product resulted from the tendency of reverse transcriptase to
add an extra nucleotide beyond the end of the RNA (6, 26).
The location of the start site determined from the shorter
product is shown in Fig. 4.
A match with the consensus sequence for s70 promoters was

found immediately upstream of the transcriptional start site. A
sequence at 210 matched the consensus for 210 boxes at four
of six positions, while sequences at 235 matched the 235
consensus at three of six positions. These regions were sepa-
rated by 17 bp, which is consistent with the consensus separa-
tion of 17 6 1 bp. The IclR binding site overlaps the 210
region of this possible promoter.

* Corresponding author. Phone: (612) 625-4983. Fax: (612) 625-
2163.

TABLE 1. Activation of aceBAK expression by multiple
copies of the iclR promoter region

Inserta Deletion endpointb

(nucleotide)
Amt of IDH phosphatasec

(mU/mg)

None NA 0.11 6 0.04

iclR 1726 0.67 6 0.15
1377 0.64 6 0.31
13 0.62 6 0.08
245 0.16 6 0.08

aceB NA 0.85 6 0.19

a The vector was pBR322. The plasmid carried either no insert or fragments of
either iclR or aceB. The fragments of iclR included sequences between 21241
(relative to the translational start site) and the indicated endpoint. The fragment
of aceB included sequences from 2489 and 11213.
b Each position is the 39 end of the fragment of iclR and is given relative to the

translational start site. The structural gene includes 822 nt. NA, not applicable.
c Plasmids which carried the indicated inserts were introduced into strain

SL1027 (iclR1). Cultures were grown on minimal glucose medium (repressing
conditions) at 378C with shaking. Mid-log-phase cultures were harvested and
assayed for IDH phosphatase activity (13).
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IclR control of iclR expression. The observation that IclR
appeared to bind to a site which overlaps its own promoter
suggested that the gene encoding this protein is autogenously
controlled. To test for autogenous repression, we created an
iclR::lacZ operon fusion and inserted it at the lac locus of the
chromosome. Disruption of iclR produced a substantial in-
crease in expression of this fusion (Table 2), which is consistent
with autogenous repression.
The repressive activity of IclR can be estimated by compar-

ing levels of expression in the iclR1 and iclR strains with a
given carbon source. For example, disruption of iclR had a
dramatic effect on IDH phosphatase expression during growth
on glucose but had little effect on acetate (Table 2). Similar

FIG. 1. Possible site for IclR binding upstream of iclR. The sequence of a region upstream of iclR (29) is compared with the binding site for IclR of aceBAK, which
has been identified by footprint analysis (4). The region of iclR which was protected during DNase I footprint analysis (Fig. 3) is underlined. The transcriptional start
site (Fig. 4) is indicated with an asterisk. Potential promoter elements are indicated (‘‘210’’ and ‘‘235’’). Arrows indicate the 39 endpoints of the DNA fragments used
for competition for Fig. 2.

FIG. 2. Binding of IclR near the iclR promoter. Binding of IclR to sequences
upstream of iclR was tested by gel shift analysis. IclR was overexpressed and
purified by a modification of the method described by Cortay et al. (4). The
probe (1 ng) included sequences from 2152 to 13 relative to the translational
start site and was labeled with [g-32P]ATP and T4 polynucleotide kinase. The
binding reaction mixture included 10 mM Tris (pH 7.5), 1 mM EDTA, 50 mM
NaCl, 5% glycerol, 1 mM dithiothreitol, and 2 mg of poly(dI-dC) in 30 ml.
Following incubation for 30 min at 208C, samples were applied to a 4.5%
polyacrylamide gel. Lanes 1 to 3 included 0, 7, and 17 ng of IclR, respectively. All
other lanes included 17 ng of IclR. Lanes 4 and 5, competition with 10 and 75 ng
of unlabeled probe, respectively. Lanes 6 and 7, competition with 10 and 75 ng
of sequences upstream of aceBAK (2118 to 19 relative to the start of transcrip-
tion), respectively. Lanes 8 and 9, competition with 10 and 100 ng, respectively,
of a fragment of iclR (2152 to 245) which does not contain the predicted IclR
binding site. Lane 10, competition with 500 ng of salmon sperm DNA (ssDNA).

FIG. 3. Identification of the IclR binding site upstream of iclR. The IclR
binding site was identified by DNase I footprint analysis. IclR was overexpressed
and purified by a modification of the method described by Cortay et al. (4).
DNase I footprint analysis of the IclR-DNA complex was carried out by a
modification of the method described by Shih and Towle (27). The probe (281
to 13 relative to the translational start site) was generated by PCR. The 59
primer had been end labeled with [g-32P]ATP and T4 polynucleotide kinase. The
binding reaction mixture included purified IclR, 25 mM N-2-hydroxyethylpipera-
zine-N9-2-ethanesulfonic acid (HEPES) (pH 7.5), 5 mM MgCl2, 34 mM KCl, 2
mg of poly(dI-dC), and a probe (ca. 30,000 cpm) in 20 ml. Standards were
generated by using the Maxam and Gilbert G and A1G reactions (17). Electro-
phoresis was performed with a 10% polyacrylamide gel which included 8 M urea.
Lanes 1 through 6, results from reaction mixtures containing 0, 0.1, 0.3, 1, 2.5,
and 0 mg of purified IclR, respectively. The sequence protected by IclR is boxed.
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results were observed for an aceB::lacZ operon fusion (not
shown). These are the results expected since glucose is a re-
pressing medium for aceBAK but growth on acetate yields
induction. Surprisingly, the degrees of repression of iclR by
IclR appear to be similar under inducing and repressing con-
ditions. It appears that IclR responds strongly to growth con-
ditions in its regulation of aceBAK but is far less affected when
controlling its own expression.
The fact that autoregulation of iclR is relatively insensitive to

carbon source is probably advantageous. Adaptation to acetate
requires the induction of aceBAK, a process which results from
the reduction in the repressor activity of IclR. Since IclR also
represses its own expression, adaptation to acetate could pro-
duce a striking increase in the level of this repressor. Such an
increase would be counterproductive, since it would oppose
the induction of aceBAK.
Why does IclR control of aceBAK differ so markedly from its

control of iclR? The available evidence suggests that integra-
tion host factor (IHF) may be largely responsible for this dif-
ference. IHF is a DNA-binding protein which participates in a
variety of genetic processes in E. coli (for a review, see refer-

ence 7). We have found a binding site for IHF which is just
upstream of the IclR binding site of aceBAK (23). This site
greatly increases the sensitivity of aceBAK expression to the
carbon source. IHF contributes to the induction of aceBAK by
opposing repression by IclR during growth on acetate (induc-
ing conditions) but not on glucose (repressing conditions).
Expression of iclR may be relatively insensitive to the carbon
source because it does not have a binding site of IHF. Consis-
tent with this hypothesis, when the IHF site upstream of ace-
BAK was inactivated, the response of aceBAK expression to the
carbon source closely resembled that of iclR expression.
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