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We have determined that the DNA sequence downstream of the well-characterized gonococcal fbp gene
contains two open reading frames: one designated fbpB, which encodes a protein proposed to function as a
cytoplasmic permease, and one designated fbpC, which encodes a protein proposed to function as a nucleotide-
binding protein. The fpbABC operon composes an iron transport system that is homologous to the sfu and hit
operons previously reported for Serratia marcescens and Haemophilus influenzae, respectively, and displays
elements characteristic of ATP binding cassette transporters. The fpbABC operon differs from these loci in that

it is lethal when overexpressed in Escherichia coli.

A prerequisite for infection by Neisseria gonorrhoeae is the
ability to multiply within the human host. Many factors con-
tribute to this, including the capacity to compete for host-
sequestered iron (13, 14, 16). For N. gonorrhoeae, the process
of iron acquisition begins in vivo with the binding of an iron
source (e.g., human transferrin) by outer membrane protein
receptors (12, 16, 21). Previous studies have determined that
upon entry into the periplasm, free iron is chelated by the
iron-binding protein Fbp (ferric-iron-binding protein), which
initiates the transport of iron from the periplasm to the cytosol
(9, 16, 17). Molecular details of the transport of Fbp-bound
iron from the periplasm to the cytosol have not been previously
described. An emerging theme in the biology of import and
export processes across membranes is facilitation by the gen-
eral class of ATP binding cassette (ABC) transporters (the
ATP-binding cassette is a hallmark of transport systems of this
type) (11). In gram-negative bacteria, active transport of mol-
ecules from the periplasm to the cytosol often involves a
periplasmic binding protein in conjunction with an ABC trans-
porter (11). We have previously suggested that periplasm-to-
cytosol transport of iron by N. gonorrhoeae proceeds by an
analogous mechanism (9). Therefore, at least two further ac-
tivities (that have not been previously described), that of a
cytoplasmic permease and that of a nucleotide-binding protein,
would logically be implicated in gonococcal periplasm-to-cy-
tosol iron transport. This report describes the genetic loci and
physical existence of these activities.

Sequence and genetic organization of the neisserial fbp
operon. The major focus of this study was to demonstrate the
existence of the fbpABC operon. The fbp gene sequence has
been well characterized (5, 6, 22) and has been designated fbpA
for the purpose of this study. Since fbpA had already been
sequenced (5, 6, 22), only partial sequencing of this gene near
its 3’ end was performed. Sequencing downstream of fbpA was
accomplished by digestion of gonococcal chromosomal DNA
with Rsal followed by ligation into the Rsal site of pUC18. This
ligation mixture was used as a template for a standard PCR
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with the oligonucleotides FbpTaa and For, as described previ-
ously by Berish et al. (5, 6) (Table 1). This generated a PCR
fragment of approximately 1,350 bp that contained one-half of
the fbpB gene sequence. Similarly, primer WLK1 (Table 1) was
used with Clal-digested genomic DNA after ligation into the
Clal site of pUCI18. This consistently amplified a 2,500-bp
fragment that encoded regions overlapping the fbpB gene locus
to 3’ of the fbpC locus. Primers based upon known sequences
were developed and used in the preparation of various PCR
products for sequencing (Fig. 1), as previously described (7).
The accuracy of the sequences obtained was ensured by mul-
tiple rounds of sequencing on different PCR templates with a
wide panel of different overlapping primers for both strands
(Fig. 1). The sequence of the complete fbpABC operon ob-
tained from N. gonorrhoeae F62 is reported in Fig. 1. Sequence
analysis of the fbpA locus has been reported previously by
Berish et al. (4, 5) and Zhou and Spratt (22). The latter re-
ported the presence of an additional codon that would result in
an insertion of Ala at position 231 of the mature Fbp amino
acid sequence. Subsequent analysis of our sequencing results
has confirmed the presence of this codon. A 60-bp intragenic
region follows the fbpA stop codon and includes a strong stem-
loop structure with the potential to form 38 hydrogen bonds
(8). Analogous structures are predicted to be in similar posi-
tions for the hit and sfu operons (data not shown). Since stem-
loop structures can function in message stability (19), the pres-
ence of this structure may allow Fbp expression at levels much
higher than those of the fbpB and fbpC gene products. This is
consistent with our inability to detect proteins corresponding
to FbpB and FbpC in iron-stressed gonococcal membranes or
soluble extracts or in Escherichia coli constructs expressing the
fbpABC operon, as described below (data not shown).

The open reading frames (ORFs) of the fbpB and fbpC gene
sequences were deduced on the basis of homology to those
previously reported for AitBC (20) and sfuBC (2). The pre-
dicted product of fbpB is compared with the proposed cyto-
plasmic permeases (HitB and SfuB) in Fig. 2A, and the pre-
dicted product of fbpC is compared with the nucleotide-
binding protein (HitC and SfuC) components of the previously
described operons in Fig. 2B.

The predicted FbpB protein is a 511-amino-acid polypeptide
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TABLE 1. Bacterial strains, plasmids, and primers

Strain, plasmid,

. Relevant characteristics Source
or primer
Strains
N. gonorrhoeae F62 Genomic DNA for PCR sequencing and amplification of fbopABC fragment S. Morse
E. coli DH5SaMCR Host for cloning fbpABC operon BRL
E. coli H-1443 aroB mutant; no growth on nutrient agar containing 200, 2,2'-dipyridyl V. Braun
Plasmids
pREP4 3.7-kb plasmid derived from a p15A replicon which expresses large quantities of lac repressor; Kan" Qiagen
pBSKS™ 3.1-kb plasmid used as a vector for expression of the fbpABC operon in these studies; Amp" Stratagene
pUC18 2.6-kb plasmid used as a ligation vector for site-specific PCR in these studies BRL*
pAFbpO 3.6-kb PCR fragment of the fbpABC operon ligated into the EcoRV and BamHI sites of pBSKS™. This This study
plasmid puts the Fbp operon under the control of the lac repressor and is selected for by Amp*.
Primers
FBPTaa Oligonucleotide used in site-specific PCR for Rsal ligation; 5'GAAAAAGAACACGCCACCCGGCTG3’ This study
For Oligonucleotide used in site-specific PCR for both Rsal and Clal ligations; 5’CCCAGTCACGACGTTGTAA BRL
AACG3’
WLK1 Oligonucleotide used in site-specific PCR for Clal ligation; 5'CGGACACTTCTTTATTTTCAGGAC3' This study
FbpO-3’'BamHI 3’ oligonucleotide used for the amplification of the fbpABC operon; 5'CGGGATCCAAGATAAATATCCCG This study
CAGGCATTGTGG3'
F4-Scal 5" oligonucleotide used for the amplification of the fbpABC operon; 5’AAAAAGTACTCGATATGAAAACA This study

TCTATCCGA3’

“ BRL, Bethesda Research Laboratories, Inc.

with an estimated molecular weight of 56,320. Comparison of
FbpB with the predicted HitB sequence by BESTFIT analysis
indicates an identity of 64.4% and a similarity of 77.5%. A
similar comparison between the fbpB and sfuB gene products
indicates an identity of 34.9% and a similarity of 58.2%. These
values are similar to the homologies reported for the FbpA,
SfuA, and HitA protein homologs (1, 4). FbpB is proposed to
function as a cytoplasmic membrane permease. Optimal align-
ment of FbpB, HitB, and SfuB proteins identifies 11 regions of
primary sequence that, on the basis of the algorithm of Persson
and Argos (18), are predictive of transmembrane segments.
These segments are commonly associated with membrane per-
meases (11). In addition, two sequences that match the con-
sensus permease motif EAA---G--------- [-LP can be identified
(Fig. 2A). These regions are thought to be located on cytoplas-
mic loops that interact with the ATP-binding protein compo-
nent (11). This sequence and location are analogous to those
previously reported for MalF, MalG, HisQ, HisM, and OppC,
all of which are well-characterized cytoplasmic permeases (10,
11).

The ORF corresponding to fbpC encodes a 357-residue pep-
tide with a predicted molecular weight of 38,173. A compari-
son of FbpC with the 4itC and sfuC gene products indicates 51
and 40% identity and 68 and 58% similarity, respectively. In
contrast to FbpB, which is composed of 62% hydrophobic
amino acids (indicative of an integral membrane protein),
FbpC is composed of 50.5% hydrophobic residues. FbpC is
proposed to interact with FbpB to supply the energy for the
transport of iron across the cytoplasmic membrane through the
binding and hydrolysis of a nucleotide triphosphate. A com-
mon ATP binding domain is characteristic of the nucleotide-
binding protein components of ABC transporters. These do-
mains are about 200 residues in length and have considerable
sequence identity. Short consensus sequences designated the
Walker A and B motifs are specifically positioned within this
200-residue region (11). Comparison of the fbpC, hitC, and
sfuC gene products demonstrates highly conserved Walker A
and B motifs (Fig. 2B).

Comparison of the ORFs derived from fbpBC with those

from hitBC and sfuBC illustrates sequence similarities con-
served among the general class of ABC transporters (11). This
observation, coupled with the homology across this operon,
argues that the fbp, hit, and sfu operons have evolved sepa-
rately but function similarly in the periplasm-to-cytosol trans-
port of free iron.

Cloning of the intact fbpABC operon. The cloning of the
fbpABC operon was initially attempted with high- and medi-
um-copy-number vectors such as pUC19 and pBR322. These
cloning attempts led to constructs in which all or portions of
the fbpABC operon were spontaneously deleted (data not
shown), suggesting that expression of the complete operon was
lethal in E. coli. To overcome this problem, expression of the
fbpABC operon was placed under the control of the isopropyl-
B-p-thiogalactopyranoside (IPTG)-inducible lac promoter on
pBSKS ™. In order to clone the operon into this vector, primers
with engineered restriction sites were synthesized on the basis
of the fbpABC operon DNA sequence (Table 1). PCR ampli-
fication with these primers yielded a 3.6-kb fragment that was
subsequently ligated into the EcoRV and BamHI sites of pB-
SKS™, creating a fusion with lacZ. The ligation mixture was
then used to transform E. coli DH5aMCR carrying pREP4 (a
p15A replicon derived from pACYC184) (3). The plasmid
PREP4 overexpresses Lacl, and in the absence of IPTG, genes
driven from the lac promoter are not transcribed. From this
ligation mixture, 86 transformants were obtained; they were
transferred to Luria-Bertani (LB) agar with ampicillin and
kanamycin, with or without 32 mg of IPTG per ml. Nine of 86
transformants grew poorly on LB agar containing IPTG
whereas all grew well on medium containing no IPTG, sug-
gesting that upregulation of this operon is inhibitory. Plasmid
isolation and restriction enzyme analysis indicated that of the
nine transformants that grew poorly in the presence of IPTG,
six contained pREP4 and pBSKS™ with an intact fbpABC
operon (data not shown).

Toxicity associated with expression of the intact fbpABC
operon in E. coli. E. coli DH5aMCR(pREP4) transformed
with either pAFbpO or pBSKS™ was inoculated into LB broth
and grown to mid-log phase, and the fbpABC operon was
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FIG. 1. Sequence of the gonococcal fbpABC operon. DNA sequence of the

AV L
CTC TGA AAGGCGGCAGCATCCACAAGCCTGCGGATATTTATCTTGTTGGAAACAGAATTT
*

I_ v L 6 I A A P F C S K V¥
TGC ATC CCC GCA TTT GTC AGC TGT TTC ACC

L P L C I P A F V s ¢ T
GTG ATG ATT ATG AGC CTG TCC TCG TTT CCG CTC GCC TAC
vV M I M S L S S F P L A Y

E R L Qq

CTG CAT ATG CTG GTC
v

GAA GAA GTC AGC CTG TCC TTG GGC AAA AGC CGL CTG CAA
E VvV S L S L % K S
F P g F % S S v L L I A L H M L
GAA ATT TGT (GC GGT ATC CAT CTG GCA TTT TCC AAG AAT ACG AAA TGT CCT ACA ACA
1 R

P L A F S K N T K C P T T
GTG TGC GGA ATC GTC GTA TTT GGA GAA AGC ATA TTT CGC
v ¢ ¢ I v ¥ F ¢ E S I F R
CCT TAT (CC GTC AAA ACC (TC AAA (TG CCC GGT CAG ATC
P oY P vV K T L K L P G ,Q I
ATT ATC CC TTT GGC GTA TTG ATA CAT TGG ATG ATG GTC
I T P F G V L I H W M M V
TTT ATC CGT TCC TTA AGC GTA TCG GCT TTA GGT GCG ATT
F I R S L S Vv S A L 6 A I
CGC TAT CGC AAT TTT TTA ACC GTT TGG ATA GAC AGG CTG
R Y R N f L T Vv % I D R L
TCC TTG GTT TAT TTC AGC ATC AAC TAC ACC CCT GCC GTT
S

Lt v Y F S I N Y T P A V
TAC (TG CCG ATG GCG CAA ACC ACC (TG AGG tt (C(d
Y P M A T T L R T S L

L
GGG CGC GGA CAC TTC TTT ATT TTC AGG ACG TTG GTA CTG
6 R G MH_F _F 1
TTC CTC AAG (TG ATG AAA GAI
F L K L M K E L T A_T 1L L
GAA TAC ACA TCG GAC GCA CAA TAC GCC GCT GCC ACC LT
YT

E S D A ’$ Y A A A T P
CTG (TG AAG AAA TAC GCC CACCGCT
L L

K K Y A F K *
CAA AAC ACC CCG GTT TTA AAC GAC ATT TCG CTC AGC CTC
Q N T P V L N D I S Lo S L
GGT AAA ACC ACC CTT TTA €GC TGC CTT GCC GGT TTC GAA
G K T T L L R L A FE
TTC TCG AAA AAT ACC AAC CTT CCC GTC CGA GAA ACG ACG
F S K N T N L P VvV, R E T T
CTC GGC AAC GGC

vV Y R N I A Y 6 L 6 N G
TTG GAA TTG ACC GGC ATT TCC GAA CTT GCC GGA CGC TAT
L ¢t T 6 I S L R Y
GCC (G GCC CTC 6CC CCC GAC CCC GAA (TG ATT TTG TTG
A R A L A o p E L I L L
T 6CC GCC (TG CGC GCC AAC GGA

I R E 0O M I A A L N G
CAA TAC GCC GAC CGG ATT GCC GTG ATG AAA CAG GGG CGC
Y A D , R I A V M K G R

F R T L V L
G ACC GCC ACC CTG CT6

ACC G
T

GCC GAC (TT GAT GGC ATC
A O L D A Vv L F I G E G I
AGA TTG GGC CGC CTG CLT GIT CAK AGC GGC GCA CCC GCA
R L ¢ R L P V S G A P A
CTT CAC CCC CAT TCC GCA CCC GTC GTC TCC ATT CAC 6CC
L H P H S A PV V H A
AGC CTC ACG CTC AAC (TC
S L R A G Q T Vv L T L N L
CAT TTG GAC GGT CCC GCC (TG TTC TTC CCC GGA AAT ACC
H L! D G P A L F F P G N T

3,862-bp fbpABC operon is depicted with predicted ORFs. Primers used in the

sequencing of the operon are shown as arrows above the appropriate sites. <, primer corresponding to complementary strand; —, primer corresponding to coding
strand. A predicted stem-loop structure within the intragenic region between fbpA and fbpB is indicated by black boxes. An Ala at position 231 has been added to the

mature FbpA sequence previously reported (6) and is denoted by an open box.

induced by the addition of 1 mM IPTG. Upon the addition of
IPTG, the growth of E. coli DH5SaMCR(pREP4/pAFbpO) was
rapidly inhibited, whereas the growth of E. coli DH5aMCR
(pREP4/pBSKS ™) was not (Fig. 3). Comparison of viable counts
of IPTG-induced organisms on LB agar indicated that in-

creased expression of the fbpABC operon in E. coli was bac-
tericidal rather than bacteriostatic (data not shown). This
observation may explain the general difficulty previously en-
countered in attempts to clone fbp and linked sequences (6).

Overexpression of either FbpA (4) or FbpC (unpublished
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HitB .. .iiiiiin tieiiann LPRRPPFWLT LLIILIGLPL CLPFLYVILR ATEVGLTRSV ELLFRPRMAE LLSNTMLLMV 60

SfuB MSNLSTHAAQ TARRYSVVPR HPRPGAIVVV SAVLLSLLAL -LPLGFVIGV AFETGWQTVK ALVFRPRVAE LLLNTLLLVV 79
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-LAGVLVLCC LGLLLLEATS RGRARYARVG SGSARSQTPR RLSPPLAALA LLLPIALTAL ALGVPFITLA RWLWLGGFEV 317

FA--LVSVFD BFIRSLSVSA LGATBTILEA LBLVWASVRY RNFETVWIDR LPFLLHAVBG LYIALSEVYF SINYTPAVEE 383

SAGDFSEFLS AFSNSFITISG LGALLTVMCA LPLVWAAVRY RSYLTIWIDR LPYLLHAVPG LVIALSLVYF SIHYANDLYQ 378
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RNPFYIFRTL ATILPGVA AAFALVFLNL MKELTATLLL 458
il KSPAQALWST LAAPGVA AGAALVFLAI ANELTATLLL 475

TADDVHTLST AVWEYTSDAQ YAAATPYALM LVLFSGIPVF LL----KKYA FK 511
TSNDIKTLST AVWEHTSDAQ YAAATPYALM LVLFSGIPVF LL----KKYA FK 507
APNGTRTLAT GFWALTSEID YVAAAPYALT MVALSLPLTW LLYSQSKRTA GL 528

(S ——— 7 N — ]
FbpC ...GSTAMTA ALHIGHLSKS FONTPVENDI SLSLDPGEIL EOPDSGEISL SGKTIFSKNT 77
HitC MRLNKMINNP LLTVKNLNKF FNEQOVLHDI SFSLORGEIL EQPSNGEIWL KERLTFGENF 80
SEUC . ....... MS TLELHGIGKS YNAIRVLEHE DLQVAAGSRT EIPDGGOILL QGQAMGNGSG 72

Walker A

NLBVRETTFG LPRTGRCSVE HLTVYRNIAY GLGNGKGRTA QERQRIEAML ELTGI-SELA GRYPHELSGG QQORVALARA 156
NLPTQORHLG YVVQEGILFP HLNVYRNIAY GLGNGKGKNS EEKTRIEQIM QLTGI-FELA DRFPHOLSGG QOQRVALARA 159
WVPAHLRGIG FVPQDGALFE HFTVAGNIGF GLKGGK---R EKQRRIEALM EMVALDRRLA ALWPHELSGG QQQORVALARA 149

LAPDPHLT] ) ) LRROQTREDMI AALRANGKSA VFVSHDREEA LOYADRIAVM KQOGRILQTAS PHELYRQPAD 236
LROQTROEML QALRQSGASA IFVTHDRDEA LRYADKIAIT QQGKILQIDT PRTLYWSENH 239
LRAATRKAVA ELLTEAKVAS ILVTHDOSEA LSFADQVAVM RSGRLAQVGA PODLYLRPVD 229

LDAVLFTIGEG IVFPAALNAD GTADCRLGRL PVQSGAPAGT RGTLLIRPEQ FSL-HPHSAP VVSIHAVVLK TTPKARYTEI 315
LETAKFMGES IVLPANLLDE NTAQCQLGNI PIKNKSISQN QGRILLRPEQ FSLFKTSENP TALFNGQIKQ IEFKGKITSI AR
EPTASFLGET LVLTAEL-AH GWADCALGRI AVDDRQRSG- PARIMLRPEQ IQI--GLSDP AQRGQAVITG IDFAGFVSTL 305

SLRAGQTV-- LTLNLPSAPT LSDGISAVLH LDGPALFFPG NTL* 357
QIEINGYA-- IWIENVISPD LSIGDNLPVY LHKKGLFYA¥* 357
NLOMAATGAQ LEIKTVSREG LRPGAQVTLN VMGQAHIFAG 346

*

FIG. 2. Comparison of the predicted amino acid sequences of the proposed ABC transporters encoded by the fbp, hit, and sfu operons. (A) Comparison of the
predicted amino acid sequences of FbpB, HitB, and SfuB demonstrates the predicted transmembrane regions which are characteristic of cytoplasmic permeases. The
predicted transmembrane regions are indicated as TM 1 through TM 11. A sequence motif common to cytoplasmic permeases can be found twice within this sequence
and is indicated by text beginning “EAA” above the amino acid sequences. (B) Comparison of predicted amino acid sequences of FbpC, HitC, and SfuC, the proposed
nucleotide-binding components. The Walker motifs conserved across the predicted FbpC, HitC, and SfuC protein sequences are indicated with boxes. For both panels,
gaps in the alignment are designated with a dash.
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FIG. 3. Toxicity of the fbpABC operon for E. coli DH5aMCR(pREP4). To
demonstrate lethality due to increased expression of the gonococcal fbpABC
operon in E. coli, E. coli DH5aMCR(pREP4/pAFbpO) (closed circles) and
DH5aMCR(pREP4/pBSKS ™) (closed squares) were grown as described in the
text. At mid-log phase the cultures were divided and IPTG was added to the
culture (indicated by the arrow). Growth was monitored turbidometrically into
stationary phase (>5 h).

data) has been readily achieved. Clones expressing even the 5’
one-third of FbpB exhibited growth kinetics analogous to that
of the intact fbpABC operon in E. coli, suggesting that in-
creased expression of the hydrophobic fbpB gene product was
specifically responsible for the lethality associated with this
operon. This toxicity remained associated with fbpB, even
when only a partial gene product was produced (data not
shown).

The functionality of the fbpABC operon in iron transport
was demonstrated in a fashion similar to that reported for the
analogous operons in Serratia marcescens (23) and Haemophi-
lus influenzae (1). Briefly, this entailed demonstrating that the
presence of pAFbpO enabled an aroB E. coli strain to grow on
nutrient agar containing inhibitory concentrations of the iron
chelator 2,2'-dipyridyl. Similar to what has been previously
described (1, 23), growth of single microcolonies could be
observed (data not shown), indicating that like HitABC and
SfuABC, FbpABC could complement the periplasm-to-cytosol
transport of iron in an E. coli background.

The presence of fbp operon homologs in H. influenzae and S.
marcescens suggests that the function of this operon is con-
served across species boundaries. For Neisseria spp., the pres-
ence of fbpABC correlates with the ability of a strain to obtain
iron from transferrin or lactoferrin (13, 14) and with the ability
of these organisms to cause disease (15). These observations
underscore the importance of an efficient iron acquisition sys-
tem for the pathogenesis of bacterial infection.

Nucleotide sequence accession number. The sequence of
fbpABC described in the report is listed in GenBank under the
accession number U33937.
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