
Evaluation of Elastic Properties of Atomistic DNA Models

Alexey K. Mazur
Centre National de la Recherche Scientifique, UPR9080, Institut de Biologie Physico-Chimique, Paris, France

ABSTRACT A number of intriguing aspects in dynamics of double-helical DNA is related to the coupling between its macroscopic
and microscopic states. A link between the elastic properties of long DNA chains and their atom-level dynamics can be established
by comparing the worm-like chain model of polymer DNA with the conformational ensembles produced by molecular dynamics
simulations. This problem is complicated by the complexity of the DNA structure, the small size of DNA fragments, and relatively
short trajectory durations accessible in computer simulations of microscopic DNA dynamics. A careful study of all these aspects
has been performed by using longer DNA fragments and increased durations of MD trajectories as compared to earlier such
investigations. Special attention is paid to the necessary conditions and criteria of time convergence, and the possibility to increase
the sampling by using constrained DNA models and simplified simulation conditions. It is found that dynamics of 25-mer duplexes
with regular sequences agrees well with the worm-like chain theory and that accurate evaluation of DNA elastic parameters
requires at least two turns of the double helix and ;20-ns duration of trajectories. Bond length and bond-angle constraints affect the
estimates within numerical errors. In contrast, simplified treatment of solvation can strongly change the observed elastic
parameters of DNA. The elastic parameters evaluated for AT- and GC-alternating duplexes reasonably agree with experimental
data and suggest that, in different basepair sequences, the torsional and stretching elasticities vary stronger than the bending
stiffness.

INTRODUCTION

The flexibility and internal dynamics of DNA are known to

play an important role in its biological function. Biologically

relevant dynamics of DNA spans a broad range of length

scales starting from a subnanometer level of single basepairs

and continues to macroscopic lengths where the double helix

can be considered as a continuous flexible rod. All these

motions are evidently coupled. For instance, the macroscopic

elastic properties of DNA depend upon the basepair se-

quence, while external torsional stress applied to long chains

affects the local rates of basepair opening. The correspond-

ing molecular mechanisms are only partially understood and

disclosing them represents a challenging task.

Long DNA double-helix behaves as a continuous elastic

rod with harmonic bending, torsional, and stretching defor-

mability. Its equilibrium shape is described by the worm-like

chain (WLC) model (1,2), whereas the torsional and stretch-

ing fluctuations can be treated with the standard formalism

of the classical statistical mechanics. This model accurately

describes experimental data by using only a few adjustable

parameters, which have been measured since the 1960s with

progressively improved accuracy (3). More recently, single

molecule nanomanipulations (4–10) became the major

source of information on the DNA elasticity, and the WLC

theory is successfully used for extracting information from

such data (11–18). The validity of the WLC description of

long DNA is corroborated by the success of Monte Carlo

simulations of the WLC model with experimentally mea-

sured parameters. In many cases, such simulations demon-

strated remarkable agreement with experiment and made

predictions confirmed later (19–22).

Owing to important methodological advances made ap-

proximately 10 years ago (23–25), the local atom-level DNA

properties are now reasonably well reproduced in classical

molecular dynamics (MD) simulations of small duplexes in

explicit aqueous environment (26,27). MD simulations are

based upon empirical force fields that are parameterized

by using experimental data for small molecules as well as

quantum mechanics calculations (26,28). The experimental

information about DNA elasticity is not used for parameter-

ization; therefore, comparison of atom-level MD models

with the WLC theory present significant fundamental in-

terest. To establish this link between the microscopic MD

and the WLC theory, we need to extract the effective WLC

parameters from atom motions in short DNA fragments

observed during relatively short times. This problem is not

simple, because the DNA structure is complex, the duration

of MD trajectories is limited by computer resources, and

because we cannot exclude that the WLC theory works well

for DNA only starting from prohibitively long fragments.

The first attempt to evaluate the elastic parameters of DNA

from atom-level data was made by Olson et al. (29), who

studied statistics of fluctuations in x-ray DNA structures

assuming that the perturbations due to the crystal environ-

ment and proteins bound to DNA are equivalent to the heat

bath effect. MD simulations of DNA were first analyzed

from the same perspective by Bruant et al. (30), and later by

Lankas et al. (31), who specifically targeted the sequence-

dependent DNA elasticity. The obtained estimates of the

WLC parameters reasonably agreed with other data. These
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studies, however, did not consider important issues con-

cerning the overall agreement of DNA dynamics with the

WLC theory, statistical convergence, and the accuracy of the

final estimates. These aspects are crucial for probing rel-

atively small modulations of DNA elasticity, for instance,

due to small external stress. Here we study in detail the

problems involved in the interpretation of MD trajectories of

DNA in terms of the WLC theory by using longer DNA

fragments and increased durations of MD trajectories. Spe-

cial attention is paid to the necessary conditions and criteria

of time convergence, and the possibility to increase the

sampling by using constrained DNA models and simplified

simulation conditions. It is found that dynamics of 25-mer

duplexes with regular sequences agrees well with the WLC

theory and that accurate evaluation of DNA elastic param-

eters requires at least two turns of the double helix and

;20-ns duration of trajectories. Bond length and bond-angle

constraints affect the estimates within numerical errors. In

contrast, simplified treatment of solvation can strongly

change the observed elastic parameters of DNA. The elastic

parameters evaluated for AT- and GC-alternating duplexes

suggest that, in different basepair sequences, the torsional and

stretching elasticities vary stronger than the bending stiffness.

THEORETICAL BACKGROUND AND METHODS

The persistence lengths of the WLC model

The persistence length (PL) is a convenient measure of statistical flexibility

of polymer chains that can be estimated experimentally. The advantage of

the WLC model is that all its properties, including the local ones, are fully

determined by the bending, torsional, and stretching PLs, which gives

a theoretical possibility of evaluating the DNA elasticity from the MD of

relatively short chains.

The standard definition of the bending PL is as follows. Consider a chain

fragment of the contour length L placed in a thermal bath. We connect the

two chain-ends by a vector and compute its projection upon the local chain

direction measured at its origin. The Boltzmann average of this projection

characterizes the internal molecular flexibility. The bending PL is defined as

the limit of this projection with L / N.

We assume that the polymer can be approximated by a continuous

flexible rod and try to compute its bending PL from local elastic properties.

Statistical mechanics of flexible rods was first analyzed by Bresler and

Frenkel in the 1930th (2). For an isotropic rod of length L, its bending energy

in the first approximation is

Fu

kT
¼ 1

2

Z L

0

A
du

dl

� �2
" #

dl; (1)

where u(l) is the bend angle of fragment (0, l) and A is a constant. The

Boltzmann average of the bending angle Æcosuæ is computed by using the

general theory of fluctuations (2)

Æcosuæ ¼ exp �L

A

� �
; (2)

and it follows that

bending PL ¼
Z N

0

exp �L

A

� �
dL ¼ A: (3)

Equation 2 can be rewritten in a linear form suitable for data processing

DaðLÞ ¼ �lnðÆcosuæÞ ¼ L

Aa

: (4)

The Da values estimated for DNA fragments of increasing lengths should

grow linearly and the rate of this growth gives an estimate of the bending PL.

Several similar functions will be introduced below and, for convenience,

they are all referred to as ‘‘deviations.’’ Subscript a indicates that Da and Aa

are obtained from average bend angles.

The WLC bending PL can be also estimated from the average end-to-end

distance. Vector R joining the chain-ends is

R ¼
Z L

0

tðlÞdl; (5)

where t(l) is a unit tangential vector. The average square distance ÆR2æ
is obtained by straightforward integration using Eq. 5 together with Eq. 2,

which gives (2)

ÆR2æ ¼ 2A2 L

A
� 1 1 e�L=A

� �
: (6)

For DNA fragments used in MD, we always have L� A, therefore Eq. 6

is approximated as

ÆR2æ ¼ L
2

1� L

3A

� �
; (7)

which gives a linear relationship similar to Eq. 4,

DrðLÞ ¼ 3 1� ÆR2æ
L

2

� �
¼ L

Ar

: (8)

The Dr value can be computed from MD trajectories and used for

evaluating Ar.

If the DNA molecule behaves as an elastic rod, the values of Aa and Ar

must be equal. Even though Eqs. 4 and 8 are not independent, comparison of

Aa and Ar appears useful in practice. A serious difficulty inherent in this type

of computation is in the unknown rate of convergence. Both Æcosuæ and ÆR2æ
are positive and there is no other parameter that would have a standard

limiting value. Therefore, it is not easy to judge how complete the sampling

is at a given stage of simulation. In the course of MD, the values of Aa and Ar

can approach the same limiting value differently. For instance, local bending

dynamics may be fast with respect to translational motion of the chain ends.

In this case the rapid bending dynamics should be dominated by correlated

fluctuations that leave the chain-ends fixed. As a result, Aa and Ar measured

for finite trajectories may differ significantly. Comparison of Aa and Ar pro-

vides a valuable additional check of convergence and consistency of the

data. Moreover, it is desirable to select a procedure that allows obtaining

accurate estimates from possibly short MD trajectories. From this prospect,

an appealing possibility for testing resides in using fluctuations of R2 and

cosu rather than their averages. Here, we test this idea for cosu. Its standard

deviation Dcosu is

Dcosu ¼ sqrtðÆcos
2
uæ� Æcosuæ2Þ: (9)

The WLC theory does not offer an analytical relationship for Dcosu(L),

but the angle distributions obtained by MC simulations of a genuine WLC

model reasonably well agree with

DfðLÞ ¼ 2:1D
1:34

cosu
� L

Af

: (10)

For WLC chains of ;10-nm length and the bending PL of 20–60 nm, this

equation gives an estimate of the persistence length with an error ;2%.

An additional complication in the DNA bending dynamics lies in the

possibility of static curvature. Certain DNA sequences are known to induce
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stable bends and, probably, many more such sequences exist but are not

known. Moreover, static and metastable bending components are indistin-

guishable in the course of a finite MD simulation; therefore it is important to

have a monitoring procedure to check whether the DNA bending observed in

an MD trajectory contains such components. Here we apply the following

approach. A reference Cartesian frame is placed at the chain origin, with the

unit vector ez looking along the helical axis, and vectors ex and ey being

perpendicular to it. The unit vector of the helical axis at the opposite chain-

end is denoted h. For true WLC dynamics we should have Æhxæ ¼ Æhyæ ¼ 0,

and Æhzæ ¼ cosu . 0. If Æhxæ 6¼ 0, or Æhyæ 6¼ 0, the DNA fragment under

consideration is curved, on average. Let us define a unit vector h̃ with

components

h̃x ¼ Æhxæ; h̃y ¼ Æhyæ; h̃z ¼ sqrtð1� h̃
2

x � h̃
2

yÞ: (11)

Vector h̃ gives an approximate direction of a helical axis of the average

DNA conformation. Now we can measure the angle ũ between vectors h and

h̃ and compute its average cosine as

Æcosũæ ¼ Æhxæ
2
1 Æhyæ

2
1 Æhzæh̃z: (12)

Just by analogy with Eq. 4, we can write

DdðLÞ ¼ �lnðÆcosũæÞ ¼ L

Ad

(13)

and

DsðLÞ ¼ �lnðh̃zÞ ¼
L

As

: (14)

The last two equations do not have a rigorous justification. Intuitively,

one can expect that the left-hand values in Eqs. 13 and 14 both grow with L;

therefore, these formulae can be considered as first approximations of more

complex functions. Below, parameters Ad and As are referred to as dynamic

and static PL, respectively. In the course of MD of a true WLC model one

should observe that As / N and Ad / Aa; therefore, the closeness of Ad

and As to the limiting values serve as additional criteria of convergence. The

distinction between the static and dynamic PL is usually used in the

framework of the wedge theory of DNA curvature (32–34). Here, we use

the same terms in the context of dynamics of a single DNA molecule;

therefore, the above definition of As and Ad is adapted for processing MD

data. The physical meaning of As and Ad is not the same as in the wedge

theory. Notably, no simple additivity rules exist that connect As and Ad with

the total PL.

The classical WLC model can be extended to take into account

fluctuations of the overall winding angle and the chain length. To this end,

the total elastic energy is written as

F ¼ Fu 1 Fv 1 FL; (15)

Fv

kT
¼ C

2L
ðv� v0Þ2;FL ¼

Yf

2L
ðL� L0Þ2; (16)

where v(L) is the total winding angle while v0 ¼ Ævæ and L0 ¼ ÆLæ denote

minimum energy values. Parameter C in Eq. 16 is called torsional PL (by

analogy with A in Eq. 1) and Yf is Young’s stretching modulus. Equation 15

is the first approximation of the elastic energy, with the possible coupling

between bending, torsional, and stretching motions neglected. In contrast to

the bending-angle u, the winding and the length of consecutive DNA

stretches are simply additive; therefore, expressions similar to Eq. 1 for

torsional and stretching energies readily give Eq. 16. The Boltzmann

averaging of Eq. 16 gives expressions similar to Eq. 4,

DcðLÞ ¼ D
2

v
¼ L

C
; (17)

and

DbðLÞ ¼ D
2

L ¼
L

Yf=kT
; (18)

used for estimating the values of C and Yf from MD results. The stretching

PL, B, is usually defined as (15)

B ¼ Yf l0

2pkT
; (19)

where l0/2p is a scaling coefficient, with l0 ¼ 3.4 nm (the length of one

helical turn in B-DNA).

Despite the apparent similarity of Eqs. 4, 17, and 18, the bending PL is

clearly distinguished from the other two because it is determined from the

average bending angle rather than the standard deviation. This difference is

due to the nontrivial additivity of bending angles along the chain that

requires a special treatment (the WLC model), and it does not depend upon

the chain length. For instance, if both L and u are very small, the bending

energy of a flexible rod can be approximated as

Fu

kT
¼ A

2L
u

2
; (20)

and expansion of both sides of Eq. 2 gives

Æu2æ ¼ 2
L

A
: (21)

If we replace u2 on the left in Eq. 21 by Du
2 (by analogy with Eq. 17), the

bending PL A on the right must be replaced by a larger value Ã because Æuæ 6¼
0 for the WLC model. Parameter Ã also characterizes the bending rigidity,

but it can significantly differ from A even with L / 0. Therefore, evaluation

of the bending PL from standard deviations rather than averages of bending

angles is possible only by approximate empirical relationships like Eq. 10.

Construction of helical axes

To compare an ensemble of DNA conformations with the WLC model,

every DNA structure should be replaced by an oriented space line. This issue

would be unimportant if one could run MD simulations for very long double

helices, which is hardly possible even in long-term prospect. Following

earlier similar studies (30,31), we decided to employ the Curves algorithm

by Lavery and Sklenar (35) to construct the DNA helical axes and measure

bending, torsional, and stretching fluctuations. To this end, the algorithm

was reimplemented and verified against the original Curves program for

selected DNA conformations and also by processing intervals of MD

trajectories by the two implementations in parallel. The Curves algorithm

starts by constructing a local Cartesian frame at every base, with the frame

orientation depending only upon the coordinates of N1/N9 atoms and the

base plane. The optimal helical axis consists of a new sequence of Cartesian

frames, one for each basepair, that we call axis frames. They are positioned

in space by numerical optimization of a target function that can be written as

U ¼ A1 1 A2 1 QcðB1 1 B2Þ: (22)

The exact definition of the four terms denoted A1, A2, B1, and B2 are

given in the original article (35). Qualitatively, conditions A1 and A2 require

that orientations of base coordinate frames with respect to the axis frames of

the same level were possibly similar for neighboring levels. Conditions B1
and B2 do not consider the DNA structure and only require that the optimal

helical axis be locally close to a straight line. Essentially, the axis is modeled

as a flexible rod with elastic properties determined by conditions B1 and

B2, and the numerical optimization of function (22) is used to fit it to the

DNA structure. In the original version of the algorithm, factor Qc was absent

(Qc ¼ 1). Here it was added to vary the bending elasticity of the axis rod.

MD simulations

We study dynamics of 25-mer double-helical DNA fragments with AT- and

GC-alternating sequences (AT25 and GC25, respectively). AT25 is modeled

Elasticity of Atomistic DNA Models 4509
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in three simulation regimes that differ by hydration conditions as well as the

number of degrees of freedom in the DNA duplexes. In all cases, the

AMBER98 force-field parameters (23,36) were used with the rigid TIP3P

water model. Molecular dynamics simulations of rigid and partially fixed

molecules were carried out with the ICMD method (37,38) adapted for DNA

(39,40). In the first regime (trajectory AT25a, 16 ns, time-step 0.002 ps), the

duplex was modeled with all degrees of freedom in a rectangular water box

with a neutralizing number of sodium ions. In the second regime (trajectory

AT25b, 28 ns, time-step 0.01 ps), the hydration conditions were the same as

in AT25a, but the duplex was modeled with all backbone torsion degrees of

freedom, free bond angles in sugar rings, and rigid bases and phosphate

groups. In the third regime (trajectory AT25c, 120 ns, time-step 0.01 ps), the

minimal B-DNA model was used, with semi-implicit treatment of solvent as

described earlier (39,41,42). Duplex GC25 was modeled in conditions

corresponding to AT25b (trajectory GC25 20 ns, time-step 0.01 ps).

Trajectories AT25a, AT25b, and GC25 were run with periodical boundaries,

in NVT ensemble conditions with water density at ;0.997. The electrostatic

interactions were treated by the SPME method (25), with the common values

of Ewald parameters; that is, 9 Å truncation for the real-space sum and b �
0.35. In all cases, the fiber canonical B-DNA model (43) was used as the

starting state. The starting states of trajectories AT25a and AT25b were

prepared as follows. The DNA fragment was immersed in a rectangular

water box 110 3 46 3 46 Å, with a higher water density of 1.04. The box

was neutralized by placing Na1 ions at random water positions at least 5 Å

from the solute. The system was energy-minimized and dynamics were

initiated with the Maxwell distribution of generalized momenta at low

temperature. The system was next slowly heated to 293 K and equilibrated

during 0.6 ns. After that, the water density was adjusted to 0.997 by

removing the necessary number of water molecules selected randomly at

least 5 Å from DNA and ions, and the simulations were continued with NVT

ensemble conditions. In all simulations, the temperature was maintained by

the Berendsen algorithm (44) with a relaxation time of 10 ps. In all

trajectories the DNA structures were saved every 2.5 ps. These conforma-

tions were later processed with the Curves algorithm to accumulate the data

for the statistical analysis according to the WLC model. To increase the

sampling, all possible internal fragments of the 25-mer duplexes were

considered; for example, averaging for dimers involved 24 times more

conformations than for 25-mer.

RESULTS

Artifacts of elasticity of helical axis

Fig. 1 displays the apparent chain-length dependence of

different bending deviations for trajectory AT25b when the

helical axes of DNA structures are computed with the orig-

inal parameterization of the Curves algorithm; that is, with

Qc ¼ 1 in Eq. 22. According to the WLC theory described

above, all plots in this figure except Dd and Ds must be linear

with the same slope. Instead, they all display strong de-

viations. The most striking are evident regular oscillations of

Da with a period close to that of DNA. Their origin becomes

evident if we compare the traces of Ds and Dd. It is apparent

that the helical axis exhibits static bending that regularly

changes with the chain length. The corresponding DNA con-

formations, however, are quite straight and show no deforma-

tions that could have been responsible for such effects. The

apparent static bending reaches maxima for DNA lengths of

0.5 and 1.5 helical turns, but is close to zero for full turns,

which means that the axis is helical itself, with the winding

period identical to that of the double helix.

The Dr plot is also nonlinear, but it appears quite dif-

ferently. The Curves algorithm treats centers of the axis

frames and their unit vectors separately. The local direction

of the axis rod is given by one of these vectors and it is

considered as tangential to the curved axis. The apparent

qualitative difference between Da and Dr plots in Fig. 1

suggests that only the tangential vectors rotate together with

the helical winding, while the axis itself is free from this

artifact. To check this suggestion, the same analysis was car-

ried out by measuring bending angles in the broken line that

passes through the centers of the axis frames. The cor-

responding plot is also shown in Fig. 1 (D9a), and it exhibits

the same oscillations as the Da plot. Thus, the optimized axis

really involves artificial modulations that are small and al-

most invisible by eye, but revealed in Fig. 1 due to aver-

aging. The concave shape of the Dr trace probably has the

same origin.

In the earlier studies based upon the Curves analysis of

DNA structures these artifacts were not noticed (30,31). To

check if they are specific to our implementation of Curves

the same data were processed with the original program, but

the results did not change. Moreover, this effect is not

specific to the Curves algorithm. Similar features persist with

the alternative procedure (41,45) that also uses numerical

optimization, but finds a common axis of coaxial cylindrical

surfaces passing through different atoms of DNA backbone.

Therefore, the origin of the artifact helicity is in the very

principle of fitting an elastic axis rod to a DNA structure.

This may be a problem of local minima because the initial

axis trace usually has some degree of helicity. It is also

possible that the artificial helicity appears spontaneously

during fitting because this is the lowest-energy deformation

of a straight rod. In any case, evaluation of the WLC param-

eters of DNA from the data shown Fig. 1 is hardly justified.

Fortunately, it appears that these artifacts can be reduced by

adjusting the stiffness of the axis rod.

Fig. 2, a and b, shows how the artificial stiffness of the axis

rod affects the measured bending deviations. The original

Curves parameterization (Qc ¼ 1) gives a relatively soft axis

that, for short DNA fragments, bends excessively in response

to local conformational fluctuations. With the stiffness in-

creased, the artifact oscillations in the Da traces are reduced

as well as the short length burst in the Dr traces, and for Qc¼
10 the chain length dependences demonstrate good agree-

ment with the WLC theory. With the stiffness further in-

creased, the initial artifacts change their sign. Notably, the

bending looks smaller for short DNA fragments as well as

near chain-ends, because in these cases, the fitted axis is less

loaded by the DNA structure and it is easier for it to

straighten.

The apparent torsional and stretching deviations are less

dependent upon Qc. As seen in Fig. 2 c, with the default

Curves stiffness Qc ¼ 1, Dc exhibits periodical bursts in

phase with the oscillations in Fig. 1, but they disappear with

Qc ¼ 5. The torsional stiffness looks higher for fragments

4510 Mazur
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shorter than one helical turn as well as the longest, but this

effect is not significant. The apparent stretching deviations,

Ds, shown in Fig. 2 d, are almost independent of Qc. The

trace obtained for Qc ¼ 1 is concave, but it straightens for

Qc ¼ 5 and does not change with further increase of the he-

lical stiffness.

The results in Fig. 2 suggest that reasonably good

estimates of DNA elastic parameters can be obtained from

the slopes of linear fits of D(L) obtained with increased

artificial stiffness of the helical axis. It is understood that as

Qc in Eq. 22 is gradually increased, the helical axis becomes

more and more straight, and the question arises as to whether

the elastic parameters we measure refer to DNA rather than

to the artificial stiffness of the axis rod. Fig. 3 shows, how-

ever, the contribution of the artificial stiffness is not large and

can be accounted for. The corresponding persistence lengths

were obtained by linear regression analysis of D(L) depen-

dences evaluated for trajectory AT25b. It is seen that, as

expected, different estimates of the bending PL in Fig. 3 a all

grow with Qc. With Qc . 5 this growth is small, so that an

order-of-magnitude increase in Qc gives only ;10% increase

in Aa. Moreover, the plots in Fig. 3 a are nearly linear when

Qc . 10; therefore, they can be extrapolated to Qc ¼ 0 to

give asymptotic values. Interestingly, all estimates of the

bending PL linearly extrapolated to Qc / 0 from Qc . 10

converge to ;80 nm.

The torsional and stretching PL shown in Fig. 2, panels b
and c, respectively, are only weakly dependent upon Qc. In

fact, the Qc factor in Eq. 22 directly affects only the bending

stiffness of the axis rod. Therefore, the weak dependences

seen in Fig. 2, b and c, result from compensations during

numerical optimization of the target function Eq. 22.

Notably, with Qc increased, the soft stretching degree of

freedom is increasingly involved in the fitting, which gives

FIGURE 1 Chain-length dependences

of bending deviations measured by dif-

ferent methods. Results of trajectory

AT25b were processed by the Curves

algorithm with Qc ¼ 1.
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larger stretching fluctuations and smaller stretching PL. The

torsional PL is almost constant, suggesting that different

compensation factors approximately cancel out.

Fig. 2 indicates that the artificial stiffness Qc ¼ 10 rep-

resents a reasonable compromise because, on the one hand, it

scales down the artifacts displayed in Fig. 1, and, on the

other hand, it is relatively low and gives estimates of elastic

parameters close to the Qc ¼ 0 asymptotic intercepts.

Chain-end effects

In analysis of DNA structures, a few terminal basepairs are

commonly excluded. This is reasonable because the DNA

ends may be physically more flexible and also because fitting

of helical axis near chain ends is less reliable. Fig. 4 shows

how the estimated persistence length changes when terminal

basepairs are excluded from analysis. With 10 basepairs

excluded, only the central 5-mer is considered, and so forth.

The four different estimates of the bending PL shown in

Fig. 4 a were obtained by linear regression analysis of the

corresponding D(L) plots, with the helical stiffness Qc ¼ 10.

It is seen that the end effects are small. A descending trend in

Aa and Ar is larger for short trajectories, but it reduces with

time. Certainly, long chains need longer time for sampling

configurations corresponding to a given persistence length.

However, a much more noticeable trend observed in Fig. 4 a
consists of the divergence of the four estimates of the bend-

ing PL, which becomes dramatic when the length of the re-

maining part of DNA approaches one helical turn. With the

reduced DNA length, the amplitudes of bending fluctuations

are reduced and the above-discussed artifacts of Curves be-

come more pronounced. In addition, the sampling is reduced

due to the smaller number of DNA conformations analyzed

and also due to a smaller number of points for the linear

regression analysis. As seen in Fig. 4, b and c, these factors

affect the estimates of the torsional and stretching PLs only

when ,1 helical turn remains for analysis. In contrast to

bending, however, here the expected strong chain-end effects

are evident. The DNA ends look softer than its inner part as

regards both winding and stretching. As noted already, factor

Qc directly affects only the bending stiffness. With Qc ¼ 10

the chain-end effects seem to be significantly reduced for

bending, whereas for stretching and torsional deformations

they are still distinguishable.

Based upon the foregoing considerations, the following

procedure was used in the further data processing:

1. The helical stiffness Qc ¼ 10 is used as optimal, but the

analysis is repeated for a series of Qc values to check its

effect upon the results.

2. Three basepairs from both ends are excluded from

analysis in correspondence with the earlier studies (31).

3. Based upon the results shown in Fig. 2, the persistence

lengths are estimated by linear regression analysis of the

D(L) plots over L . 6 for bending-angle deviations

(except Ds(L)), L . 12 for Dr, and L . 3 for torsional

and stretching deviations. The Ds(L) plots remain oscil-

lating with high Qc values; therefore, the static PL is

estimated by simple averaging of As(L). Every point on

D(L) plots is weighted by the corresponding number of

sampled DNA conformations.

FIGURE 2 Chain-length dependences of deviations Da, Dr, Dc, and Db

with increased stiffness of the axis rod in Curves. The multiple plots in all

plates were obtained by increasing Qc in Eq. 22, Qc ¼ 1, 5, 10, 15, 20, 25,

30, 35, and 40. Traces for Qc ¼ 1 and 10 are shown by s and h,

respectively. Other traces are shown by d. The initial data were the same as

in Fig. 1.
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Time-convergence

Perhaps the most difficult issue concerns the duration of MD

trajectories necessary for reliable estimates of the DNA

elastic parameters. Recent experimental reports suggest that

the conformational relaxation times can be hopelessly long

even in short DNA fragments (46–48). In contrast, certain

structural parameters of DNA seem to converge very rapidly

during MD; for example, the average helical parameters and

the average fraction of BII conformations (49). Fig. 5 shows

the time-dependence of the measured DNA elastic param-

eters for trajectory AT25b. When MD trajectories start from

canonical structures, DNA commonly exhibits a conforma-

tional drift at the beginning. The duration of this initial phase

cannot be known a priori because it depends upon the spe-

cific conformational parameter considered and because it is

difficult to distinguish between slow drift and a slow equi-

librium fluctuation. If the data with such drift are interpreted

as fluctuations, statistical parameters measured during the

first nanoseconds can be strongly biased, and it takes a long

time before they reach their true values. For torsional and

stretching PL, this effect is always seen as very slow growth,

because these are computed from standard deviations of the

winding angle and the length of DNA, respectively. The

corresponding manifestations in the measured bending PL

may vary.

Fortunately, this problem can often be clarified by car-

rying out the trajectory analysis in two opposite time di-

rections, as shown in Fig. 5 for trajectory AT25b. With the

normal time direction, both torsional and stretching PLs

exhibit slow growth, as expected. Comparison with the cor-

responding plates in the lower row indicates that the most

probable convergent values are 160 and 105 nm for the

torsional and stretching PLs, respectively, which is some-

what higher than the corresponding maxima obtained in the

normal time direction. The bending PL shown in Fig. 5, a
and d, also behaves differently when the trajectory is ana-

lyzed in the two opposite time directions. The initial straight

conformation induces a slow decreasing trend in Fig. 5 a
which is absent in Fig. 5 b. Comparison of these two plates

suggests that the bending PL is somewhat below 80 nm.

These figures show also that different estimates of the

bending PL become closer with time, which is very impor-

tant because this feature can be used as a unique necessary

criterion of convergence. The rate of convergence is similar

for all five estimates of the bending PL so that none of

them generally give better estimates for short trajectories.

FIGURE 3 Dependence of the estimated DNA elastic parameters upon the artificial stiffness of the helical axis. (a) Bending PL. Aa, s; Ad, d; Ar, h; Af, n;

and A9a, 1. (b) Torsional PL. (c) Stretching PL.

FIGURE 4 Bending, torsional, and stretching PL measured for the central

part of the 25-mer fragment. The number of basepairs excluded from both

ends is shown on the x axis. (a) Different estimates of the bending PL. Aa, s;

Ad, d; Ar, h; and Af, n. (b) Torsional PL. (c) Stretching PL.
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Nevertheless, all of them are useful because, as seen in Fig.

5, a and d, only comparison of all these values gives a correct

appreciation of convergence. The discrepancy between Ad

and the total PL falls down initially, but eventually stabilizes

at a non-zero level. Simultaneously, the static PL, As, grows

and stabilizes around ;103.5 (data not shown). Even though

As ; 103.5 seems large, it can result in a nonnegligible de-

viation of Ad from the total PL due to specific combinations of

bending directions. This residual divergence between Ad and

the total PL is mainly due to insufficient sampling of curved

conformations with alternative bending directions, although it

also involves a contribution from artifacts in the construction

of the helical axis that are reduced, but not completely sup-

pressed, with Qc ¼ 10.

Fig. 5 shows that all the measured elastic parameters are

characterized by similar relaxation times. The convergence

of the torsional and stretching PLs was expected to be some-

what faster because the corresponding fluctuations require

relatively small atom displacements and they should be also

much less hindered by water. Moreover, in the course of MD

simulations, the average twist and rise normally reach sta-

tionary values after 1–2 ns. Surprisingly, Fig. 5 clearly shows

that the convergence is similar for all elastic parameters. This

may indicate that all these motions are significantly coupled,

which should have been taken into account in Eq. 15, as

earlier suggested by some groups (31). Accurate analysis of

this issue requires further studies.

Alternative DNA models

Figs. 6 and 7 show the time dependence of the measured

elastic parameters for the two alternative representations of

the AT-alternating 25-mer duplex. The three models we

consider strongly differ in performance. Model AT25a (Fig.

6) is most detailed, but also most computationally demand-

ing. Model AT25b (Fig. 5) is five times less expensive

computationally and may represent a reasonable compro-

mise for practical computations. Model AT25c (Fig. 7) is

computationally much faster than the former two, but its ap-

proximations may affect DNA dynamics. Trajectory AT25a

was continued to 16 ns, which, according to Fig. 5, is the

necessary minimum for convergence. Comparison of Figs. 5

and 6 suggests that the standard geometry fixations used in

model AT25b do not significantly affect the elastic proper-

ties of DNA. The only significant difference concerns the

lower apparent torsional PL for AT25b, but it appears to be

due to a more pronounced chain-end effect. The behavior of

the torsional PL for AT25a is qualitatively similar to that

shown in Fig. 4, but the plateau at ;150 nm is reached only

when six basepairs from both ends are excluded. We con-

clude, therefore, the elastic parameters can be measured with

reasonable accuracy by using the partially fixed DNA model.

MD trajectories for the third model, AT25c, can be run for

much longer durations, but as seen in Fig. 7, the absolute rate

of convergence in this case is also the lowest. This was

expected since the distance scaling of electrostatic interac-

tions is known to increase artificially the strength of all polar

contacts including hydrogen bonds (50). The same effect can

also be responsible for the generally higher stiffness of the

AT25c model compared to the other two.

GC-alternating 25-mer fragment

The sequence-dependence of the elastic DNA parameters is

very important because many proteins are believed to rec-

ognize specific DNA sites by testing their deformability. Fig. 8

FIGURE 5 Time-convergence of the measured DNA elastic parameters in trajectory AT25b. (a,d) Bending PL with normal and inverted time directions,

respectively. Aa, s; Ad, d; Ar, h; Af, n; and A9a, 1. (b,e) Torsional PL with normal and inverted time directions, respectively. (c,f) Stretching PL with normal

and inverted time directions, respectively.
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shows the results of similar analysis carried out for the GC-

alternating 25-mer DNA duplex. Qualitatively, these results

are similar to those in Fig. 5; notably, the two molecules

exhibit similar bending stiffness. Nevertheless, a significant

difference is observed in the measured values of the torsional

and stretching PLs. The GC-alternating duplex is signifi-

cantly stiffer for stretching, but somewhat softer for twisting.

The bending deformations of DNA result in large atom

displacements and strongly affect the overall shape of the

molecule, therefore the bending flexibility of DNA is gen-

erally recognized as a key factor in protein-DNA recogni-

tion. The torsional and stretching deformations cause smaller

atom displacements. However, this does not exclude the

possibility of recognition of specific DNA sequences ac-

cording to their torsional and stretching stiffness. For in-

stance, the amplitudes of relative atom displacements at the

opposite ends of the 25-mer duplex estimated from the data

in Fig. 2 are ;1.7 Å and 2.8 Å, respectively, for stretching

and twisting. These values are not negligible and the se-

quence effect upon twisting and stretching observed here can

cause a difference in interaction energies sufficient for rec-

ognition.

DISCUSSION

In these studies we were looking for a reliable procedure

for evaluation of macroscopic elastic properties of the DNA

double helix from atom-level MD simulations. Representative

FIGURE 6 Time-convergence of the measured DNA elastic parameters in trajectory AT25a. The same notations as in Fig. 5.

FIGURE 7 Time-convergence of the measured DNA elastic parameters in trajectory AT25c. The same notations as in Fig. 5.
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ensembles of conformations were studied for 25-mer double-

helical DNA fragments in three different approximations for

two regular alternating basepair sequences. The conforma-

tional statistics of ensembles generated by MD simulations

demonstrates good qualitative agreement with the WLC

theory and allows reasonably accurate estimates of the

bending, torsional, and stretching PLs. The duration of tra-

jectories necessary for acceptable convergence is significant,

but accessible with the currently available computational

resources. The measured values of DNA elastic parameters

differ form the best experimental estimates, but the differ-

ences appear within the range of variations observed with

different experimental approaches and solvent conditions.

This is very encouraging since MD simulations are based

upon the force field generated independently without any

prior knowledge of experimental DNA stiffness. Therefore,

even with the current accuracy, this MD approach can be

used for probing various effects upon the DNA elasticity

produced by external factors like solvent conditions or

external stress.

Much of our efforts were spent on sorting out different

factors that hinder interpretation of the atomic-level DNA

dynamics in terms of the WLC theory. The major such factor

is related with the necessary reduction of a detailed DNA

conformation to an oriented axis rod (optimal helical axis).

The Curves algorithm was proposed approximately 20 years

ago (35), and since then became a standard instrument for

treating this problem (30,31). Here it was found that the

helical axes computed by Curves generate systematic artifact

deviations from the WLC theory that can be reduced by

adjusting the internal parameters of the algorithm. This does

not mean that the earlier usage of Curves was biased by

artifacts. Real double-helical DNA conformations do not

have strict helical symmetry; therefore, the concept of op-

timal helical axis is relative and valid for a certain choice of

criteria and parameters. Any such axis is good for compar-

isons if it is chosen as a conventional standard. The axes

computed with the standard Curves parameterization deviate

from the WLC theory, but those computed with increased

axis stiffness may be inadequate for other purposes.

One might suggest that the Curves algorithm should be

corrected to suppress the observed deviations from the WLC

theory without increasing the artificial axis stiffness. In our

view, this can only hide the problem and complicate

interpretation of the results. The oscillating character of

angular deviations in Fig. 1 varies with the basepair sequence

of the DNA fragment, and sometimes it is not that obvious.

In contrast, our earlier experience shows that, with the stan-

dard Curves algorithm, the Ar trace always has a concave

shape. Such pattern can be misinterpreted as if short DNA

fragments experience strong local bends that are anticorre-

lated along the sequence and cancel out in longer stretches.

The oscillations shown in Fig. 1 in fact represent a fortunate

feature that immediately reveals their nonphysical nature.

Any improved axis-fitting algorithm will still be prone to

local artifacts because the problem is inherent in the very

fitting principle. For instance, the Curves algorithm assumes

that base orientations with respect to the optimal helical axis

change smoothly along DNA. This certainly contradicts the

zigzag character of DNA with alternating sequences and

perhaps results in the regular oscillations in Fig. 1. Unfor-

tunately, it is hardly possible to propose a simple alternative

algorithm free from such defects. We believe that accurate

evaluation of DNA elasticity in MD simulations must, in any

case, include systematic variation of the parameters em-

ployed by the axis-fitting algorithm and extrapolation to zero

FIGURE 8 Time-convergence of the measured DNA elastic parameters in trajectory GC25. The same notations as in Fig. 5.
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artificial stiffness. From this perspective, the Curves method

is advantageous because it is rather rapid.

Earlier estimates of elastic parameters of MD models of

DNA were made with the same force field and similar sim-

ulation conditions (30, 31), but with double helices of 15–16

basepairs and the duration of trajectories of 1–5 ns. We

believe that the relatively small DNA length in these earlier

studies explains why the Curves effect discussed above was

not noticed. Instead, the apparent chain-length dependences

of elastic parameters were interpreted as physical effects

(31). In addition, unlike these earlier reports, we did not take

into account the coupling between different elastic deforma-

tions because we were not sure if the accuracy of our data

justifies a more sophisticated analysis. It is not surprising,

therefore, that some of the values reported in Table 1 signif-

icantly differ from earlier estimates. Nevertheless, the quali-

tative trends are well reproduced—notably, the AT-alternating

duplex exhibits higher torsional, but lower stretching stiff-

ness than the GC-alternating DNA, which was also observed

by Lankas et al. (31).

According to Table 1 the best MD elastic parameters

obtained for realistic DNA models somewhat differ from the

recent estimates (12,13,17,18,51). However, the differences

are comparable to those between various experimental esti-

mates of the same values (3,52). The bending PL is over-

estimated and it appears close to experimental data reported

for low salt conditions (11). Interestingly, its value is very

similar for AT- and GC-alternating duplexes even though the

helical parameters of the former are strongly shifted toward

the A-form due to the known force-field bias (36,53). This

observation suggests that the shift in the bending PL may be

due to insufficient screening of DNA charges in the standard

hydration conditions used here, although relatively high

stretching PL values argue against such interpretation (11).

The torsional and stretching PLs strongly differ for these two

DNA sequences, but still remain close to the recent exper-

imental estimates (51). It should be stressed that this good

general agreement with experiment is obtained without any

fitting, by using force-field parameters adjusted with small

molecule data only (23,36). The accuracy of the MD method

will certainly be improved and, in the future, this approach

can become one of the standard procedures along with ex-

periment. Even in its present state, however, it can lead to

useful insights in certain unclear aspects of DNA elasticity,

such as its sequence-dependence and the coupling between

different deformations, as well as effects of external stress.

Simulations aimed at these objectives are in progress.

Alexander Vologodskii has generously provided MC data for comparisons

and fitting of Eq. 10. He is also gratefully acknowledged for many fruitful

discussions during the course of these studies.

REFERENCES

1. Cantor, C. R., and P. R. Schimmel. 1980. Biophysical Chemistry, Part
III: The Behavior of Biological Macromolecules. W. H. Freeman, San
Francisco, CA.

2. Landau, L. D., and E. M. Lifshitz. 1976. Statistical Physics, Part 1.
Nauka, Moscow, Russia.

3. Hagerman, P. J. 1988. Flexibility of DNA. Annu. Rev. Biophys.
Biophys. Chem. 17:265–286.

4. Cluzel, P., A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, and
F. Caron. 1996. DNA: an extensible molecule. Science. 271:792–794.

5. Lavery, R., A. Lebrun, J.-F. Allemand, D. Bensimon, and V.
Croquette. 2002. Structure and mechanisms of single biomolecules:
experiment and simulation. J. Phys. Condens. Matter. 14:R383–R414.

6. Perkins, T. T., S. R. Quake, D. E. Smith, and S. Chu. 1994. Relaxation
of a single DNA molecule observed by optical microscopy. Science.
264:822–826.

7. Smith, S. B., Y. Cui, and C. Bustamante. 1996. Overstretching
B-DNA: the elastic response of individual double-stranded and single-
stranded DNA molecules. Science. 271:795–799.

8. Smith, S. B., L. Finzi, and C. Bustamante. 1992. Direct mechanical
measurements of the elasticity of single DNA molecules by using
magnetic beads. Science. 258:1122–1126.

9. Strick, T. R., J. F. Allemand, D. Bensimon, A. Bensimon, and V.
Croquette. 1996. The elasticity of a single supercoiled DNA molecule.
Science. 271:1835–1837.

10. Strick, T. R., M.-N. Dessignes, G. Charvin, N. H. Dekker, J.-F.
Allemand, D. Bensimon, and V. Croquette. 2003. Stretching of macro-
molecules and proteins. Rep. Prog. Phys. 66:1–45.

11. Baumann, C. G., S. B. Smith, V. A. Bloomfield, and C. Bustamante.
1997. Ionic effects on the elasticity of single DNA molecules. Proc.
Natl. Acad. Sci. USA. 94:6185–6190.

12. Bouchiat, C., M. D. Wang, J. Allemand, T. Strick, S. M. Block, and
V. Croquette. 1999. Estimating the persistence length of a worm-like
chain molecule from force-extension measurements. Biophys. J. 76:
409–413.

13. Bustamante, C., J. F. Marko, E. D. Siggia, and S. Smith. 1994.
Entropic elasticity of lambda-phage DNA. Science. 265:1599–1600.

14. Moroz, J. D., and P. Nelson. 1997. Torsional directed walks, entropic
elasticity, and DNA twist stiffness. Proc. Natl. Acad. Sci. USA. 94:
14418–14422.

15. Nelson, P. 1998. New measurements of DNA twist elasticity. Biophys.
J. 74:2501–2503.

16. Vologodskii, A. V. 1994. DNA extension under the action of an exter-
nal force. Macromolecules. 27:5623–5625.

17. Vologodskii, A. V., and J. F. Marko. 1997. Extension of torsionally
stressed DNA by external force. Biophys. J. 73:123–132.

18. Wang, M. D., H. Yin, R. Landick, J. Gelles, and S. M. Block. 1997.
Stretching DNA with optical tweezers. Biophys. J. 72:1335–1346.

19. Huang, J., T. Schlick, and A. Vologodskii. 2001. Dynamics of site
juxtaposition in supercoiled DNA. Proc. Natl. Acad. Sci. USA. 98:
968–973.

TABLE 1 Parameters of DNA fragments measured in the

course of MD

Trajectory A C B RMSD-B RMSD-A Twist Rise

AT25a ;80 ;150 ;100 4.01 6.38 32.7 3.21

AT25b 75 160 105 5.71 4.72 32.0 3.10

AT25c 115 270 340 3.05 8.45 34.2 3.43

GC25 80 105 190 2.78 6.53 34.4 3.2

Columns A, B, and C contain the estimated bending, stretching, and

torsional PL, respectively. The RMSD values were measured with respect

to the fiber canonical A- and B-forms (43) for DNA conformations aver-

aged over the last nanosecond. Twist and Rise are evaluated for the same

conformations by the Curves program (35). All distances are in nanometers

and angles in degrees.

Elasticity of Atomistic DNA Models 4517

Biophysical Journal 91(12) 4507–4518



20. Klenin, K., J. Langowski, and A. Vologodskii. 2002. Computational
analysis of the chiral action of type II DNA topoisomerase. J. Mol.
Biol. 320:359–367.

21. Podtelezhnikov, A. A., N. R. Cozzarelli, and A. V. Vologodskii. 1999.
Equilibrium distributions of topological states in circular DNA:
interplay of supercoiling and knotting. Proc. Natl. Acad. Sci. USA.
96:12974–12979.

22. Vologodskii, A. 2006. Brownian dynamics simulation of knot diffusion
along a stretched DNA molecule. Biophys. J. 90:1594–1597.

23. Cornell, W. D., P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M.
Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman.
1995. A second generation force field for the simulation of proteins,
nucleic acids and organic molecules. J. Am. Chem. Soc. 117:5179–5197.

24. Darden, T., D. York, and L. Pedersen. 1993. Particle mesh Ewald. An
Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98:
10089–10092.

25. Essmann, U., L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G.
Pedersen. 1995. A smooth particle mesh Ewald method. J. Chem. Phys.
103:8577–8593.

26. Cheatham III, T. E., and P. A. Kollman. 2000. Molecular dynamics
simulations of nucleic acids. Annu. Rev. Phys. Chem. 51:435–471.

27. Miller, J. L., T. E. Cheatham III, and P. A. Kollman. 1999. Simulation of
nucleic acid structure. In Oxford Handbook of Nucleic Acid Structure.
S. Neidle, editor. Oxford University Press, New York. 95–115.

28. MacKerell, A. E., Jr., N. Banavali, and N. Foloppe. 2000–2001. Develop-
ment and current status of the CHARMM force field for nucleic acids.
Biopolymers. 56:257–265.

29. Olson, W. K., A. A. Gorin, X. J. Lu, L. M. Hock, and V. B. Zhurkin.
1998. DNA sequence-dependent deformability deduced from protein-
DNA crystal complexes. Proc. Natl. Acad. Sci. USA. 95:11163–11168.

30. Bruant, N., D. Flatters, R. Lavery, and D. Genest. 1999. From atomic
to mesoscopic descriptions of the internal dynamics of DNA. Biophys.
J. 77:2366–2376.

31. Lankas, F., J. Sponer, P. Hobza, and J. Langowski. 2000. Sequence-
dependent elastic properties of DNA. J. Mol. Biol. 299:695–709.

32. Schellman, J. A., and S. C. Harvey. 1995. Static contributions to the
persistence length of DNA and dynamic contributions to DNA
curvature. Biophys. Chem. 74:2191–2198.

33. Trifonov, E. N., R. K. Z. Tan, and S. C. Harvey. 1988. Static
persistence length of DNA. In DNA Bending and Curvature. W. K.
Olson, M. H. Sarma, R. H. Sarma, and M. Sundaralingam, editors.
Adenine Press, New York. 243–253.

34. Vologodskaia, M., and A. Vologodskii. 2002. Contribution of the
intrinsic curvature to measured DNA persistence length. J. Mol. Biol.
317:205–213.

35. Lavery, R., and H. Sklenar. 1988. The definition of generalized
helicoidal parameters and of axis curvature for irregular nucleic acids.
J. Biomol. Struct. Dyn. 6:63–91.

36. Cheatham III, T. E., P. Cieplak, and P. A. Kollman. 1999. A modified
version of the Cornell et al. force field with improved sugar pucker
phases and helical repeat. J. Biomol. Struct. Dyn. 16:845–862.

37. Mazur, A. K. 1997. Quasi-Hamiltonian equations of motion for internal
coordinate molecular dynamics of polymers. J. Comput. Chem. 18:
1354–1364.

38. Mazur, A. K. 2001. Internal coordinate simulation method. In
Computational Biochemistry and Biophysics. O. M. Becker, A. D.
MacKerell, Jr., B. Roux, and M. Watanabe, editors. Marcel Dekker,
New York. 115–131.

39. Mazur, A. K. 1998. Accurate DNA dynamics without accurate long
range electrostatics. J. Am. Chem. Soc. 120:10928–10937.

40. Mazur, A. K. 1999. Symplectic integration of closed chain rigid body
dynamics with internal coordinate equations of motion. J. Chem. Phys.
111:1407–1414.

41. Mazur, A. K. 2000. Theoretical studies of the possible origin of
intrinsic static bends in double helical DNA. J. Am. Chem. Soc. 122:
12778–12785.

42. Mazur, A. K. 2001. Molecular dynamics of minimal B-DNA. J. Comput.
Chem. 22:457–467.

43. Arnott, S., and D. W. L. Hukins. 1972. Optimised parameters for
A-DNA and B-DNA. Biochem. Biophys. Res. Commun. 47:1504–1509.

44. Berendsen, H. J. C., J. P. M. Postma, W. F. van Gunsteren, A. DiNola,
and J. R. Haak. 1984. Molecular dynamics with coupling to an external
bath. J. Chem. Phys. 81:3684–3690.

45. Mazur, A. K., and D. E. Kamashev. 2002. Simulated and experimental
bending dynamics in DNA with and without regularly repeated adenine
tracts. Phys. Rev. E. 66:011917-1–011917-13.

46. Andreatta, D., J. L. P. Lustres, S. A. Kovalenko, N. P. Ernsting, C. J.
Murphy, R. S. Coleman, and M. A. Berg. 2005. Power-law solvation
dynamics in DNA over six decades in time. J. Am. Chem. Soc. 127:
7270–7271.

47. Brauns, E. B., M. L. Madaras, R. S. Coleman, C. J. Murphy, and M. A.
Berg. 2002. Complex local dynamics in DNA on the picosecond and
nanosecond time scales. Phys. Rev. Lett. 88:158101.

48. Okonogi, T. M., A. W. Reese, S. C. Alley, P. B. Hopkins, and R. H.
Robinson. 1999. Flexibility of duplex DNA on the submicrosecond
timescale. Biophys. J. 77:3256–3276.

49. Trieh, M., C. Rauch, B. Wellenzohn, F. Wibowo, T. Loerting, and
K. R. Liedl. 2004. Dynamics of DNA: BI and BII phosphate backbone
transitions. J. Phys. Chem. 108:2470–2476.

50. Guenot, J., and P. A. Kollman. 1992. Molecular dynamics studies of a
DNA-binding protein. 2. An evaluation of implicit and explicit solvent
models for the molecular dynamics simulation of the Escherichia coli
Trp repressor. Protein Sci. 1:1185–1205.

51. Bryant, Z., M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, and C.
Bustamante. 2003. Structural transitions and elasticity from torque
measurements on DNA. Nature. 424:338–341.

52. Bednar, J., P. Furrer, V. Katritch, A. Z. Stasiak, J. Dubochet, and A.
Stasiak. 1995. Determination of DNA persistence length by cryo-
electron microscopy. Separation of the static and dynamic contributions
to the apparent persistence length of DNA. J. Mol. Biol. 254:579–594.

53. Olson, W. K., and V. B. Zhurkin. 2000. Modeling DNA deformations.
Curr. Opin. Struct. Biol. 10:286–297.

4518 Mazur

Biophysical Journal 91(12) 4507–4518


