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Abstract

Background: Numerous electrophysiological, ultrastructural, and immunocytochemical studies
on rodent taste buds have been carried out on rat taste buds. In recent years, however, the mouse
has become the species of choice for molecular and other studies on sensory transduction in taste
buds. Do rat and mouse taste buds have the same cell types, sensory transduction markers and
synaptic proteins? In the present study we have used antisera directed against PLCP32, o-gustducin,
serotonin (5-HT), PGP 9.5 and synaptobrevin-2 to determine the percentages of taste cells
expressing these markers in taste buds in both rodent species. We also determined the numbers
of taste cells in the taste buds as well as taste bud volume.

Results: There are significant differences (p < 0.05) between mouse and rat taste buds in the
percentages of taste cells displaying immunoreactivity for all five markers. Rat taste buds display
significantly more immunoreactivity than mice for PLCP2 (31.8% vs 19.6%), o-gustducin (18% vs
14.6%), and synaptobrevin-2 (31.2% vs 26.3%). Mice, however, have more cells that display
immunoreactivity to 5-HT (15.9% vs 13.7%) and PGP 9.5 (14.3% vs 9.4%). Mouse taste buds contain
an average of 85.8 taste cells vs 68.4 taste cells in rat taste buds. The average volume of a mouse
taste bud (42,000 um3) is smaller than a rat taste bud (64,200 m3). The numerical density of taste
cells in mouse circumvallate taste buds (2.1 cells/1000 um?3) is significantly higher than that in the
rat (1.2 cells/1000 um3).

Conclusion: These results suggest that rats and mice differ significantly in the percentages of taste
cells expressing signaling molecules. We speculate that these observed dissimilarities may reflect
differences in their gustatory processing.

Background fied into types I, II, III, peripheral and basal cells [1-12].
Mammalian taste buds are onion-shaped structures spe-  TypeI cells in rodents are slender and possess an electron-
cialized for the detection of aqueous stimuli. Based on  dense cytoplasm and several long, apical microvilli
morphological criteria, rodent taste cells have been classi-  extending into the oral cavity. A distinguishing feature of
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a type I cell is the presence of many 100-400 nm dense
granules in the apical cytoplasm. Type II cells are charac-
terized by the presence of an electron-lucent cytoplasm
and large circular or ovoid nuclei. Type II cells possess sev-
eral short microvilli of uniform length extending into the
taste pore. Type III cells are slender and exhibit morphol-
ogy and cytoplasmic electron density intermediate
between type I and type II cells. The nuclei of type III cells
are slender and possess prominent invaginations. Two
distinguishing features of type III cells are the single blunt
microvillus that extends into the taste pore and the pres-
ence of synapses onto nerve processes [11,13,14].

Only recently are the functional differences of the cell
types becoming understood. Still, it is not clear which
taste cell types are the receptors. Based on the presence of
synaptic foci, it was believed that type III cells were the
only taste bud receptor cells [15-18]. Evidence that type II
cells are associated with transduction molecules, however,
suggested a sensory for this cell type. For example, some
type II taste cells express the taste signaling molecules o~
gustducin, PLCB2, and the type III IP, receptor (IP;R3) in
rat circumvallate taste buds [19-22]. It is significant, how-
ever, that type II taste cells apparently lack classical syn-
apses. Likewise, some type III taste cells display
immunoreactivity to serotonin (5-HT) in rat and mouse
circumvallate taste buds [23], neural cell adhesion mole-
cule (NCAM) [24], and synaptosome-associated protein
of 25 kDa (SNAP-25) in rat circumvallate taste buds [13].
Immunoreactivity to ubiquitin carboxyl terminase (pro-
tein gene product 9.5, [PGP 9.5]) [11] and the synapto-
brevin-2 (vesicle associated membrane protein-2, VAMP-
2) [14] are both found in type II and III taste cells in rat
circumvallate taste buds. A small percentage (3.5%) of
PLCPB2 or IP;R3 immunoreactive cells also display 5-HT-
LIR. It is believed that PLCPB2 or IP;R3 is also present in a
small subset of type III cells in rat circumvallate taste buds
[21]. Quantitation studies have demonstrated that
approximately 24% of the taste cells in rat circumvallate
papillae display o-gustducin-LIR [25], whereas another
study showed that o-gustducin is present in 33% of taste
cells in mouse circumvallate papillae [26]. PGP 9.5 is
present approximately in 14.6% of the taste cells in rat cir-
cumvallate taste buds [25] and 23% of taste cells in mouse
circumvallate taste buds [26]. Based on these preliminary
data, it is likely that there are differences in cell type labe-
ling between rats and mice.

Many of the electrophysiological, ultrastructural, and
immunocytochemical studies on rodent taste buds have
been carried out on rat taste buds. In recent years, how-
ever, the mouse has become the species of choice for
molecular and other studies on sensory transduction in
taste buds. Do rat and mouse taste buds have the same cell
types, sensory transduction markers and synaptic pro-
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teins? Recent research indicates that there are differences
in electrophysiological properties, expression of markers
and innervation between rat and mouse taste buds [27-
30]. The acid-sensing ion channel-2 (ASIC-2) is widely
believed to be a receptor for acid taste in rat taste cells,
however, ASIC-2 is not expressed in mouse taste cells and
ASIC-2 knock-out mice exhibited normal physiological
responses to acid taste stimuli [28]. ASIC-2 is an acid taste
receptor in rat taste cells, but not in mouse taste cells. Rat
and mouse taste buds are innervated differently by
peripheral taste neurons [29,30]. Three to five ganglion
cells innervate a single bud in mice while there is a more
divergent innervation of buds in the rat [29,30]

In the present study we have used antisera directed against
PLCB2, o-gustducin, 5-HT, PGP 9.5 and synaptobrevin-2
to determine the percentages of taste cells expressing these
markers in circumvallate taste buds of both rodent spe-
cies. In addition we have determined the numerical den-
sity of taste cells and taste bud volume between rat and
mouse circumvallate taste buds using serial transverse sec-
tions.

Results

Serotonin (5-HT)

Serotonin-LIR is present in a small subset of taste cells in
rodent taste buds. The animal is injected with the imme-
diate precursor, 5-HTP, according to the method of Kim
and Roper [23]. Previous studies have demonstrated that
serotonin is present in a subset of type III taste cells in rat
and mouse circumvallate taste buds [11,23]. Our results
show that a small subset of slender taste cells display sero-
tonin-like immunoreactivity (LIR) in both rat and mouse
circumvallate taste buds.

Immunoreactivity is present in both the cytoplasm and
nuclei (Fig. 1). A single taste bud profile contains approx-
imately 2.5 taste cells in rat and 2.8 taste cells in mouse
displaying serotonin immunoreactivity (Table 1). We
examined 141 taste buds from 5 rats and 221 taste buds
from 10 mice. A total of 353 immunoreactive cells were
found in the rat taste buds and 621 immunoreactive cells
in the mouse taste buds were counted. There is a signifi-
cant difference between rat (13.7%) and mouse circum-
vallate taste buds (15.9%) in the percentage of taste cells
displaying serotonin-LIR (p < 0.05) (Fig. 2).

PGP 9.5

Subsets of taste cells and nerve processes in both rat and
mouse circumvallate taste buds display PGP 9.5-LIR (Fig.
3). Three subsets of PGP 9.5-LIR nerve processes are
present: intragemmal, perigemmal and extragemmal.
Intense immunoreactivity is associated with the nerve
plexus located at the base of the taste bud. Some PGP 9.5-
LIR taste cells are slender, spindle-shaped cells with irreg-
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Figure |

Confocal laser scanning microscopy (CLSM) images of 5-HT-LIR (5-HT) in taste buds of rat and mouse circumvallate papillae.
Longitudinal sections show a small subset of taste cells displaying 5-HT-LIR in rat (A) and mouse taste buds (B). Both cytoplasm
and nuclei of taste cells display 5-HT-LIR. Transverse sections show 5-HT-LIR in rat (C-E) and mouse taste buds (F-H). The red
cells are immunoreactive taste cells (C and F). Sytox-stained nuclei are shown in green (D and G), which stain all cells. Merges
of red and green images are shown in E and H. Scale bars =20 um.

ular nuclei, while others have large ovoid to round nuclei.  in the mouse (Table 1). There is a significant difference (p
Whereas each taste bud profile in the rat contains approx- < 0.001) in the percentages of PGP 9.5 immunoreactive
imately 1.7 PGP 9.5-LIR taste cells, approximately 3 taste  taste cells between rat and mouse circumvallate taste
cells per taste bud profile are immunoreactive for PGP 9.5  buds. Approximately 14.3% of the taste cells in the mouse
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Figure 2

Quantitation of taste cells displaying different immunoreac-
tivity to markers in rat and mouse circumvallate taste buds.
Values represent the mean percentages of immunoreactive

taste cells + SEM. *, p < 0.05; **, p < 0.0l. 0-Gust, o-gust-
ducin; VAMP-2, synaptobrevin-2.

display PGP 9.5-LIR, while only 9.4% taste cells in the rat
exhibit PGP 9.5-LIR (Fig. 2).

o~gustducin

a-gustducin is a G protein believed to be involved in the
transduction pathways for bitter and sweet taste [31-34].
o-gustducin may also play a role in umami taste [35,36].
o-gustducin is present in a subset of type II cells [19]. Our
results show that a subset of taste cells express o-gust-
ducin-LIR in both mouse and rat circumvallate taste buds.
The o-gustducin-LIR taste cells are spindle-shaped with
large, round nuclei. Immunoreactivity is cytoplasmic; no
immunoreactivity is associated with the nuclei.

o-gustducin immunoreactive cells extend from the basal
lamina to the taste pore (Fig. 4). We analyzed 197 taste
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buds from five rats and 181 taste buds from ten mice.
Cells were scored as immunoreactive only if the cellular
profile contained a nuclear profile. We observed 635
immunoreactive taste cells in the rat and 482 immunore-
active taste cells in mouse taste buds (Table 1). Approxi-
mately 18% of the taste cells in rat taste buds and 14.6%
of taste cells in mouse taste buds displayed o-gustducin-
LIR. The numbers of o-gustducin-LIR immunoreactive
taste cells in the rat were significantly different from those
in the mouse (p < 0.01) (Fig. 2).

PLC/2

Phospholipase CB2 (PLCB2) is thought to be essential for
the transduction of bitter, sweet, and umami stimuli [37].
A large subset of taste cells in both rat and mouse circum-
vallate taste buds display PLCB2-LIR. The immunoreactive
cells are spindle-shaped with round nuclei resembling
type Il taste cells (Fig. 5). We counted 935 PLCB2-LIR cells
from 152 rat taste buds and 666 PLCB2-LIR cells from 163
mouse taste buds. Whereas 31.8% of rat circumvallate
taste cells display PLCB2-LIR, only 19.6% of the mouse
circumvallate taste cells display PLCB2-LIR. Thus, rat taste
buds contain higher percentages of PLC2-LIR cells than
mouse taste buds (p < 0.001) (Fig. 2).

Synaptobrevin-2

Synaptobrevin-2 (VAMP-2) is a synaptic vesicle mem-
brane protein that plays an important role in the exocyto-
sis of neurotransmitter release at the synapse [38-40].
Previous studies have shown that synaptobrevin-2-LIR is
present subsets of both type II and type III taste cells in rat
taste buds [14]. Synaptobrevin-2 is present in a large sub-
set of taste cells and nerve processes in both rat and mouse
circumvallate taste buds (Fig. 6). Approximately 35% of
the cells in taste buds from rat circumvallate papillae dis-
play synaptobrevin-2-LIR [14]. Most of the immunoreac-
tive taste cells are spindle shaped with circular to ovoid
nuclei. A smaller subset of synaptobrevin-2-LIR taste cells
possessed cells that are slender in shape. We examined a
total 152 taste buds from five rats and 241 taste buds from

Table I: Quantitation of immunoreactive cells in rat and mouse circumvallate taste buds

Antibodies Animals No.of TBP No.of TCs TCs/TBP (Mean t SD) No. of LIR-TCs LIR-TCs/TBP (Mean £ SD)
5-HT 5 rats 141 2681 19.0 £ 6.5 353 2515

10 mice 221 4019 182+ 6.1 621 28+ 1.6
PGP 9.5 5 rats 144 2617 182 £59 240 1.7+1.2

10 mice 146 3449 236+ 638 437 3015
o-gustducin 5 rats 197 3757 19.1 6.9 635 3615

10 mice 181 3619 200+ 7.0 482 2715
PLCB2 5 rats 152 2935 193+£73 935 6.2 £ 3.1

10 mice 163 3549 21.8+82 666 4.1 +2.1
VAMP-2 5 rats I51 2910 193+ 6.6 870 58+22

10 mice 24| 5063 21.0+70 1290 54+24
TCs = Taste cell, LIR-TCs = Immunoreactive taste cells, TBP = Taste bud profile.
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Figure 3

Confocal laser scanning microscopy (CLSM) images of PGP 9.5-LIR (PGP 9.5) in taste buds of rat and mouse circumvallate
papillae. Longitudinal sections show a small subset of taste cells and nerve processes expressing PGP 9.5 in rat (A) and mouse
taste buds (B). Both cytoplasm and nuclei of taste cells display PGP 9.5-LIR. Transverse sections show PGP 9.5-LIR in rat (C-E)
and mouse taste buds (F-H). Immunoreactive taste cells and nerve processes are shown in C and F. Sytox-stained nuclei are
shown in D and G and merges are shown in E and H. Scale bars = 20 um.
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Figure 4

Confocal laser scanning microscopy (CLSM) images of a-gustducin-LIR (a-gustducin) in taste buds of rat and mouse circumval-
late papillae. Longitudinal sections show a subset of taste cells displaying o-gustducin-LIR in rat (A) and mouse taste buds (B).
The o-gustducin-LIR taste cells are spindle-shaped with large, round nuclei. Transverse sections show o-gustducin-LIR in rat
(C-E) and mouse taste buds (F-H). The immunoreactivity is only cytoplasmic in both transverse and longitudinal sections.
Immunoreactive taste cells (red) are shown in C and F. Sytox-stained nuclei (green) are shown in D and G and merges are
shown in E and H. Scale bars =20 um.

ten mice. We found 870 taste cells displaying synaptobre-  late taste buds (Table 1). There is a significantly higher
vin-2-LIR in rat circumvallate taste buds, and 1290 taste ~ percentage of taste cells displaying immunoreactivity to
cells displaying synaptobrevin-2-LIR in mouse circumval-
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Rat PLCB2 A B Mouse PLCB2
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Figure 5

Confocal laser scanning microscopy (CLSM) images of PLCB2-LIR (PLCP2) in taste buds of rat or mouse circumvallate papillae.
Longitudinal sections show a large subset of taste cells expressing PLCB2 in rat (A) and mouse taste buds (B). The PLC32-LIR
taste cells are spindle-shaped with large, round nuclei. Transverse sections show PLCB2-LIR in rat (C-E) and mouse taste buds
(F-H). The immunoreactivity is restricted to the cytoplasm in both transverse and longitudinal sections. Immunoreactive taste
cells (red) are shown in C and F. Sytox-stained nuclei (green) are shown in D and G and merges are shown in E and H. Scale
bars =20 um.

synaptobrevin-2 in rat circumvallate taste buds versus = Numerical density of taste cells
mouse taste buds (31.2% vs 26.3%) (Fig. 2). Forty-one taste buds from 3 mice and 42 taste buds from
3 rats were analyzed (Table 2). Mouse taste buds contain
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Figure 6

Confocal laser scanning microscopy (CLSM) images of synaptobrevin-2-LIR (VAMP-2) in taste buds of rat or mouse circumval-
late papillae. Longitudinal sections show a large subset of taste cells and nerve processes displaying synaptobrevin-2-LIR in rat
(A) and mouse taste buds (B). Transverse sections show synaptobrevin-2-LIR in rat (C-E) and mouse taste buds (F-H). The red
are immunoreactive taste cells and nerve processes (C and F). Immunoreactivity is restricted to the cytoplasm (red) in both
transverse and longitudinal sections. Sytox-stained nuclei (green) are shown in D and G and merges are shown in E and H.
Scale bars =20 um.

an average of 85.8 taste cells (Mean + SD: 85.8 + 33.9) vs  in the mouse and 34 to 126 in the rat. Although the aver-
68.4 taste cells (Mean + SD: 68.4 + 20.7) in rat taste buds. ~ age mouse taste bud contains more taste cells than a rat
The numbers of cells per taste bud ranged from 32 to 152  taste bud, the average volume of a mouse taste bud
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(42,000 pm3) is smaller than a rat taste bud (64,200
ums3). The numerical density of taste cells in mouse cir-
cumvallate taste buds (2.1 cells/1000 um3) is significantly
higher than that in the rat (1.2 cells/1000 um3)(Table 2).

Discussion

In the present study we have demonstrated that significant
differences exist between rats and mice with regard to the
presence of signaling molecules and taste bud cell mark-
ers. Using unbiased systematic sampling and immunocy-
tochemistry we have quantified the presence of signaling
molecules/taste cell markers including serotonin, PGP
9.5, a-gustducin, phospholipase C B2 (PLCB2) and syn-
aptobrevin-2. Our results indicate that there are signifi-
cant differences (p < 0.05) between mouse and rat taste
buds in the percentages of taste cells displaying immuno-
reactivity (IR) for all five markers. Higher percentages of
rat taste bud cells exhibit immunoreactivity to o-gust-
ducin, PLCB2 and synaptobrevin-2 compared with the
mouse. Mouse taste buds however, contain higher per-
centages of taste cells displaying serotonin- and PGP 9.5-
LIR.

Serotonin

Serotonin is a putative neurotransmitter or neuromodula-
tor candidate in the taste bud [41,42]. Previous studies
have suggested that serotonin is present in type III taste
cells in rat, rabbit, and mouse taste buds [23,43,44]. Yee
etal. [11] proposed that the type III cells in rat circumval-
late taste buds are two of varieties: those immunoreactive
for serotonin and those immunoreactive for PGP 9.5.
Taste bud synapses in rat circumvallate taste buds are only
associated with the type III cells [11,13,14]. Our quantita-
tion results indicate there is a significant difference (p <
0.05) in the percentages of taste cells displaying serot-
onin-LIR between mouse and rat circumvallate taste buds:
15.9% of mouse taste cells contain serotonin compared
with 13.7% of rat taste bud cells. Based on previous work
from our laboratory, we believe that serotonin-LIR colo-
calizes with SNAP-25-LIR in taste cells of rat taste buds
[45].

http://www.biomedcentral.com/1471-2202/8/5

PGP 9.5

PGP (protein gene product) 9.5 is a neuronal marker that
has also been found in certain types of paraneurons
[46,47]. PGP 9.5-LIR has been identified in taste buds of
the rat [48,49]. Previously we found PGP 9.5-LIR in sub-
sets of both type II and type III cells in circumvallate taste
buds of the rat [11]. We also observed synapses onto nerve
processes from PGP 9.5-LIR type III taste cells. Whereas
one subset of type III cells in the rat accumulate serotonin
but do not express PGP 9.5, the remainder of the type III
cells express PGP 9.5 but do not accumulate serotonin.
Similarly, two subsets of type II cells exist: those immuno-
reactive for PGP 9.5 and those immunoreactive for a-gust-
ducin. Our results indicate that 14.3% of taste cells
express PGP 9.5 in mouse, while 9.4% display PGP 9.5-
LIR in rat. Thus, the PGP 9.5-LIR subsets of type II and
type III cells may constitute small percentages of those cell
types. It would be of benefit for future studies to elucidate
the percentages of these subsets of type Il and type III cells.

o~gustducin and PLC/52

o-gustducin and PLCB2 are believed to participate in bit-
ter, sweet and umami taste transduction [34-37]. a-gust-
ducin knockout mice show markedly reduced behavioral
and electrophysiological responses to both bitter and
sweet compounds [31]. We have demonstrated that all o-
gustducin immunoreactive cells and most PLCB2-immu-
noreactive taste cells are type II taste cells. A small percent-
age (3.5%) of PLCB2-immunoreactive taste cells appear to
be type III cells [19,21]. Virtually all o-gustducin-LIR taste
cells display PLCB2-LIR, while only a subset of PLCB2-
immunoreactive taste cells display a-gustducin-LIR
[20,22]. The percentages of a-gustducin- and PLCB2-LIR
taste cells in rat circumvallate taste buds (18% and 31.8%
respectively) are higher than those in mouse (14.6% and
19.6%).

Synaptobrevin-2

Synaptobrevin-2 is a vesicle-associated membrane pro-
tein. Previous results from our laboratory indicate that
synaptobrevin-2 is present in a subset of type II and type
III cells. Our data suggest that taste cells with synapses

Table 2: Numerical density of taste cells in rat and mouse circumvallate papillae taste buds

Animals No. of TB Cell No./TB (Mean * SD) TB Volume (x1000 im?3) (Mean * SD) Density(N/1000 um3) (Mean % SD)

Mouse 1# 13 69.2 £23.5
2# 15 105.3 + 32.3

3# 13 79.8 £354

Sum 41 85.8 £ 33.9

Rat |# 10 59.1 £16.5
2% 15 70.1 £ 16.9

3# 17 724 %248

Sum 42 68.4 £ 20.7%

305+ 105 2.28 £ 0.25
527 £ 185 2.03+0.16
41.3+19.8 1.98 + 0.26
42.0£ 18.9 2.10£0.26
349+ 122 1.78 £ 0.38
66.5 + 19.2 1.10 £ 0.26
79.5 + 388 0.98 + 0.26
64.2 + 32.5*% 1.20 £ 0.42*

*t-Test, p < 0.05, showing significant difference compared with the results of mice. TB = Taste Bud.
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express synaptobrevin-2 [14]. In rat circumvallate taste
buds, a large subset of synaptobrevin-2-LIR cells (73%)
also express IP;R3 [14]. Most all IP;R3 immunoreactive
cells have been shown to be type II cells [21]. In the
present study we have found that a greater percentage of
rat taste cells display immunoreactivity for synaptobrevin-
2 versus the mouse (31.2% vs 26.3%). Likewise, rats have
a larger percentage of taste cells expressing o-gustducin
and PLCP2. These findings suggest that proportionally
there are more type II cells in rat circumvallate papillae
taste buds when compared with mouse. Although type Il
taste cells lack classical synapses, we do find that the type
II taste cells contain some vesicles in the cytoplasm. The
function of synaptobrevin-2 in type II taste cells is unclear,
however, it suggests that synaptobrevin-2 may play a role
in vesicle protein transportation, perhaps in the Golgi
apparatus.

Several investigators have used different immunohisto-
chemical methods to quantify taste cells displaying o-
gustducin or PGP 9.5 in rodent animals. Ueda et al. [25]
used the avidin-biotin-horseradish peroxidase (ABC)
method and concluded that approximately 24.2% of rat
circumvallate papillae taste bud cells display o-gustducin-
LIR and 14.6% display PGP 9.5-LIR. The results in that
study were based on 320 taste cells in 20 taste buds. This
contrasts with our results from the rat (co-gustducin, 18%;
PGP 9.5, 9.4%). This disparity may be due to: 1) The
number of taste buds we sampled (a-gustducin: 197 taste
buds; PGP 9.5: 144 taste buds in the present study versus
approximately 20 taste buds by Ueda et al. [25]); 2) Our
use of unbiased sampling; 3) Specimen preparation tech-
niques, e.g., the use of different fixatives; 4) Immunocyto-
chemical imaging methods e.g, ABC method vs
immunofluorescence. Smith et al. [50] reported that rat
circumvallate taste buds have a mean of 8.37 a-gustducin-
LIR cells per taste bud. Takeda et al. [26] found o-gust-
ducin-LIR in 33% and PGP 9.5-LIR in 23% of mouse cir-
cumvallate taste bud cells. We account for the difference
in our results for the following reasons: 1) We used unbi-
ased systematic sampling in our study; 2) We analyzed
over 140 taste buds for each antibody; 3) In our study,
taste cells were counted as immunoreactive only when a
nuclear profile was present; 4) We counted immunoreac-
tive taste cells using transverse sections versus longitudi-
nal sections. In the transverse sections, there is no
overlapping in taste cells, the immunoreactive taste cell
profiles are obvious, and nuclei are easier to count. Takeda
etal. [26] used polyclonal PGP 9.5 antibody in their study
while we used a monoclonal PGP 9.5 antibody. However,
our experience with polyclonal PGP 9.5 (Code No. 7863-
0507, Biogenesis) is that it completely colocalizes in taste
cells and nerve processes with monoclonal PGP 9.5 anti-
body (Code No. 7863-1004, Biogenesis). Finally, we con-
clude that a higher percentage of rat taste cells express o-
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gustducin (18%) than in the mouse (14.6%); while a
smaller percentage of rat taste cells express PGP 9.5
(9.4%) versus the mouse (14.3%).

Numerical density and size of taste buds

It is generally accepted that a rodent taste bud contains 50
- 150 taste cells. We were curious to determine if there are
differences in the numbers of cells in circumvallate taste
buds between the rat and mouse. Our results clearly dem-
onstrate that mouse taste buds are smaller in volume, but
contain a larger number of smaller taste cells when com-
pared with rat.

Conclusion

We have provided evidence that the rat and mouse differ
in the percentages of taste cells expressing each of five
taste signaling molecules: serotonin, PGP 9.5, a-gust-
ducin, PLCB2 and synaptobrevin-2. These results, taken
together with the differences taste cell size and numbers,
suggest that rats and mice may possess different sensitivi-
ties to gustatory stimuli.

Methods

Adult Sprague-Dawley male rats (250-350 g, 45 days) and
CF-1 male mice (25-30 g 49 days) purchased from
Charles River were used for these studies. Animals were
cared for and housed in facilities approved by the Institu-
tional Animal Care and Use Committee of the University
of Denver. For studies involving serotonin, animals were
injected with 5-hydroxytryptophan (5-HTP, 80 mg/kg,
i.p.) one hour before sacrifice. All animals were anesthe-
tized with ketamine HCI about 270 mg/kg body weight
for rats and 370 mg/kg body weight (i.p.) for mice. Ani-
mals were perfused for 10 seconds through the left ventri-
cle with 0.1% sodium nitrite, 0.9% sodium chloride and
100 units sodium heparin in 100 ml 0.1 M phosphate
buffer (pH 7.3). This was followed by perfusion with 4%
paraformaldehyde in 0.1 M phosphate buffer for 10 min-
utes [51]. All perfusates were warmed to 42 °C before use.
After perfusion the excised circumvallate papillae were
fixed in fresh fixative for 3 hours at 4°C. The tissues were
cryoprotected with 30% sucrose in 0.1 M phosphate
buffer overnight at 4°C.

Unbiased systematic sampling method

Five adult Sprague-Dawley male rats and ten CF-1 male
mice were perfused as for immunohistochemistry. Serial
transverse sections (20 pm thickness) were cut from the
tissues containing circumvallate taste buds using a cryo-
stat (HM 505E, MICRON, Laborgerdte GmbH, Germany).
In order to obtain a systematic sample without bias
throughout the papilla, each papilla was exhaustively sec-
tioned. The serial sections were placed sequentially into
individual wells in a 36-well culture dish. Every fifth sec-
tion was saved starting with section 1, 2, 3, 4, or 5. The
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beginning section number was determined using a new
random number for each rat (e.g., sections 3, 8, 13, 18,
and 23). Assuming that a taste bud is 80-100 um in
length, sampling every fifth section will assure that no two
sections will be from the same taste bud. Each group of
sections contains 25-30 sections from five rat circumval-
late papillae. For the sections from the mouse circumval-
late papilla, every third section was saved using the
sampling method described above.

Immunofluorescence and nuclear staining

Cryostat sections were blocked in 5% normal goat serum
and 0.3% Triton X-100 in 0.1 M phosphate buffered
saline (PBS) (pH 7.3) for one hour at room temperature,
followed by incubation in a primary antibody (Table 3) in
0.1 M PBS (pH 7.3) overnight at 4°C. After washing, the
sections were exposed to affinity-purified secondary anti-
body Cy5 conjugated to goat anti-rabbit IgG (diluted to
1:200, cat no. 111-175-144, Jackson Lab) in 0.1 M PBS
(pH 7.3) for one hour at room temperature. In order to
image the nuclei the sections were stained using Sytox
green nucleic acid stain (S-7020, Molecular Probes,
Eugene, OR)

Controls

Primary antibodies were excluded from the processing to
check for cross-reactivity. No immunoreactivity was
observed under these conditions.

Quantification of immunoreactive taste cells

Confocal images were collected using a Zeiss Axioplan I1
with an Apotome attachment (Carl Zeiss Advanced Imag-
ing Microscopy, Germany). Approximately 140-200 rat
taste buds and 150-240 mouse taste buds per group were
analyzed. Cells were scored as immunoreactive only if a
nuclear profile was present in the cell. The total number of
cells in the slice was determined by counting the number
of Sytox stained nuclei for each taste bud. Finally, the per-
centage of immunoreactive taste cells was calculated by
dividing the number of immunoreactive taste cells by the
total number of the taste cells in each taste bud.

Table 3: Primary antibodies

http://www.biomedcentral.com/1471-2202/8/5

Determination of numerical density of taste cells in rat and
mouse taste buds

After perfusion, the excised circumvallate papillae were
fixed with fresh fixative for 3 hours at 4°C. The tissues
were then postfixed and stained for two hours in 1%
osmium tetroxide (OsO,) in 0.1 M PO, buffer followed by
a rinse in 0.05 M sodium maleate buffer (pH 5.2). The
blocks were then stained en bloc in 1% uranyl acetate in
0.025 M sodium maleate buffer (pH 6.0) overnight at
4°C, followed by dehydration and embedding in Eponate
12. The blocks were the re-embedded using the technique
of Crowley and Kinnamon [52].

Serial thin sections (1 pm) were cut with a Diatome Histo-
Jumbo Knife using a Leica Ultracut UCT Ultramicrotome.
Typically a ribbon of about 20 sections was collected onto
a glass slide. After drying on a hot plate the sections were
stained with toluidine blue for 5 minutes. Images of taste
buds were recorded using a Zeiss Axioplan II with an
Apotome attachment. The images of taste buds were col-
lected from every other section. Using Adobe Photoshop
we compared every two adjacent images and identified
the number of newly occurring taste cell nuclei. The
number of taste cells in a taste bud was the sum of newly
occurring taste cell nuclei that appeared in every other
image in the series.

The volume of a taste bud was calculated according to fol-
lowing formula: Volume (um?3) =%, (37.2 x 2 x C,) (C:
number of crosses on taste bud image; n: image number;
2: the thickness is 2 um between two adjacent images). We
superimposed an image of grids (20 x 20 grids, 1 cm/grid)
over the image of a taste bud profile and counted the
number of crosses within a taste bud profile. Each cross
represents an area of 37.2 um?2. Every taste bud area was
multiplied by the thickness between two adjacent sections
and summed to determine the volume of the section. The
volumes of all of the sections were summed to obtain the
volume of the taste bud.

Numerical density of taste cells in a taste bud was calcu-
lated by dividing the number of taste cells by the volume
of the taste bud.

Antibodies Species Dilution Source Cat No.
Serotonin Rabbit 1:100 ImmunoStar 20080
PGP 9.5 Rabbit 1:200 Biogenesis 7863-0507
a-gustducin Rabbit 1:200 Santa Cruz sc-395
PLCB2, Rabbit 1:200 Santa Cruz sc-206
Synaptobrevin-2 Rabbit 1:100 Wako 018-15791
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Statistical analysis

Statistical analysis for the percentages of immunoreactive
taste cells in Figure 2 and the numerical density of taste
cells in Table 2 were performed using the Student t-test.
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