Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Feb;178(3):728–734. doi: 10.1128/jb.178.3.728-734.1996

Low-affinity potassium uptake system in the archaeon Methanobacterium thermoautotrophicum: overproduction of a 31-kilodalton membrane protein during growth on low-potassium medium.

J Glasemacher 1, A Siebers 1, K Altendorf 1, P Schönheit 1
PMCID: PMC177719  PMID: 8550507

Abstract

During growth on low-K+ medium (1 mM K+), Methanobacterium thermoautotrophicum accumulated K+ up to concentration gradients ([K+]intracellular/[K+]extracellular) of 25,000- to 50,000-fold. At these gradients ([K+]extracellular of < 20 microM), growth ceased but could be reinitiated by the addition of K+ or Rb+. During K+ starvation, the levels of a protein with an apparent molecular weight of 31,000 increased about sixfold. The protein was associated with the membrane and could be extracted by detergents. Cell suspensions of M. thermoautotrophicum obtained after K+-limited growth catalyzed the transport of both K+ and Rb+ with apparent Km and Vmax values of 0.13 mM and 140 nmol/min/mg, respectively, for K+ and 3.4 mM and 140 nmol/min/mg, respectively, for Rb+. Rb+ competitively inhibited K+ uptake with an inhibitor constant of about 10 mM. Membranes of K+-starved cells did not exhibit K+-stimulated ATPase activity. Immunoblotting with antisera against Escherichia coli Kdp-ATPase did not reveal any specific cross-reactivity against membrane proteins of K+-starved cells. Cells of M. thermoautotrophicum grown at a high potassium concentration (50 mM) catalyzed K+ and Rb+ transport at similar apparent Km values (0.13 mM for K+ and 3.3 mM for Rb+) but at significantly lower apparent Vmax values (about 60 nmol/min/mg for both K+ and Rb+) compared with K+-starved cells. From these data, it is concluded that the archaeon M. thermoautotrophicum contains a low-affinity K+ uptake system which is overproduced during growth on low-K+ medium.

Full Text

The Full Text of this article is available as a PDF (460.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakker E. P., Borchard A., Michels M., Altendorf K., Siebers A. High-affinity potassium uptake system in Bacillus acidocaldarius showing immunological cross-reactivity with the Kdp system from Escherichia coli. J Bacteriol. 1987 Sep;169(9):4342–4348. doi: 10.1128/jb.169.9.4342-4348.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bakker E. P., Harold F. M. Energy coupling to potassium transport in Streptococcus faecalis. Interplay of ATP and the protonmotive force. J Biol Chem. 1980 Jan 25;255(2):433–440. [PubMed] [Google Scholar]
  3. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. Methanogens: reevaluation of a unique biological group. Microbiol Rev. 1979 Jun;43(2):260–296. doi: 10.1128/mr.43.2.260-296.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bossemeyer D., Borchard A., Dosch D. C., Helmer G. C., Epstein W., Booth I. R., Bakker E. P. K+-transport protein TrkA of Escherichia coli is a peripheral membrane protein that requires other trk gene products for attachment to the cytoplasmic membrane. J Biol Chem. 1989 Oct 5;264(28):16403–16410. [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Buurman E. T., Kim K. T., Epstein W. Genetic evidence for two sequentially occupied K+ binding sites in the Kdp transport ATPase. J Biol Chem. 1995 Mar 24;270(12):6678–6685. doi: 10.1074/jbc.270.12.6678. [DOI] [PubMed] [Google Scholar]
  7. Epstein W., Buurman E., McLaggan D., Naprstek J. Multiple mechanisms, roles and controls of K+ transport in Escherichia coli. Biochem Soc Trans. 1993 Nov;21(4):1006–1010. doi: 10.1042/bst0211006. [DOI] [PubMed] [Google Scholar]
  8. Erecińska M., Deutsch C. J., Davis J. S. Energy coupling to K+ transport in Paracoccus denitrificans. J Biol Chem. 1981 Jan 10;256(1):278–284. [PubMed] [Google Scholar]
  9. Gorkovenko A., Roberts M. F., White R. H. Identification, Biosynthesis, and Function of 1,3,4,6-Hexanetetracarboxylic Acid in Methanobacterium thermoautotrophicum DeltaH. Appl Environ Microbiol. 1994 Apr;60(4):1249–1253. doi: 10.1128/aem.60.4.1249-1253.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jones W. J., Nagle D. P., Jr, Whitman W. B. Methanogens and the diversity of archaebacteria. Microbiol Rev. 1987 Mar;51(1):135–177. doi: 10.1128/mr.51.1.135-177.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaesler B., Schönheit P. Methanogenesis and ATP synthesis in methanogenic bacteria at low electrochemical proton potentials. An explanation for the apparent uncoupler insensitivity of ATP synthesis. Eur J Biochem. 1988 May 16;174(1):189–197. doi: 10.1111/j.1432-1033.1988.tb14081.x. [DOI] [PubMed] [Google Scholar]
  12. Kanodia S., Roberts M. F. Methanophosphagen: Unique cyclic pyrophosphate isolated from Methanobacterium thermoautotrophicum. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5217–5221. doi: 10.1073/pnas.80.17.5217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Michels M., Bakker E. P. Low-affinity potassium uptake system in Bacillus acidocaldarius. J Bacteriol. 1987 Sep;169(9):4335–4341. doi: 10.1128/jb.169.9.4335-4341.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Seely R. J., Fahrney D. E. A novel diphospho-P,P'-diester from Methanobacterium thermoautotrophicum. J Biol Chem. 1983 Sep 25;258(18):10835–10838. [PubMed] [Google Scholar]
  16. Siebers A., Altendorf K. Characterization of the phosphorylated intermediate of the K+-translocating Kdp-ATPase from Escherichia coli. J Biol Chem. 1989 Apr 5;264(10):5831–5838. [PubMed] [Google Scholar]
  17. Siebers A., Altendorf K. The K+-translocating Kdp-ATPase from Escherichia coli. Purification, enzymatic properties and production of complex- and subunit-specific antisera. Eur J Biochem. 1988 Dec 1;178(1):131–140. doi: 10.1111/j.1432-1033.1988.tb14438.x. [DOI] [PubMed] [Google Scholar]
  18. Siebers A., Kollmann R., Dirkes G., Altendorf K. Rapid, high yield purification and characterization of the K(+)-translocating Kdp-ATPase from Escherichia coli. J Biol Chem. 1992 Jun 25;267(18):12717–12721. [PubMed] [Google Scholar]
  19. Siebers A., Wieczorek L., Altendorf K. K+-ATPase from Escherichia coli: isolation and characterization. Methods Enzymol. 1988;157:668–680. doi: 10.1016/0076-6879(88)57114-8. [DOI] [PubMed] [Google Scholar]
  20. Sprott G. D., Jarrell K. F. K+, Na+, and Mg2+ content and permeability of Methanospirillum hungatei and Methanobacterium thermoautotrophicum. Can J Microbiol. 1981 Apr;27(4):444–451. doi: 10.1139/m81-067. [DOI] [PubMed] [Google Scholar]
  21. Sprott G. D., Shaw K. M., Jarrell K. F. Ammonia/potassium exchange in methanogenic bacteria. J Biol Chem. 1984 Oct 25;259(20):12602–12608. [PubMed] [Google Scholar]
  22. Sprott G. D., Shaw K. M., Jarrell K. F. Methanogenesis and the K+ transport system are activated by divalent cations in ammonia-treated cells of Methanospirillum hungatei. J Biol Chem. 1985 Aug 5;260(16):9244–9250. [PubMed] [Google Scholar]
  23. Suelter C. H. Enzymes activated by monovalent cations. Science. 1970 May 15;168(3933):789–795. doi: 10.1126/science.168.3933.789. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES