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ABSTRACT An elastic model for membrane deformations induced by integral membrane proteins is presented. An earlier
theory is extended to account for nonvanishing saddle splay modulus within lipid monolayers and perturbations to lipid volume
proximal to the protein. Analytical results are derived for the deformation profile surrounding a single cylindrical protein in-
clusion, which compare favorably to coarse-grained simulations over a range of protein sizes. Numerical results for multi-protein
systems indicate that membrane-mediated interactions between inclusions are strongly affected by Gaussian curvature and
display nonpairwise additivity. Implications for the aggregation of proteins are discussed.

INTRODUCTION

Transmembrane proteins perform critical biological roles as

receptors, enzymes, channels, and structural elements within

cells (1). Acting as the environment surrounding these pro-

teins, the membrane can influence protein function. Al-

though some of this influence is likely due to specific and

detailed lipid-protein interactions, experiments point to the

elastic properties of the membrane as playing a prominent

role in the activity of certain proteins. For example, both

gramicidin A channels (2,3) and bacteriorhodopsin (4) seem

critically dependent on the thickness of the surrounding

bilayer and associated elastic properties for proper biological

behavior. Fully understanding the behavior of membrane

proteins, both as individual units and as larger complexes,

requires a detailed understanding of lipid-bilayer biophysics

from both molecular and continuum (elastic) perspectives.

This article focuses on elastic properties with confirmation

via coarse-grained molecular level simulations.

When two components of a membrane naturally span

hydrophobic regions of different size, they are said to be

‘‘hydrophobically mismatched’’. If the hydrophobic region

of a specific molecule (such as a protein) is shorter than the

average thickness of the surrounding membrane, the mole-

cule is ‘‘negatively mismatched’’; the reverse scenario is

called ‘‘positive mismatch’’ (Fig. 1). The large interfacial

tension between water and hydrophobic structures drives the

membrane to deform so as to shield hydrophobic regions

from water, as in Fig. 1. The resulting shape or ‘‘deformation

profile’’ of the bilayer around such an imposed disruption

depends upon the details of the protein and the lipid envi-

ronment. Hydrophobic mismatch and its implications have

been studied from experimental (2,3,6,7), theoretical (6,8–

18), and computational (18–23) perspectives.

Historically, continuum elastic theories for the mismatch

problem, when tested, have been tested against experimental

data; the results indicate the plausibility of elastic theories

but are inconclusive with regard to distinguishing among the

various models currently proposed. For instance, the models

of Huang (8), Brannigan and Brown (18), and Nielsen (15)

all predict gramicidin lifetime data in good agreement with

experiment despite significant differences from one elastic

model to the next. Given the somewhat indirect comparison

between theory and experimental observables, this is not

surprising. Recent advances in computational modeling have

allowed simulation studies (18–23) of the hydrophobic mis-

match problem with the potential for more critical analysis

of elastic theories. Unfortunately, the focus of most of these

studies has not been on testing analytical theory, so refine-

ment of elastic models with input from simulation data has

not yet occurred.

In a recent study, we presented an elastic theory described

as ‘‘consistent’’ (18) in its correct description of thermal

bilayer fluctuations and mismatch-type bilayer deformations

as tested against available simulation data. To our knowl-

edge, that study represents the first detailed comparison be-

tween elastic theory and simulations in the context of the

hydrophobic mismatch problem. One implication of that

study is that the elastic theory of Aranda-Espinoza et al. (13)

(henceforth referred to as A-E) works very well, predicting

deformation profiles around a cylindrical protein inclusion in

quantitative agreement with simulation results without any

fit parameters. (In the case of protein-induced deformations

for most relevant parameter regimes, the theory we suggested

in our earlier study reduces to that of A-E.) However, this

finding needs to be presented with two qualifiers. First, our

simulation test was restricted to a coarse-grained model.

Second, and more relevant to the work presented here, we

only directly verified the theory of A-E for a single size

cylindrical inclusion at a positive mismatch.

This study began as a series of simulations paralleling the

single inclusion study presented in our earlier work. Fourteen

different cylindrical protein inclusions spanning both positive

and negative mismatches and a range of radii were simulated.

Submitted August 8, 2006, and accepted for publication October 23, 2006.

Address reprint requests to Frank L. H. Brown, E-mail: flbrown@chem.

ucsb.edu.

� 2007 by the Biophysical Society

0006-3495/07/02/864/13 $2.00 doi: 10.1529/biophysj.106.094953

864 Biophysical Journal Volume 92 February 2007 864–876



We found that the agreement between theory and experiment

reported in our earlier work was fortuitous. Only at positive

mismatch does the existing theory do a good job at predicting

deformation profiles. To explain all 14 data sets, it is necessary

to reconsider the elastic theory of A-E. The version of the

theory presented herein includes the energetics associated

with Gaussian curvature deformations and the fact that a

protein inclusion has the ability to locally alter the average

volume per lipid in its immediate vicinity. With these ad-

ditions, we find universally good agreement between theory

and simulation, indicating a broad region of applicability for

the improved theory. The new additions have no effect on

bilayer fluctuations in homogeneous systems, so we believe

the theory presented here is now truly consistent in its proper

description of both fluctuations and deformation profiles.

Energetics associated with Gaussian curvature are typically

neglected in elastic treatments of the mismatch problem.

Although a few studies have recognized the possible contri-

bution of finite saddle splay modulus to deformation profiles

(14,17,24), these studies have gone on to ultimately neglect

these effects either through judicious choice of boundary

conditions or by appealing to arguments that the contributions

should be negligible for ‘‘typical’’ physical constants. In our

earlier work (18), we argued for the use of natural boundary

conditions (as in A-E), both due to mathematical elegance and

simulation results in contradiction with other common

schemes. Natural boundary conditions predict that the saddle

splay modulus should (at least formally) enter into all final

results. For the coarse-grained systems studied in this work

(which display elastic moduli comparable to experimental

lipid systems), we find the contributions of Gaussian curva-

ture are essential to obtain uniform agreement with simulation

over a range of inclusion sizes.

We are not aware of prior studies that explicitly consider

nonconservation of lipid volume. A lipid in a fluid bilayer

has a volume compressibility modulus close to that of water

and much larger than the bilayer area compressibility mod-

ulus (25). Naively, one expects that the thickness deforma-

tions should be accompanied by fully compensating area

deformations, resulting in a near constant volume per lipid.

Although this reasoning holds true for a homogeneous

bilayer, it is important to realize that the imposition of an

effective boundary (the protein surface) can alter fluid struc-

ture in ways that are difficult to predict. Even in ‘‘simple’’

systems of Lennard-Jones fluids, an imposed boundary can

introduce local density deviations that are a challenge to

predict theoretically (26). In our theory, we take lipid volume

deformation near the protein to be an imposed perturbation;

i.e., we do not attempt to solve for the volume deformation

profile. We extract the volume deformation profile directly

from simulation and input the results in our theory. In most

of our discussion, we further assume this deformation is

completely confined to the interface between protein and

bilayer—this leads to analytically tractable solutions, which

display close agreement with simulations.

Under certain circumstances, thickness deformations caused

by hydrophobic mismatch can be alleviated by protein aggre-

gation. For instance, experimental distributions of bacterio-

rhodopsin indicate an attraction between proteins, and at

sufficient mismatches (�10% and 120%) the proteins

aggregate (4). Synthetic transmembrane peptides with smaller

radii than bacteriorhodopsin also dimerize and trimerize at

certain mismatches (5). The work presented here predicts

membrane-mediated protein interactions with increased sen-

sitivity to mismatch amplitude relative to the original model

of A-E. The improved model accounts for qualitative features

of these experiments lacking from previous models.

THEORY

An analytical model for membrane thickness deformations induced by

cylindrical proteins is derived below. The theory directly builds on that

presented in A-E, adding the possibility of variable volume per lipid and

allowing for finite saddle splay modulus. The discussion presented here has,

to the extent possible, been presented in a notation consistent with our earlier

work (18). Our treatment is quite terse, with readers directed to A-E and our

earlier work for more details.

A single lipid in a flat homogenous bilayer assumes, on average, area S0,

thickness t0, and volume v0 ¼ S0t0. All deviations are measured relative to

this fiducial state. Deviations come in the form of local changes in the area/

lipid (as measured perpendicular to the local monolayer normal), volume/

lipid, and curvature of the monolayer surface. Membrane fluidity dictates

that only invariants of the curvature tensor be included in the Hamiltonian

(27,28); these include the trace (twice the mean curvature, H) and the

determinant (the Gaussian curvature, K). Expanding to second order in all

deviations (curvature, lipid volume, lipid area) from the reference state we

find an expression for the free energy per molecule:

f̃ðS� S0; v;H;KÞ ¼ f̃0 1
f̃0SS

2
ðS� S0Þ2 1 f̃0Sv

ðS� S0Þv

1
f̃0vv

2
v

2
1 f̃1H 1 f̃1S

ðS� S0ÞH 1 f̃1v v

1 f̃2H
2
1 f̃KK: (1)

FIGURE 1 Inclusion induced deformation (positive mismatch case). A

symmetric transmembrane protein with hydrophobic residues around its

periphery exceeding the thickness of the surrounding membrane will tend

to distort the bilayer as shown (not to scale). A protein thinner than the

surrounding membrane (negative mismatch) is expected to induce the

opposite effect. The nonmonotonic deformation profile in membrane

thickness as one moves away from the inclusion is predicted theoretically

by continuum elastic models and is observed in simulations.
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Here we have introduced a considerable amount of notation. S is the area

per molecule, v 1 v0 is the volume per molecule, and f̃ is the free energy per

molecule (the quantity f being reserved for the free energy per unit area

(18)). Note that whereas S is the true area per molecule, v is the deviation in

volume per molecule from the reference state. Similarly, t is used to indicate

deviations in monolayer (lipid) thickness relative to t0. Coefficients in the

Taylor expansion are named with the following convention adopted from

Safran (27): derivatives of f̃ with respect to H are denoted with a numerical

subscript indicating the order of differentiation. Derivatives with respect to

other variables are denoted with the appropriate symbols. So, for example,

f̃0Sv
¼ @2 f̃=@v@SjS¼S0 ;v¼H¼K¼0. Note that since K is itself second order in

curvature deformations, there are no cross derivatives with the Gaussian

curvature or terms of second order in K. Our notation is slightly different

from that used in our earlier work (18), due to the introduction of derivatives

with respect to v and K.

Assuming a vanishing lipid chemical potential (i.e., zero surface tension),

it follows that f̃0 ¼ 0 and the free energy for the bilayer is given by sum-

ming the remaining terms of Eq. 1 over all lipids in the bilayer. In practice,

this summation is conveniently carried out by integrating over the projected

area of the bilayer sheet. We assume the inclusion has the symmetry

indicated in Fig. 1 so that both monolayers share the same energy, their

shapes superpose upon reflection through the xy plane, and the deformation

is radially symmetric around the center of the inclusion. The elastic free

energy for the bilayer associated with a given symmetric distortion is then

F ¼ 4p

Z L=2

R

rdr
f̃

Spr

(2)

¼ 2p

Z L=2

R

rdr
kA

2t
2

0

t
2 � kA 1 kav

t0v0

tv 1
kA 1 2kav 1 kVt0

2v
2

0

v
2

�

1 2kcc0=
2

r t 1
2kcz

t0

t=
2

r t � 2kch

v0

v=
2

r t 1
kc

2
ð=2

r tÞ
2
1 kG

trtrr

r

�
:

(3)

We have introduced a circular annulus for the integration region spanning

the area between the inclusion radius, R and some maximal radius L/2. (This

region is convenient for analytical work. In our numerical treatments, we use

a square box and the integration region must be altered accordingly.) Spr is

the area per lipid projected onto the reference xy plane,

SðrÞ ¼ SprðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 j=tðrÞj2

q
; (4)

where t(r) 1 t0 is the local thickness of the monolayer (see Fig. 1). In

deriving Eq. 3 from Eq. 2, we have expressed all areas per molecule in terms

of local monolayer thickness and volume per lipid. The following definitions

were used in this step, which, although approximate, ensure a consistent final

result up to second order in t(r) and v(r):

SprðrÞ � S0

S0

¼ vðrÞ
v0

� tðrÞ
t0

:

1

SprðrÞ
¼ 1

S0

1� Spr � S0

S0

� �

H ¼ =
2

r t

2

K ¼ trtrr

r
; (5)

where tr [ @t/@r, trr [ @2t/@r2, and =2
r [ ð1=rÞð@=@rÞðrð@=@rÞÞ. When

possible, the constants in Eq. 3 were expressed using their common names:

kA is the bilayer area compressibility modulus, kV is the bilayer volume

compressibility modulus, c0 is the spontaneous curvature of the monolayer,

c0S
and c0v

are its area and volume derivatives respectively, evaluated at zero

tension, kc is the bilayer bending modulus, and kG is twice the monolayer

saddle splay modulus. The thickness-volume cross-term modulus has been

assigned the name kav. We have defined z [ c0 � c0S
S0 and h [ z � c0v

v0.

Equation 3 expresses the elastic energy associated with a radially sym-

metric distortion of the bilayer with additional mirror symmetry through

the xy plane. The free energy is a functional of two fields: the thickness

deviations of the associated monolayers, t, and deviations in volume per

lipid, v. Prior theories have neglected v entirely. Most prior theories have

also assumed (explicitly or otherwise) kG ¼ 0. In the case that v ¼ kG ¼ 0,

Eq. 3 reduces to the free energy derived by A-E and the free energy con-

sidered in our earlier work (18) in the limit of uncoupled protrusion modes.

From this point forward, we assume the volume deformation field is a

known function. In practice, we will extract v(r) directly from simulations as

input to our theory. (Determining an appropriate equation of state for an

inhomogeneous and anisotropic fluid near an imposed boundary seems a

formidable problem, which we avoid by assuming v(r) is known.) Deforma-

tion shape is then determined by minimizing F over all possible t(r), which

yields a solution in the form of a differential equation,

kA

kct
2

0

t 1
4z

t0

=
2

r t 1 =
4

r t ¼
kA 1 kav

kct0v0

v 1
2h

v0

=
2

r v; (6)

where =4
r ¼ =2

r =2
r . We note that neither kG nor c0 appear in the Euler-

Lagrange equation. They do affect the overall solution through our choice of

boundary conditions. The homogeneous equation (v¼ 0 case) has a solution

of the form (13)

t ¼ a1J0ða1 rÞ1 a2Y0ða1 rÞ1 a3J0ða�rÞ1 a4Y0ða�rÞ; (7)

where J0 and Y0 are zeroth order Bessel functions of the first and second

kinds, (29) respectively, a6 are the frequencies of oscillation, and an are

coefficients determined by the boundary conditions. Below, we impose an

additional restriction on v(r), making it possible to express the solution

of Eq. 6 in terms of a solution to the homogeneous problem; the details of

the solution used in this work are specified in the Appendix.

The choice of boundary conditions in the mismatch problem has been a

subject of considerable controversy. Without further comment (see our

earlier work (18) for discussion), we adopt the boundary conditions initially

suggested by A-E. We set the membrane height equal to the inclusion height

at the inclusion boundary, or

tðRÞ ¼ tðRÞ[ D� t0; (8)

where R is the radius of the inclusion and D is the inclusion half-thickness.

At the far edge of the integration region we set the slope to zero:

trjL=2 ¼ 0: (9)

For the remaining two conditions, we adopt the so-called ‘‘natural’’

boundary conditions that are implied by the minimization of F if no further

conditions are imposed. This results in one more condition at each edge of

the region,

=
2

r tjR 1
kG

kc

trjR
R
¼ �2 c0 1

z

t0

tðRÞ �
h

v0

vðRÞ

� �
(10)

=
3

r tjL=2 ¼ 0; (11)

where v(R) [ v(R) is the volume deformation at the lipid inclusion boundary,

=3
r t ¼ ð@=@rÞ=2

r t; and we have assumed that vrjL/2 ¼ 0. Our analysis will

primarily focus on deformation profiles of isolated proteins where L is taken

large enough that t and v have completely relaxed at the outer edge of the

considered region. Hence, our reported results are not sensitive to the exact

choices in Eqs. 9 and 11. In their original work, A-E considered proteins in

crystalline geometries up to the close packed limit and all conditions had

impact on the final results. Below (‘‘Free energy of multiple inclusions’’),

we do consider proteins in close proximity, but treat the situation nu-

merically as a many protein problem (not as a single protein problem), so the
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issue of boundary conditions at the far edge never comes up. Of course,

conditions 8 and 10 are relevant to all calculations and contain the sole

influence of kG and c0 on the deformation profile.

One point should be indicated regarding the natural boundary condition

(Eq. 10) at R. It appears that kG should become less important as protein

radius increases, simply due to the R�1 dependence in the only term in-

volving kG. Physically, the limit R/N corresponds to a flat, wall-like

inclusion. In this limit, only one principal curvature of the surface is nonzero

and the Gaussian curvature necessarily vanishes, leaving no possible

influence for kG. We therefore expect the influence of kG on deformation

profiles will be most pronounced when protein radius is small. This effect is

clearly seen in our simulations below.

In principle, we could proceed directly from the equations presented. For

a given inclusion, we would extract v(r) from simulation (or some other

source) and use this function in Eq. 6, solving for the energy minimizing t(r)

using the suggested boundary conditions. However, we lack a theory for and

hence any analytical expression for use as v(r). Furthermore, simulations

suggest that v(r) is a quickly decaying function (‘‘Simulation results: volume

deformation’’). This suggests a simplifying approximation that we have

verified numerically in several test cases. We treat the volume perturbation

as being completely localized to the lipid-protein boundary. Mathematically,

we take

vðrÞ ¼ vðRÞQðR� rÞ: (12)

With this form for v(r) and our specified boundary conditions, the full Eq.

6 is analytically solvable. The solution has the same form as Eq. 7, with the

same frequencies as the homogeneous solution but with altered coefficients

an. Since the modification to the homogeneous solution induced by Eq. 12 is

found in the expansion coefficients alone, this change may equivalently be

regarded as a change to the boundary conditions for the homogeneous

problem. The corresponding change is physically transparent and amounts to

averaging Eq. 10 over the jump in v present at the boundary. That is, we

make the replacement vðRÞ/vðRÞ=2 to give

=
2

r tjR 1
kG

kc

trjR
R
¼ �2 c0 1

z

t0

tðRÞ �
h

2v0

vðRÞ

� �
;

vðrÞ ¼ vðRÞQðR� rÞ: (13)

The factor of 1/2 accounts for the abrupt change in volume/lipid right at

the boundary of the protein. In practical terms, h is not a known quantity and

will be used as a fitting constant in the analysis presented below. All further

analytical results assume the volume deformation profile of Eq. 12. Exact

analytical solutions are reported in the Appendix, and were verified through

numerical solution of Eq. 6 with boundary condition 10 using a smoothed

version of the Heaviside function slightly displaced from r ¼ R.

The minimized t(r) may be substituted back into Eq. 3 to obtain an

expression for the energetic cost of protein insertion associated with bilayer

elasticity. With our chosen form for v(r), the volume stretching terms in the

Hamiltonian just integrate to constants (i.e., these terms are not dependent on

t(r)). Neglecting these constants and using the boundary conditions (Eqs.

8–11) for simplification yields

F ¼ pkcRtðRÞ =
3

r tjR � 2
c0

tðRÞ
� z

t0

� �
trjR

� �
: (14)

We note that this expression is not unique in the sense that, for example,

Eq. 10 can be used to recast c0 in terms of other quantities. In particular, the

expression could be rewritten to make the influence of kg and h explicit. As

presented, the influence of kg and h on membrane energetics is implicitly

contained within Eq. 14 through the shape of the membrane surface at

contact. Equation 14 appears identical to the original (kG ¼ v ¼ 0) results of

A-E, but the implicit influence of kg and h on this equation gives rise to

deviations from the A-E results. In the section ‘‘Free energy of multiple

inclusions’’, we present numerical calculations to obtain the interaction

energetics between multiple inclusions.

SIMULATIONS

Generation of data

Weuse the solvent free lipid model described inBrannigan et al.

(30) for our simulations. The model has three building blocks:

hydrophobic beads, hydrophilic beads, and interface beads.

Hydrophobic beads attract each other through standard

Lennard-Jones interactions and hydrophilic beads are purely

repulsive. Interface beads are placed between the hydrophobic

and hydrophilic beads; they interact through a soft potential

that mimics oil-water interfacial tension. Individual lipids consist

of one hydrophilic bead, one interface bead, and three hydropho-

bic beads linearly connected along a semiflexible backbone

(Fig. 2); membranes formed by this model are fluid, self-

assemble, and have elastic properties in the range of biological

relevance. (31) Furthermore, they have stress profiles qual-

itatively similar to solvated bilayers simulated with atomistic

resolution (32) and quantitatively similar to solvated bilayers

simulated with a similar level of coarse graining (33). The stress

profile is relevant when considering the behavior of inclusions

embedded within the membrane, so this is an important

correspondence. Our earlier work (18) extended this model to

consider ‘‘proteins’’ embedded in a lipid bilayer. These pro-

teins are constructed as a rigid assembly of the same hydro-

phobic, hydrophilic, and interface beads used for the lipids

(Fig. 2). The energetic parameters defining lipid/protein beads

are the same as those used in our earlier work (18).

The study presented here repeats the numerical experi-

ment of our earlier work, but with many different sizes of

the protein inclusions (Fig. 2). Inclusion radius R is varied

through the number of concentric rings of beads comprising

the cylinder. The inclusion half-thickness D is varied through

the number of layers of hydrophobic beads. Inclusions with

seven values of R ranging from 0.75 nm to 5.25 nm were

constructed using one, two, three, four, five, six, or seven

concentric rings (not counting the single chain at the inclu-

sion center). As in our earlier work (18), horizontally adja-

cent beads were spaced 0.75 nm apart along the radial axis.

Each ring of beads was filled to maximum capacity without

allowing bead overlap, and beads were equally spaced from

one another along the ring perimeter. At each value of R,

inclusions were simulated with either four or six layers of

hydrophobic beads (Fig. 2), for a total of 14 simulations.

Since the lipids in the bilayer have three hydrophobic beads

(for a total of six across the bilayer), but are flexible, in-

clusions with six layers of hydrophobic beads have a positive

hydrophobic mismatch (t=t0 ¼ 0:094, or ;110%). Those

inclusions with only four layers of hydrophobic beads have a

negative hydrophobic mismatch with the surrounding mem-

brane (t=t0 ¼ �0:22, or ;�20%).

Simulation conditions are identical to those in our earlier work

(18), with the exception of the number of membrane lipids,

which varies depending on the inclusion radius. Constant

vanishing tension, constant temperature Monte Carlo simula-

tions were conducted. Initial conditions were generated as in
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our earlier work (18): an equilibrated bilayer with 3334 lipids

had sufficiently many lipids removed to make room for a given

inclusion. The inclusion was then embedded in the membrane

and the system was equilibrated (Fig. 2). The average box

length was about ÆLæ¼ 30 nm for all systems, and the systems

contained from 2922 to 3308 lipids, depending on the size of

the inclusion. Inclusions were constrained to remain upright (no

tilting) to allow for the most elementary comparison to theory.

Analysis of data

At regular intervals throughout the simulation, lipid mole-

cules from the membrane were divided according to their

interface bead x and y coordinates into square bins with sides

about a molecule wide. The box length fluctuates (slightly)

during the course of the simulation, so the bin length does as

well, but number of bins (40 per side) was held constant. At

any given evaluation, nearly all bins contained exactly two

lipid molecules, one from each leaflet.

The thickness (t(x, y) 1 t0) for a given square bin was

defined as half the vertical distance between the two interface

beads. In the event that a bin contained more than one lipid

from a given leaflet, the heights of the coleaflet interface

beads were averaged before calculating the local distance

between opposing leaflets. In the event that a bin contained

no lipids from a given leaflet, the height of that leaflet at x, y
was estimated using linear extrapolation on neighboring

bins. Once t(x, y) was obtained, it was averaged over the

polar angle to obtain t(r), and finally t(r) was averaged over

the duration of the simulation.

The projected area Spr(x, y) for a given square bin was

defined as the average of the projected areas of the molecules

contained within. The projected area Spr of a given molecule

i was approximated by

SprðiÞ ¼
p

6
+

j

r
2

ij; (15)

where rij is the distance between the interface beads of molecule

i and molecule j, projected onto the xy plane, and the sum runs

over the six nearest neighbors in the same leaflet. The area

deformation profile was averaged like the thickness deforma-

tion profile. Equation 15 was verified to reproduce results of

more elaborate (triangulation-based) methods to within 1% for

several test cases and was adopted for numerical efficiency.

The volume deformation profile represents a product of the area

and thickness profiles: v(r) 1 v0 ¼ (t(r) 1 t0)Spr(r).

Derivatives of t(r) at protein contact were calculated by

fitting the profile to a fourth order polynomial, constrained to

contain the point (r ¼ R, t(R) ¼ t(R)). The derivative is

approximated by the derivative of the polynomial, evaluated

at the point of interest (34). The measured derivative could,

in principle, depend on the order of the polynomial, the size

of the binning window, and the range of the data included in

the fit. We avoided making arbitrary decisions for the last

two choices by using raw rather than binned data (as recom-

mended in Press et al. (34)), and using the whole profile,

rather than a subset close to the inclusion-membrane bound-

ary. The raw unbinned data oscillates over molecular length

scales (this is not apparent from the figures in this article,

which present binned data) and the fit order should be

sufficiently low that these oscillations do not affect the fit. On

FIGURE 2 (Left) Range of inclusion structures used in this present study. Simulations are run for two different thickness mismatches (both shown), and

seven different radii (smallest and largest shown) for a total of 14 simulations. A model lipid is also shown for comparison: the inclusion with four layers of

hydrophobic beads (top) is mismatched primarily because it has fewer hydrophobic beads than a pair of lipids, whereas the inclusion with six layers of

hydrophobic beads (bottom) is mismatched because it is rigid and the lipids are flexible. Hydrophobic beads are white, interface beads are gray, and hydrophilic

beads are black. (Right) Inclusions (gray) of radius R ¼ 3 nm embedded in membrane (cross section). The pinching of the membrane caused by negative

hydrophobic mismatch (top) and dilation caused by positive mismatch (bottom) are visible.
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the other hand, the fit order should be sufficiently high that

the important long wavelength features of the profile are

captured. Fourth order polynomials were found to simulta-

neously satisfy both criteria.

SIMULATION RESULTS

An earlier section derived a theory for inclusion-induced

deformations that considered the Gaussian curvature and

volume perturbations localized to the protein. In this section,

we present the actual simulated volume deformation profiles

v(r), and discuss both the range and R dependence of the

inclusion-induced volume perturbation. We then present

measurements on the thickness deformation profiles t(r), and

compare them against the analytical predictions made in that

earlier section (‘‘Theory’’).

Volume deformation

Fig. 3 compares v(r)/v0 to t(r)/t0 for both the positive and

negative mismatch cases and R ¼ 2.25 nm. The profiles

calculated from other values of R are qualitatively similar;

quantitative differences are discussed below. v(r)/v0 has been

linearly extrapolated to estimate the volume deformation on the

boundary, v(R)/v0. The extrapolation is necessary because our

binned data only provides the volume deformation a finite

distance (one-half bin) away from the boundary. (This is not an

issue with the thickness deformation profile because we assume

a thickness matching condition: the thickness of a lipid

arbitrarily close to the boundary on the lipid side is equal to the

thickness of the inclusion. Since we know the thickness of the

inclusion, we know the thickness of a lipid on the boundary.)

Fig. 3 presents v(R)/v0 for all studied values of R and both

mismatch cases. Regardless of the sign of t(R), v(r) is always

less than zero proximal to the inclusion. The extent of volume

nonconservation is considerably larger in the negative mis-

match case than the positively mismatched case. In both cases,

the magnitude of v(R) increases with R (Fig. 4); however, in the

10% mismatch case, v(R) is nearly flat for R # 3.75 nm. This

fact will help us in our extraction of kG and h. We comment

that the ratio of volume/thickness immediately yields the area

per lipid. The area per lipid in the vicinity of the protein is

found to be nearly constant and equal to the equilibrium lipid

area of the homogeneous bilayer for the negative mismatch

case. In the positive mismatch case, the area is compressed

relative to equilibrium.

Thickness deformation

To quantitatively compare the thickness deformations to the

theory derived in the earlier section, we need to know certain

elastic properties of the membrane (kc, kG, kA, c0, z, h). Our

earlier work (18) presents some of these parameters, as

extracted from homogeneous bilayers composed of the same

model lipids used in the work presented here (Table 1). kc

and z were calculated by measuring the height and thickness

fluctuation spectra, and then fitting the two spectra simul-

taneously to a theory consistent with that derived in this

work. kA was initially measured the same way, and then

adjusted (within the error bars) to reflect some of the out-

comes of this work, described below. c0 was calculated using

the stress profile of the homogeneous membrane as described

in Safran (27).

Beyond the known properties just discussed, this work

introduces kG and h, which also are presumed to be intrinsic

properties of the homogeneous bilayer and should, in prin-

ciple, be measurable from homogeneous simulations. Like

c0, kG does not appear in the fluctuation spectrum but can in

theory be obtained via the stress profile. However, there are

ambiguities involved in the stress profile expression. For a

tensionless membrane, the integral over the stress profile to

obtain c0 is independent of the location of the origin; this is

not the case when one integrates over the stress profile to

obtain kG. In addition, the usual expressions (27) assume the

monolayer is deformed as a stack of parallel sheets. Clearly

this is not the case of interest in the mismatch problem—the

midplane of the bilayer is flat and the interface with water is

curved. We did carry out a measurement of kG as prescribed

in Safran (27) using the neutral surface of each monolayer as

the origin and obtained kG ¼ �0.47 kc. Determination of kG

from experiment or simulation is well known to be a difficult

problem (20,35,37), which we do not attempt to solve in this

FIGURE 3 Volume deformation profile vðrÞ=v0

(solid line) and thickness deformation profile tðrÞ=t0
(dotted line) measured around inclusions set to have

either a positive 10% (left) or negative 20% (right)

thickness mismatch with the surrounding membrane;

these particular profiles are for inclusions of radius R¼
2.25 nm. A solid line connects points that were actually

measured, whereas a dashed line indicates a linear

extrapolation to the boundary of the protein. Circles

mark the boundary of the inclusion; the height of the

profile at the boundary is either known in advance (in

the case of tðRÞ or extrapolated (in the case of vðRÞ; see

text). The circles marking the estimates of vðRÞ=v0

represent the data points used in Fig. 4 for R¼ 2.25 nm.
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work beyond the estimate obtained from the stress profile

(and the alternative linear regression analysis discussed

below). The quantity h is related to the derivative of the

spontaneous curvature with respect to volume per lipid.

Measuring h in a homogeneous bilayer would require a series

of simulations with imposed volumes per lipid. Although you

might imagine a series of simulations at different pressures

to accomplish this, it is impossible to adjust pressure in our

solvent-free model. An alternative measurement via volume

fluctuations would converge so slowly as to be impractical at

present; the large energies associated with volume fluctuations

would require exceedingly long sampling times to obtain

meaningful results.

As an alternative to obtaining kG and h from homogeneous

simulations, we can extract these parameters based on the

theory presented in the earlier section. We have simulated

thickness deformation profiles for two sets of proteins with

varying R but constant t(R). For the case of the positively

mismatched proteins, we have identified a range of data points

with (nearly) constant v(R) (Fig. 4). The natural boundary

condition Eq. 10 suggests a method for collapsing this data

and calculating kG and h as well. Plotting trrjR versus trjR/R for

several values of R should yield a line with slope�(kc 1 kG)/

kc and intercept �2(c0 1 zt(R)/t0 � hv(R)/v0). Such a plot is

provided in Fig. 5, with the data points corresponding to the

boxed points in Fig. 4. The data is noisy but fairly linear.

Linear regression yields kG/kc ¼ �0.55 6 0.11 and h/v0 ¼
�0.78 6 0.02 nm�4. The value of kG is quite close to the

measurement from the stress profile, kG/kc¼�0.47, suggesting

that this is a viable method for extracting kG (and presumably h

as well). These values of kG and h were used in all comparisons

to analytical work described in the remainder of this section.

Even if we take our procedure for extracting kG and h to be no

more than a glorified process for identifying two fit parameters,

it is important to emphasize that these two parameters are used

to explain all 14 simulations. The parameters themselves were

extracted from only five simulations and do a good job in

reproducing the full collection of data.

Observant readers will realize that we use the general

boundary condition (Eq. 10) and not the condition specific to

a Heaviside function (Eq. 13) in our determination of kG and

h. The general expression is applied because we are ana-

lyzing actual simulation data without any additional as-

sumptions. The value of h we obtain may then be used with

Eq. 13 in conjunction with the homogeneous Euler-Lagrange

equation to provide a good approximation to the simulated

deformation profile. Physically, this approximation amounts

to assuming a Heaviside volume deformation at the protein

boundary (section ‘‘Theory’’). The theoretical curves dis-

cussed below all rely on the Heaviside approximation to

allow for analytical solution.

The average thickness deformation profiles t(r)/t0 for

R ¼ 0.75 � 4.5 nm for positive and negative mismatches are

shown in Figs. 6 and 7, respectively. In nearly all cases, the

membrane slightly ‘‘overshoots’’ the equilibrium thickness;

such nonmonotonic behavior has been observed previously

(18,21,22) in mesoscopic simulated systems and is consis-

tent with any theory in which the membrane incurs a bending

cost from mismatch (8).

Also shown are the predictions developed in the Theory

section (Eq. 7) with the parameters listed in Table 1. Our

FIGURE 4 Lipid volume deformation at inclusion-lipid boundary v(R)/v0

as a function of inclusion radius R for inclusions with either a positive 10%

or negative 20% thickness mismatch with the surrounding membrane. v(R)/v0

was determined using linear extrapolation of v(R)/v0 to the boundary, as

demonstrated in Fig. 3. As shown in the figure, v(R)/v0 is R-dependent,

especially in the �20% mismatch case, but the data points in the boxed

region are approximated to have constant v(R)/v0 for use in the extrapolation

scheme presented in Fig. 5 and discussed in the text.

TABLE 1 Elastic properties of membranes formed by the coarse-grained lipids used in this study

Parameter Value Description Reference

t0 2.4 nm Monolayer thickness *

S0 0.59 nm2 Area per lipid *

kc 1.4 3 10�19 J Bilayer bending modulus *

kG �0.76 3 10�19 J 2 3 monolayer saddle splay modulus y

kA=t2
0 0.94 3 10�19 J nm�4 Bilayer compressibility modulus *

c0 0.098 nm�1 Monolayer spontaneous curvature *z

z=t0 0.085 nm�2 Area renormalized spontaneous curvature *

h=v0 �0.78 nm�4 Volume renormalized spontaneous curvature y

*Brannigan and Brown (18).
yExtracted from Fig. 5 of this work.
zBrannigan and Brown (18) contains an error. The value reported here is correct.
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initial predictions using the value of kA=t2
0 reported in our

earlier work (18) (12 3 10�20 J/nm4) consistently predicted

that the membrane would return to the unperturbed thickness

slightly faster than it does; this is consistent with a mea-

surement of kA=t2
0 that is too high. The 95% confidence

interval on kA=t2
0 goes down to 9.4 3 10�20 J/nm4 (see our

earlier work (18) and using this value for kA=t2
0 leads to a

better match in all cases. This is the value used in the

predictions shown in Figs. 6 and 7 and listed in Table 1.

The predictions neglecting the Gaussian curvature and

volume deformations, which correspond to the model of A-E,

are shown for comparison (dashed lines in Figs. 6 and 7).

Because the Gaussian curvature is only influential for small

radius inclusions (as explained in the Theory section), the

final panels essentially represent the effect of h alone. Our

extension to the theory of A-E does not have a visually sig-

nificant impact on the predictions for 10% mismatch case.

This result is consistent with our earlier observation (18) that

10% mismatch data for one value of R (corresponding to the

third panel) was well described by the theory of A-E.

Nonetheless, if one looks closely, there is a clear difference in

the slopes of the profiles of the two theories as they reach the

inclusion boundary. The influence of kG tends to decrease the

contact angle, whereas h increases it for the positive mismatch

case. In the first panel of Fig. 4, the effects of kG and h are

actually canceling each other—if we drew one line with kG

turned off and one with h turned off, they would both be

distinguishable and on opposite sides of the (indistinguish-

able) lines currently drawn. (Such lines are not included to

keep the figure simple.)

The effects of our extensions to the theory of A-E are much

more visible for the �20% mismatch case (Fig. 7). Our

predictions (solid line) fit the data very well, whereas if we set

kG and h to zero (dashed line, corresponds to A-E), the

prediction returns to the homogeneous value significantly

faster than it should for all radii. The theory of A-E also predicts

a more substantial overshoot than we observe in simulation.

The discrepancies are well outside the error bars of the data and

the parameters. The Gaussian curvature is contributing to most

FIGURE 5 Boundary curvature plot for positively mismatched systems

with five smallest radii (boxed data points in Fig. 4). According to the natural

boundary condition (Eq. 10), a plot of trr versus tr/R evaluated at the

boundary of inclusions with several different radii R should yield linear data

with slope �(kc 1 kG)/kc and intercept �2(c0 1 zt(R)/t0 � hv(R)/v0). trr(R)

and t(R) were measured as described in the section ‘‘Simulations: analysis

of data’’. This plot results in an estimate of kG/kc ¼ �0.55 6 0.11

and h/v0 ¼ �0.78 6 0.02 nm�4.

FIGURE 6 Thickness deformation profiles for positively mismatched

proteins over a range of radii (R ¼ 0.75 nm to 4.5 nm; data for R ¼ 5.25 nm

is not shown due to space constraints but is qualitatively very similar to data

for R ¼ 4.5 nm). Circles are actual data from simulation. Solid lines

correspond to Eq. 7. Protein mismatch is t(R)/t0 ¼ 0.094. Membrane

parameters are in Table 1 for the solid lines; dashed lines are the same except

kG ¼ 0 and h ¼ 0, corresponding to the original theory of A-E. For the case

of positive mismatch, the theory presented in this article fares similarly to

A-E in prediction of the decay profiles.

FIGURE 7 Thickness deformation profiles for negatively mismatched

proteins over a range of radii (R¼ 0.75 nm to 4.5 nm; data for R¼ 5.25 nm is

not shown due to space constraints but is qualitatively very similar to data for

R ¼ 4.5 nm). Circles are actual data points. Solid lines correspond to Eq. 7.

Protein mismatch is t(R)/t0 ¼ �0.22. Membrane parameters are in Table 1 for

the solid lines; dashed lines are the same except kG ¼ 0 and h ¼ 0,

corresponding to the theory of A-E. For this negative mismatch case, the

theory presented in this article significantly improves upon the results of A-E.
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(;80%) of the improvement, relative to A-E, in the prediction

for the smallest radius inclusion. The remaining 20% improve-

ment is due to volume nonconservation effects. The role of

Gaussian curvature decreases quickly with inclusion radius: it

accounts for about half of the improvement for the second

smallest radius inclusion, ;10% of the improvement for the

third smallest radius inclusion, and makes an imperceptible

contribution to the profile for larger radius inclusions. At the

larger radii, the theory presented here improves upon A-E

solely because of volume nonconservation effects. For these

membranes, the Gaussian curvature plays a larger role for a

negatively mismatched inclusion than a positively mismatched

inclusion of similar radius due to the sign of the spontaneous

curvature. For a positively mismatched inclusion, the sponta-

neous curvature and the Gaussian curvature work together to

flatten the contact angle; for a negatively mismatched inclu-

sion, the spontaneous curvature favors a steep contact angle,

whereas the Gaussian curvature still favors a flat one.

FREE ENERGY OF MULTIPLE INCLUSIONS

A complete understanding of the (free) energetics associated

with the interaction between multiple inclusions would allow

for prediction of the phase behavior in multi-protein

assemblies, the equation of state for a two-dimensional fluid

of embedded proteins, and related properties associated with

a thermodynamic many protein system. Unfortunately, the

true energetics of a many protein system include many

components, of which the elastic energies considered in this

work comprise only a single part. Furthermore, the nature of

our model ensures that the interaction energetics between an

assembly of proteins is not pairwise additive, which makes a

complete understanding of the thermodynamics in just the

elastic problem difficult. This section is included to demon-

strate two points while largely avoiding the grander questions

outlined above. First, it is shown that the effects of Gaussian

curvature strongly influence the interactions between inclu-

sions. Second, we demonstrate the nonpairwise additivity of

the energies in these systems. These two facts call into ques-

tion some of the original findings of A-E and lead us to

speculate that finite kG is essential to understanding the aggre-

gation of proteins as seen experimentally.

When calculating the deformation profile around a single

inclusion in a large membrane patch (L=R� 1), the details of

the boundary conditions far from the inclusion have no effect

on the resulting deformation profile (so long as they allow the

membrane to relax to equilibrium thickness far from the

inclusion). In our analytical calculations of the deformation

profiles, we have used the boundary conditions of A-E at L/2

for convenience in calculations and consistency with earlier

work. In determining membrane mediated attractions/repul-

sions among inclusions, however, these boundary conditions

are not completely consistent as applied by A-E. Strictly

speaking, Eq. 14 corresponds to the free energy of one

inclusion-induced deformation when a cylindrical inclusion

of radius R is surrounded by a radially symmetric deforma-

tion. A-E used this approximate free energy, corresponding

to imposing an unwarranted cylindrical symmetry on the

problem to estimate the interaction between two proximal

inclusions at a separation of L. Compared to exact numerical

calculations for the interaction energy between two inclu-

sions, we find the approximate approach generally results in

an energy scale that is too large, deviating qualitatively from

the exact solution for small inclusion separations. In what

follows, energetics were calculated exactly numerically; the

approximate analytical scheme of A-E is abandoned for this

portion of our work.

Our numerical calculations are similar to those introduced

in our earlier work (18). We calculate the elastic interaction

energy for any configuration of multiple cylindrical inclu-

sions by minimizing the Hamiltonian of Eq. 2 discretized

over a lattice. More precisely, we keep the energy density

implied by the integrand of Eq. 2 but use an integration

region appropriate to multiple inclusions. In practice, we use

a large square region with holes punched out to accommo-

date the inclusions. There is no longer radial symmetry to the

problem and we use general expressions for calculating H, K,

etc. The lattice is composed of square lattice sites with an

associated height; each site is defined as either a membrane site,

an inclusion site, or a membrane-protein boundary site. The

membrane sites are free to vary their height in the minimization

process; boundary sites remained fixed. Inclusion sites can vary

their height, but their variation changes the total system energy

only through second derivatives defined at nearby boundary

sites. This scheme allows us to fix the height of the inclusion

without fixing the membrane slope or curvature at the inclusion

boundary. Periodic boundary conditions are assumed for the

edges of the lattice; however, the box is always chosen big

enough that this choice makes no impact on final results—it is

merely a convenient choice for the numerics. For the case of a

single inclusion, the numerical scheme reproduces the analyt-

ical results of the Theory section.

The role of the Gaussian curvature in membrane-mediated

interactions between inclusions was investigated by calcu-

lating the free energy of bilayer deformation as a function of

inclusion separation. To calculate the pair interaction energy,

two circular inclusions of radius R ¼ 0.75 nm were defined

in the elastic lattice, with their centers separated by a distance

r in the x direction. Separate minimizations were conducted

for r ranging from 2R to Lx/2, where Lx, the box length, is

chosen such that the inclusions are effectively noninteracting

at separations of Lx/2. This procedure provides the mem-

brane-mediated interaction potential energy w(2)(r) between

two inclusions:

w
ð2ÞðrÞ ¼ N : r , 2R

FðrÞ � FðLx=2Þ : r . 2R
:

�
(16)

Fig. 8 compares w(2)(r) when kG is neglected and when kG

is included for the case of negatively mismatched proteins.
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When kG is neglected (dashed line), the Hamiltonian

corresponds to that of A-E (we choose h ¼ 0 in these sim-

ulations to concentrate on Gaussian curvature effects alone).

Though we do not assume the radial symmetry of A-E,

our qualitative conclusions are very similar so long as kG is

neglected. When two negatively mismatched inclusions

reside in a membrane with positive spontaneous curvature,

the free energy (neglecting kG) is minimized when the

inclusions assume a finite spacing; dimerization is very un-

favorable. This prediction changes dramatically when the

Gaussian curvature is added (solid line). With kG included,

dimerization is favored by a few kBT, although there is still a

kinetic barrier to its occurrence.

From w(2)(r), we can immediately calculate the second

virial coefficient B2 for a collection of proteins dispersed in a

membrane (38):

B2 ¼ �p

Z N

0

rdrðe�wðrÞ=kBT � 1Þ: (17)

Fig. 9 compares B2 calculated with h ¼ 0 and kG ¼ 0 (the

Hamiltonian of A-E) and calculated with h ¼ 0 and kG as in

Table 1 over a range of small positive and negative mismatches

used in our coarse-grained simulations and commonly used

in experiments. In this calculation, kBT corresponds to the

temperature used in the coarse-grained molecular simula-

tions of the previous sections, so, for instance, kc ; 35kBT.

Regardless of whether kG is considered, B2 becomes very

negative for t(R)/t0 . 0.05: inclusions with such mismatches

feel a strong attraction that increases with the size of the

mismatch. This is consistent with experimental data on

bacteriorhodopsin, porin, and other proteins (4,5) that shows

that sufficiently mismatched proteins tend to dimerize or ag-

gregate. In fact, B2 is so negative for t(R)/t0 ¼ 0.10 that at the

density used in the molecular simulations, the virial expansion

is negative at second order.

Experimentally, proteins aggregate at both positive and

negative mismatches (4,5), although the magnitude of the

critical mismatch is not necessarily the same for both posi-

tive and negative cases. In our calculations, it is crucial to

include finite kG to reproduce this qualitative effect. When kG

is neglected, the predicted B2 is very asymmetric: effective

attraction between inclusions increases quickly with positive

mismatch magnitude; the attraction at large negative mis-

matches is only weakly sensitive to mismatch and is actually

weaker than the attraction at zero mismatch. This situation is

improved significantly by including kG: when kG is included,

the attraction between inclusions with large negative mis-

matches is much stronger than the attraction between non-

mismatched inclusions, and this attraction is quite sensitive

to mismatch magnitude. We comment that A-E extended the

arguments presented here by going on to calculate the radial

distribution function for a two-dimensional fluid of embed-

ded proteins. We have not attempted this here because our

calculations indicate the importance of many-body effects in

the elastic energy of mismatched protein assemblies (see

below). The treatment presented in A-E assumes two body

forces and is not easily extended to the more general case.

An advantage of calculating w(r) numerically, rather than

analytically, is that multi-body interactions can also be in-

vestigated. For instance, consider two inclusions separated

by the minimum separation 2R, and a third separated by

distance r from each (see Fig. 10). Multiple lattice simula-

tions (as just described) of this configuration with different

values of r were carried out to determine the potential energy

of this geometry. Fig. 10 compares the actual potential en-

ergy among three inclusions w(3)(r) to the potential energy if

it were pairwise additive, i.e., if w(3)(r) ¼ w(2)(2R) 1 w(2)(r)

FIGURE 8 Two-body potential energy w2(r) as a function of distance r

between two negatively mismatched inclusions. Both lines have h¼ 0, solid

line has kG as in Table 1, whereas dashed line has kG¼ 0 and corresponds to

the Hamiltonian of A-E. All other membrane parameters are as in Table 1.

Here kBT corresponds to the temperature used in the coarse-grained

molecular simulations of the previous sections (i.e., kc ; 35 kBT). Protein

parameters are R¼ 0.75 nm, t(R)/t0¼�0.20. The theory of A-E predicts that

the free energy minimum is achieved at a finite spacing between inclusions,

whereas for the theory presented in this article, the free energy minimum is

achieved by complete dimerization.

FIGURE 9 Second virial coefficient given by Eq. 17 as a function of

mismatch, for inclusion with R ¼ 0.75 nm and v(R)/v0 ¼ t(R)/t0. Membrane

parameters are in Table 1, with the following exceptions: dashed line has

h¼ 0, kG¼ 0 and consequently represents the Hamiltonian of Aranda-Espinoza

et al. (13), and solid line has h ¼ 0 but finite kG. Here kBT corresponds to

the temperature used in the coarse-grained molecular simulations of the

previous sections (i.e., kc ; 35 kBT).
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1 w(2)(r). The figure shows that there is a several kBT
difference between these two curves. w(3)(r) is lower than

w(2)(2R) 1 2w(2)(r) in both the barrier region and the

attractive region: it is significantly easier to form a trimer

than three dimers. This is just an example of the importance

of multi-body effects in determining aggregation and the

suitability of this method for their investigation. Studies

(24,39) of multi-body effects have previously been carried

out for asymmetric inclusions. The work presented here in-

dicates that many-body effects are also important in the case

of symmetric but hydrophobically mismatched proteins.

DISCUSSION

This article presents an extension to the elastic theory of A-E,

and most all of our discussion has been directed toward com-

parison with that model. In earlier work (18), we argued that

the handling of boundary conditions and explicit treatment of

monolayer spontaneous curvature in the theory of A-E led to

the best agreement with simulation and experiment among

proposed elastic models in the literature (8,10–15,17). The

simulation data supporting this conclusion included fully

atomic simulations for the fluctuation spectra of homo-

geneous membranes and a coarse-grained simulation of the

deformation around a single positively mismatched protein

inclusion. Upon more extensive simulation of protein

inclusions reported on in this work, it became clear that the

theory of A-E was not capable of explaining inclusion

induced deformations at negative mismatch (at least for our

coarse-grained lipid model). The improved theory presented

here is capable of fitting the profiles around all 14 of the

cylindrical protein shapes we simulated (including the case

considered in our earlier work (18)).

The introduction of a finite saddle splay modulus, kG, and

the possibility for lipid volume deformations are both nec-

essary to obtain agreement with simulation over the full

range of protein sizes. However, neither of these additions

alters the predictions of the model presented in our earlier

work (18) in the context of homogeneous bilayer fluctuations

over a closed surface. The contribution of Gaussian curva-

ture over a closed homogeneous surface can be rigorously

neglected (see next paragraph). Volume fluctuations in the

homogeneous bilayer will, at most, lead to renormalization

of physical constants already present in the models of A-E

and in our earlier work (18). This renormalization should be

very slight, due to the large energy scales associated with

volume compressibility; only by imposing a large volume

perturbation in the mismatched system are significant devi-

ations from v0 observed. The theory presented here thus

improves upon our ability to predict the behavior of inclusion

profiles, while leaving unchanged the success of our earlier

model in predicting fluctuations in homogeneous systems.

Our treatment of Gaussian curvature energetics seems

mathematically unambiguous and physically sound. The

energy density of a curved fluid surface should always in-

clude such a term, unless by some coincidence the saddle

splay modulus is vanishingly small in magnitude (27,28). It

is true that this term integrates to a constant (and may thus be

ignored for many purposes) if the surface is closed, never

changes topology, and is homogeneous in the sense that kG is

everywhere constant (27,28). These conditions are not met

for a bilayer with an inserted inclusion. In this article, we

consider the membrane surface as ending at the protein

boundary, so the surface is not closed. Physically, the

situation could also be viewed as a closed surface, but with

inhomogeneity in kG due to the rigidity of the protein. From

either perspective, there is no good reason to neglect

Gaussian curvature in this problem (although there is a

well-established historical precedent for doing so). Readers

familiar with differential geometry may be surprised that our

expression for the energy of the surface (Eq. 14) does not

explicitly display the expected (28) term proportional to kG

times the line integral of the geodesic curvature around the

protein boundary. In fact, this omission is only apparent.

Equation 14 does include this term, but also includes

additional terms with kG due to the natural boundary

conditions assumed in our solution. As written for closest

comparison with A-E, everything is jumbled together and the

contribution of individual effects is difficult to single out.

In contrast to the question of Gaussian curvature, our

treatment of lipid volume deformations is less robust.

Although lipid volume is obviously not constant near the

protein boundary in simulations, it is not clear how to best

include this knowledge in our model. Lacking a theory for

the equation of state of an inhomogeneous lipid fluid, we

have introduced two major approximations. We assume

volume deformations in our system are a given—we do not

predict them, but rather extract them from simulation.

FIGURE 10 Comparison between three body interaction energy if energy

were pair-additive (w(2)(2R) 1 2w(2)(r), dashed line) and actual result

(w(3)(r), solid line). Inclusions are configured as shown: two inclusions are

separated by the minimum spacing and a third is brought toward the dimer

while being kept equidistant from each of the other inclusion centers. The

solid line does not extend to minimum separation because an equilateral

triangle with sides of length 2R is not possible on our square lattice. All

parameters are the same as those used for the solid line in Fig. 8.
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Further, we approximate the true volume deformation profile

with the step profile of Eq. 12. In test cases, we verified

numerically that the replacement of the true profile with the

step function worked well. It is not clear why this should be

the case. The implication is that deformation profiles are

much more sensitive to the effect of finite v in the boundary

conditions than in the Euler-Lagrange equation itself. We are

not aware of prior studies to consider the effects of

nonconstant lipid volume. Although simplistic, the approach

adopted in this work seems a promising step toward

including these important effects in future theories. There

is room for improvement along these lines.

The scheme presented for measuring the constants h and

kG relies on our theoretical model, using analytical predic-

tions to fit these two constants over a limited set of our

inclusion simulations (those with approximately constant

v(R)). Given the agreement in kG as obtained from the stress

profile calculation and our fitting technique, it is tempting to

believe in both the number itself as well as the techniques

used to obtain it. Additionally, the numerical value obtained,

suggesting the monolayer saddle splay modulus is on the

order of the negative monolayer curvature modulus, is in

agreement with rough estimates for the behavior of lipid

systems (27). It should be stressed, however, that both

methods of calculation for kG are somewhat suspect. The

stress profile calculation tacitly assumes a geometry not quite

appropriate to our simulations. The linear extrapolation

technique relies on a limited set of points and the validity of

our elastic model. It is difficult to extract the saddle splay

modulus from experiment or simulation (35–37) and we are

unaware of a method better than those applied here. There is

still work to be done in optimizing a method of calculation

for kG from simulations. Using the definition of h combined

with the values reported in Table 1, we conclude that the

volume derivative of the spontaneous curvature has the value

c0v
¼ 0:92 nm�4. The positive sign of c0v

indicates that the

lipids prefer a greater curvature if they have a larger volume

(at constant thickness). Since the spontaneous curvature is

representative of the shape of the molecule, this suggests that

given a larger volume, the lipids assume a more asymmetric

or cone-like shape.

It is now becoming possible to stringently test elastic

models for membrane phenomena with direct simulations.

Simulations are ideally suited to testing analytical theories

because the relevant theoretical quantities can be directly

inferred from the data. In comparing to experiment, the cor-

respondence is often indirect. This work represents an initial

step toward the refinement of analytical models based on

simulation data. Further work along similar lines is being

pursued.

APPENDIX: SOLUTION TO EQ. 6

Equation 6 was solved using Eq. 12 for the volume profile and Eqs. 8–11 for

boundary conditions; the solution was determined both analytically, using

Green’s function methods, and numerically, using a pseudo-step function.

The same solution results from solving the homogeneous form of Eq. 6, but

using Eq. 13 instead of Eq. 10 for the natural boundary condition.

For reference, we include the actual expressions for the frequencies

a6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

z

t0

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

z

t0

� �2

� kA

kct
2

0

svuut
; (A1)

and coefficients

a1 ¼ �a�Y1

L

2
a1

� �
(A2)

a2 ¼ a�J1

L

2
a1

� �
(A3)

a3 ¼ a1 Y1

L

2
a�

� �
(A4)

a4 ¼ �a1 J1

L

2
a�

� �
(A5)

of the solution indicated in Eq. 7. The constants appearing above are defined

by

and

b0ða6Þ ¼ J1

L

2
a6

� �
Y0ðRa6Þ � J0ðRa6ÞY1

L

2
a6

� �
(A7)

b1ða6Þ ¼ J1ðRa6ÞY1

L

2
a6

� �
� J1

L

2
a6

� �
Y1ðRa6Þ: (A8)

We see that introducing kG complicates matters considerably (Eq. A6 greatly

simplifies when kG ¼ 0), whereas introducing h merely renormalizes the

other spontaneous curvature terms.
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