Abstract
The frequency of negative hydrogen breath tests due to colonic bacterial flora which are unable to produce hydrogen was determined after oral lactulose challenge in 98 healthy Dutch schoolchildren. There was a negative result in 9.2%. The probability of a false normal lactose breath test (1:77) was calculated from these results together with those from a separate group of children with lactose malabsorption (also determined by hydrogen breath test). A study of siblings and mothers of subjects with a negative breath test did not show familial clustering of this condition. Faecal incubation tests with various sugars showed an increase in breath hydrogen greater than 100 parts per million in those with a positive breath test while subjects with a negative breath test also had a negative faecal incubation test. The frequency of a false negative hydrogen breath test was higher than previously reported, but this does not affect the superiority of this method of testing over the conventional blood glucose determination.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bjørneklett A., Jenssen E. Relationships between hydrogen (H2) and methane (CH4) production in man. Scand J Gastroenterol. 1982 Nov;17(8):985–992. [PubMed] [Google Scholar]
- Bond J. H., Jr, Engel R. R., Levitt M. D. Factors influencing pulmonary methane excretion in man. An indirect method of studying the in situ metabolism of the methane-producing colonic bacteria. J Exp Med. 1971 Mar 1;133(3):572–588. doi: 10.1084/jem.133.3.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douwes A. C., Fernandes J., Degenhart H. J. Improved accuracy of lactose tolerance test in children, using expired H2 measurement. Arch Dis Child. 1978 Dec;53(12):939–942. doi: 10.1136/adc.53.12.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douwes A. C., Fernandes J., Jongbloed A. A. Diagnostic value of sucrose tolerance test in children evaluated by breath hydrogen measurement. Acta Paediatr Scand. 1980 Jan;69(1):79–82. doi: 10.1111/j.1651-2227.1980.tb07034.x. [DOI] [PubMed] [Google Scholar]
- Douwes A. C., Fernandes J., Jongbloed A. A. Diagnostic value of sucrose tolerance test in children evaluated by breath hydrogen measurement. Acta Paediatr Scand. 1980 Jan;69(1):79–82. doi: 10.1111/j.1651-2227.1980.tb07034.x. [DOI] [PubMed] [Google Scholar]
- Ford R. P., Barnes G. L. Breath hydrogen test and sucrase isomaltase deficiency. Arch Dis Child. 1983 Aug;58(8):595–597. doi: 10.1136/adc.58.8.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardiner A. J., Tarlow M. J., Symonds J., Hutchison J. G., Sutherland I. T. Failure of the hydrogen breath test to detect pulmonary sugar malabsorption. Arch Dis Child. 1981 May;56(5):368–372. doi: 10.1136/adc.56.5.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilat T., Ben Hur H., Gelman-Malachi E., Terdiman R., Peled Y. Alterations of the colonic flora and their effect on the hydrogen breath test. Gut. 1978 Jul;19(7):602–605. doi: 10.1136/gut.19.7.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitt M. D., Donaldson R. M. Use of respiratory hydrogen (H2) excretion to detect carbohydrate malabsorption. J Lab Clin Med. 1970 Jun;75(6):937–945. [PubMed] [Google Scholar]
- Levitt M. D., Ingelfinger F. J. Hydrogen and methane production in man. Ann N Y Acad Sci. 1968 Feb 26;150(1):75–81. doi: 10.1111/j.1749-6632.1968.tb19033.x. [DOI] [PubMed] [Google Scholar]
- Metz G., Jenkins D. J., Newman A., Blends L. M. Breath hydrogen in hyposucrasia. Lancet. 1976 Jan 17;1(7951):119–120. doi: 10.1016/s0140-6736(76)93157-3. [DOI] [PubMed] [Google Scholar]
- Perman J. A., Barr R. G., Watkins J. B. Sucrose malabsorption in children: noninvasive diagnosis by interval breath hydrogen determination. J Pediatr. 1978 Jul;93(1):17–22. doi: 10.1016/s0022-3476(78)80592-7. [DOI] [PubMed] [Google Scholar]
- Perman J. A., Modler S., Olson A. C. Role of pH in production of hydrogen from carbohydrates by colonic bacterial flora. Studies in vivo and in vitro. J Clin Invest. 1981 Mar;67(3):643–650. doi: 10.1172/JCI110079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pitt P., de Bruijn K. M., Beeching M. F., Goldberg E., Blendis L. M. Studies on breath methane: the effect of ethnic origins and lactulose. Gut. 1980 Nov;21(11):951–954. doi: 10.1136/gut.21.11.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vince A. J., Burridge S. M. Ammonia production by intestinal bacteria: the effects of lactose, lactulose and glucose. J Med Microbiol. 1980 May;13(2):177–191. doi: 10.1099/00222615-13-2-177. [DOI] [PubMed] [Google Scholar]
- Vince A., Down P. F., Murison J., Twigg F. J., Wrong O. M. Generation of ammonia from non-urea sources in a faecal incubation system. Clin Sci Mol Med. 1976 Sep;51(3):313–322. doi: 10.1042/cs0510313. [DOI] [PubMed] [Google Scholar]
- Vince A., Killingley M., Wrong O. M. Effect of lactulose on ammonia production in a fecal incubation system. Gastroenterology. 1978 Mar;74(3):544–549. [PubMed] [Google Scholar]
- Wrong O. Nitrogen metabolism in the gut. Am J Clin Nutr. 1978 Sep;31(9):1587–1593. doi: 10.1093/ajcn/31.9.1587. [DOI] [PubMed] [Google Scholar]
- van der Klei-van Moorsel J. M., Douwes A. C., van Oeveren J. P. New principle for estimation of hydrogen in expired air. Eur J Pediatr. 1984 Feb;141(4):221–224. doi: 10.1007/BF00572764. [DOI] [PubMed] [Google Scholar]