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ABSTRACT Determining tissue structure and composition from the behavior of the NMR transverse relaxation during free
induction decay and spin echo formation has seen significant advances in recent years. In particular, the ability to quantify
cerebrovascular network parameters such as blood volume and deoxyhemoglobin concentration from the NMR signal dephasing
has seen intense focus. Analytical models have been described, based on statistical averaging of randomly oriented cylinders in
both the static and slow diffusion regimes. However, the error in estimates obtained from these models when applied to systems in
which the statistical assumptions of many, randomly oriented perturbers are violated has not been systematically investigated.
Using a deterministic simulation that can include diffusion, we find that the error in estimated venous blood volume fraction and
deoxyhemoglobin concentration obtained using a static dephasing regime statistical model is inversely related to the square root
of number of blood vessels. The most important implication of this is that the minimum imaging resolution for accurate
deoxyhemoglobin and blood volume estimation is not bound by hardware limitations, but rather by the underlying tissue structure.

INTRODUCTION

A resurgence in the use of magnetic field inhomogeneity

induced NMR signal dephasing to determine underlying

tissue parameters can be seen in the literature (1–8). A number

of analytical methods have been developed to describe the

effects of the cerebral vascular network and similar sized field

perturbers on the NMR signal. The cerebral vascular network

is particularly interesting in light of the widespread use of

blood oxygenation level dependent (BOLD) imaging for

functional studies of the brain. Understanding the relationship

between underlying hemodynamic changes and the BOLD

effect could provide significant additional insight into quan-

tifying the changes that occur during brain function.

Biophysical models have been used to characterize the

NMR signal relaxation behavior. The first Monte Carlo

(MC) model was developed by Ogawa et al to quantify the

BOLD effect (9) and a refined MC simulation was developed

by Boxerman et al (10). The Anderson-Weiss mean field

theory has been used to predict spin echo and gradient echo

signal (11). The Gaussian approximation of the spin-phase

distribution was also used in a two-compartment model

presented by Sukstanskii and Yablonskiy (6). Analytical ex-

pressions for the signal evolution due to the cerebral vascular

network have also been developed. Yablonskiy and Haacke

(1) developed a model for the static dephasing regime, which

was extended to the slow diffusion regime by Kiselev and

Posse (12). However, the use of a statistical model for the

vascular network is required for these analytical approaches

that seek to model realistic tissue parameters. The Yablonskiy

and Haacke (1) model has been used to estimate in vivo

deoxyhemoglobin and blood volume values, because it does

not require vessel radius distribution information inherent in

including diffusion (12). The theoretical equations have also

been analyzed in a phantom study using polyethylene fishing

line in a doped water solution (5). However, controlling for

radius, number of segments, volume faction, and diffusion is

impractical in both in vivo and phantom studies. The error in

estimates obtained with statistical models when their central

assumption of many randomly oriented, magnetically non-

interacting vessels is broken has not been investigated.

Because detailed vessel morphology is not readily obtain-

able, models based on statistical averaging demonstrate the

most promise for in vivo application. Issues arising from

macroscopic inhomogeneity, signal/noise, and diffusion

effects can be mitigated with pulse sequences and hardware

advances. However, the basic geometry of the vascular net-

work presents fundamental limits to the application of sta-

tistical averaging based models that are not well understood.

A better understanding of the fundamental limits of these

models can provide insight into approaches for other con-

founding artifacts.

A three-dimensional simulation of NMR signal has been

developed based on the two-dimensional deterministic diffu-

sion model first proposed by Bandettini and Wong (13).

Deterministic simulations are computationally less intense

than the MC simulation and yet not bound by the assumptions

inherent in analytical models. These simulations are therefore

ideally suited to investigate the error introduced when

underlying assumptions are violated as well as investigating

diffusion and intravascular effects.
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Using these simulations, the effect of the number of vessels

on the accuracy of venous blood volume containing de-

oxyhemoglobin § and deoxyhemoglobin concentration [Hb]

estimates obtained using a static dephasing analytical ex-

pression (1) for signal evolution is determined. The rela-

tionship between vessel radius and error in estimates of [Hb]

and § due to diffusion is also characterized.

THEORY

Analytical model

The elegant analytical description of NMR signal in a two-

compartment model consisting of randomly oriented in-

finitely long magnetized cylinders (i.e., blood vessels)

embedded in a medium (i.e., tissue) developed by Yablonskiy

and Haacke (1) predicts two time domains for signal re-

laxation. For a blood vessel network in tissue, where fully

deoxygenated blood has a susceptibility difference Dx com-

pared to tissue, the transition between the short time domain

and the long time domain occurs at ;1.5 tc, where

tc ¼ ðdvcÞ�1 ¼ g
4

3
pDxð1� YÞB0

� ��1

; (1)

is the critical time and Y is the hemoglobin saturation (Y ¼
1 when fully saturated with molecular oxygen). During the

short time domain, the log-linear space signal decay is

predicted to have a quadratic dependence on time, whereas

during the long time domain it has a linear dependence. The

time course during a spin echo is therefore given by

SðtÞ ¼ e
�R2 t

S0e
�Rst

2
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>>>>>>:

(2)

where S0 is the initial signal, S09 is the spin echo signal, § is

the blood volume fraction, RS is the short time domain re-

versible decay constant, R29 is the long time domain reversible

decay constant, and R2 is the irreversible transverse relax-

ation constant. The allowance for different values of S0 and

S09 allows for imperfect radio frequency refocusing, which is

inherent to real experiments. The tissue concentration of

hemoglobin is given by

½Hb� ¼ 3R92

g4pxM;HbB0

; (3)

where xM,Hb is the molar susceptibility of deoxyhemoglobin.

Oxygenated hemoglobin is assumed to have the same

susceptibility as surrounding tissue. Pauling reported an

effective magnetic moment of 5.46 Bohr magnetons per

heme (14) from which a molar susceptibility of 48.1 3 10�6

M�1 in cgs units can be calculated (15).

Simulations

Bandettini and Wong originally detailed the deterministic

diffusion model for two-dimensional problems (13). The

NMR simulation uses three-dimensional spatial grids that

represent the complex valued transverse magnetization M,

the relaxation and precession R, and a Gaussian diffusion

kernel D. Iterative multiplication and convolution of these

three-dimensional arrays according to

Mk¼ ðMk�1 3RÞ �D (4)

allows the calculation of the magnetization at the kth time

point Mk. The operator ‘‘3’’ is defined as point wise

multiplication of arrays and ‘‘*’’ is the convolution operator.

M1 is the initial magnetization, which is assumed uniform

and real everywhere. This assumption implies a uniform

proton density and ideal excitation. The implementation of the

three-dimensional convolution requires the use of the Fourier

transform to be computationally practical. The practical im-

plementation of Eq. 4 is therefore

Mk¼ F
�1½F½ðMk�1 3RÞ�3F½D��: (5)

The net voxel magnetization, which defines the NMR

signal, for the kth time point is the sum of all the complex

values in the Mk array:

Sk ¼+
xyz

Mxyz;k: (6)

The Gaussian diffusion kernel is derived from the Einstein

equation and the Gaussian distribution in three dimensions.

D is define as the probability distribution for the location of a

molecule moving with an isotropic diffusion coefficient D
for a time dt and is given by

Dxyz¼
1

4pDdt

� �3
2

e
�ðx2

1y2
1z2Þ=4Ddt

; (7)

where x, y, and z are the three Cartesian coordinates of each

array position.

R is defined as

Rxyz¼ e
�iDvxyzdt e

�dt=T2;tissue for Pxyz¼ 0

e
�dt=T2;blood for Pxyz¼ 1

;

�
(8)

where Dv is the induced frequency offset and P defines the

positions occupied by the blood vessel network. P is defined

to be 1 everywhere occupied by a blood vessel and 0 else-

where. T2,tissue was 66 ms and T2,blood was computed from

literature values based on oxygenation (16). To perform sim-

ulations in which the intravascular signal was suppressed,

T2,blood was set to zero. All vessels are assumed to be freely

permeable to water, and the intravascular suppression does

not address the radius-dependent vessel permeability, but it

does remove the rapidly decaying intravascular signal. For a

single blood vessel of radius R and angle u relative to the

main magnetic field, the induced frequency offset DvV is

given by
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DvV ¼ 2pDxð1�YÞv0

R
2

r2 cosð2fÞsin
2ðuÞ for r . R

cos
2ðuÞ� 1

3
for r , R

;

8<
:

(9)

where Dx is the susceptibility difference between fully

deoxygenated blood and tissue, Y is the fractional oxygen-

ation of blood, r is the perpendicular distance to vessel, and

f is the azimuthal angle in the plane perpendicular to the

vessel. Blood vessels are assumed to be infinitely long cyl-

inders passing through the voxel. The principal of superpo-

sition allows the total frequency offset Dv to be calculated as

the sum of DvV for each blood vessel.

The number of vessels in a network is derived from the

nominal blood volume desired. The average blood volume

for a vessel of radius R in an isotropic voxel of dimension Dx
is approximately DxpR2. This is only an approximation since

the vessels are randomly distributed and oriented within the

voxel and it is only exact for orthogonal vessels (which, by

definition, do not intersect). Therefore, the number of vessels

required to desired blood volume can be estimated using

n� §Dx
2

pr
2 : (10)

For each set of vessel distributions, the actual volume

fraction of the n vessels was computed and used in sub-

sequent comparisons.

All simulations where conducted with a static magnetic field

of 4 T, spin echo time of 90 ms, uniform blood oxygenation

of 50%, hematocrit of 0.4, and 256-point isotropic three-

dimensional grid. To generate a random distribution of ves-

sels, the location in three dimensions was assigned from a

uniform random distribution over the entire grid. The

azimuthal angle f was assigned from a uniform random dis-

tribution from 0 to 2p, and the angle u was assigned from a

sin(u)/2 random distribution. Vessel crossing was not pre-

vented, since the real vascular network contains branching

patterns.

Model fitting

Simulation time courses were fit to analytical static dephas-

ing model (Eq. 2) in log-linear space using linear least

squares to generate estimates of [Hb] and §. The fitting

routine solves for six parameters: S0, S09, §, RS, R29, and R2.

Equation 3 was used to obtain [Hb] from the fitted R29.

Simulation computational accuracy

There is a lower limit on the time step and diffusion that can

be accurately simulated for a given grid size and resolution.

Small time steps and low diffusion values can result in

numerical delta functions for large voxels with coarse grids,

i.e., low-resolution grids. Large time steps and high diffusion

can result in diffusion kernel that is larger than the sampling

grid. The diffusion kernel must be smaller than the total grid

size Dx. This means that the kernel must be less than the

machine precision emachine, the smallest increment that can be

computed, at the edge of the grid or that

e
�Dx

2

16Ddt ,emachine: (11)

To avoid numerical delta functions as diffusion kernels,

the minimum probability at the nearest neighbor pmin is

defined such that

e
�ðDx=mÞ2

4Ddt .pmin; (12)

where m is the number of grid points. Based on initial

observation, pmin was set at 2 3 10�5 for all simulations.

This means that to maintain numerical stability,

ðDx=mÞ2

�4logðpminÞ
,Ddt ,

Dx
2

�16logðemachineÞ
: (13)

Simulation validation

Simulations with linear magnetic field gradients were

performed to test the accuracy of the implementation. The

effect of a linear gradient Gx on the free induction decay of a

voxel of size Dx is well understood and can be expressed

analytically (17,18)

SðtÞ ¼ e
�g

2
G

2
xDt

3
=3

sinc
g

2
GxDxt

� �
e
�R2 t

: (14)

The signal that occurs at a spin echo time t has also been

characterized (19):

SðtÞ ¼ e�g
2

G
2
xDt

3
=12e�R2t

: (15)

It was determined that there is a grid size dependent error

that is independent of diffusion and arises due to the numer-

ical integration inherent in the simulations. This can be readily

observed by considering the signal Eq. 14 without diffusion

and R2 decay:

SðtÞ ¼
Z Dx=2

�Dx=2

e
�igGxt

dx¼Dx sinc
g

2
GxDxt

� �
: (16)

However, if Eq. 16 is solved using an N point numerical

approximation, there is an additional error e related to the

regular sampling of the linear gradient given by

e¼ 1

sinc gGx
Dx
2N

t
� �

 !
: (17)

From Eq. 9, it can be calculated that the maximum

frequency offset vmax that occurs around a vessel is

vmax ¼ 2pv0ð1�YÞDx: (18)

At 4 T and 50 % oxygenation, vmax ¼ 56 Hz. If this

frequency offset is assumed to be distributed over 1.2 mm

voxel in a 7 mm resolution simulation, because a three-

dimensional sampling does not regularly and symmetrically
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sample the radial decay around a vessel and there are

multiple perturbers with different spatial sampling, the

expected error due to numerical integration is 0.6% for a

135 ms simulation.

Simulations of 1.2 mm voxels with a linear gradient of 0.1

Hz mm�1 using a 256-point grid had errors of ,3 % at the spin

echo location compared to the analytical solution given by

Eq. 15 for diffusion values in the 0.8–1.2 mm2 ms�1. The im-

plementation of diffusion using the Fourier transform convo-

lution also makes the simulation prone to edge effects that

occur due to the assumption of repeating space. By performing

simulations with various diffusion rates and sampling only the

central region of the simulation space to obtain the signal, it

was determined that edge effects of the Fourier transform be-

came apparent after 135 time steps when the effective diffusion

kernel size, in which the diffusion kernel was nonzero,

exceeded 0.7 times the number of the unsampled edge pixels.

The edge effect was more pronounced with larger gradients

because of the larger error occurring at the edges due to the

assumed repetition. In random samples, such as blood vessel

networks, this effect would be significantly reduced since a

repeated random distribution would provide a reasonable

approximation of a continuous random distribution. For the

simulations conducted, the effective diffusion kernel was

always smaller than 0.7 times the unsampled edge voxels.

METHODS

Number of vessels

To estimate the effects of the statistical assumption of a large number of

vessels, simulations with 1 ms temporal resolution and without diffusion (i.e.,

static dephasing) were conducted for nominal blood volumes of 0.5, 1.0, 1.5,

2.0, 2.5, and 3.0% and vessel radii of 2, 4, 6, 8, 15, and 20 mm. The grid

representing a voxel was 1 mm isotropic and the entire grid was summed to

obtain the net magnetization. The vessel network was described over a 1.3

mm concentric cube. Allowing vessel position outside the sampling grid

prevents sparsely populated outer regions that would result due to random

positioning and orientation. Simulations were conducted both with and

without intravascular signal suppression. Thirteen vessel networks with

different random orientations and positions were used for each combination

of vessel radii and blood volume. The resulting signal time courses were fit to

the static dephasing model to estimate [Hb] and §.

Diffusion

Diffusion simulations used a 256 point 1.5 mm isotropic grid with a time step of

1 ms. The vessel network was defined over a 1.8 mm cube and the summation for

the voxel net magnetization used the central 1.2 mm portion of the grid. Using

only the central portion of the grid prevents the inclusion of error prone edge

effects. The fast Fourier transform assumes a repeating structure, resulting in

errors in the peripheral grid points, so our summation of the central region avoids

this problem. This affects all numerical convolution algorithms. Simulations

using diffusion coefficients of 0, 0.8, 1.0, 1.2, and 2.5 mm2/ms were performed

with vascular networks generated using vessel radii ranging from 2 to 50 mm.

Dual network

To determine the effect of combined vessel networks, two vessel networks

were overlaid to simulate capillary and draining venule networks. The first

network consisted of 2579 vessels with 2 mm radii placed on a 1.5 mm

isotropic grid and occupying ;1% of the 1.2 mm isotropic sampling voxel.

The second network was 92 vessels of 15 mm radius that occupies roughly

2.5% of the sampling volume. The exact blood volume depends on the

random orientation and position of the blood vessels. Each vessel network

was used for a separate simulation and then combined in a third simulation.

This set of three simulations was repeated with six random orientations and

positions of vessels for 18 simulations in total.

RESULTS AND DISCUSSION

Number of vessels

Using the static dephasing model (Eq. 2), simulations indi-

cate that the standard deviation over the 13 vessel networks

of the relative error in predicted concentration of deoxy-

hemoglobin, eHb, and blood volume fraction, e§, have a linear

relationship with the square root of the number of blood

vessels in a voxel with a slope of 0.54 6 0.03 and 0.35 6

0.02, respectively (Fig. 1). The coefficient of determination

R2 was 0.85 for both eHb and e§. The standard deviation

provides an estimate of the range of relative errors expected

for predications obtained from vessel networks, in the

absence of systematic errors. This range reflects the relative

error that can be expected from predications obtained from a

single vessel network configuration with a finite number of

vessels, and is therefore critical to understanding the validity

of predications obtained from real vascular networks.

FIGURE 1 Standard deviation of the relative error in [Hb] (closed) and

blood volume fraction (open) is inversely proportional to the square root of

the number of vessels with constants of proportionality of 0.54 6 0.03 and

0.36 6 0.02, respectively.
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Blood volume fraction was systematically underestimated

by 31.2 6 0.2% if the intravascular signal was not sup-

pressed and the initial free induction decay was used in es-

timating §. The fit of the analytical model to simulated data

shown in Fig. 2 demonstrates the significant deviation that

occurs during the early free induction decay. This is due to

the rapid decay of vessel signal due to the high transverse

relaxation rate, which leads to an increased signal only

during the initial short time domain free induction decay. For

times greater then tc, which are used in calculating [Hb], the

intravascular signal has almost completely decayed. How-

ever, the estimate of § depends strongly on an accurate signal

within the short time domain. If only the spin echo and not

the initial free induction decay is used to estimate [Hb] and §,

the blood volume is not underestimated because intravascu-

lar signal has completed decayed before the spin echo. The

variance of the relative error in § and the [Hb] estimate were

insensitive to intravascular signal and inclusion of initial free

induction decay in fitting because of the systematic nature of

the intravascular signal that caused the underestimation.

Since the analytical model used to estimate [Hb] and § is

based on a statistical assumption of large number of vessels,

the inverse dependence of the error on the square root of the

number of vessels is expected (1). The proportionality

constants determined using simulations allow the estimation

of a minimal voxel size. The total blood volumes in brain

parenchyma have been measured anywhere between 3% and

5%. Using Eq. 10 and assuming a blood volume of 1.5% for

the venous vasculature excluding large veins, which repre-

sents the vasculature that contains Hb and to which the model

could be applied, a minimum voxel dimension in microns for

a given relative error can be estimated:

Dx� 0:54

ffiffiffiffi
p

§

r
r

eHb

¼ 55

eHb

(19)

Dx� 0:36

ffiffiffiffi
p

§

r
r

e§

¼ 36

e§

: (20)

Diffusion

When the static dephasing model is used to predict

deoxyhemoglobin and blood volume from simulated signal

intensity curves that included diffusion, the relative error of

the predicted values begins to drop significantly around 10

mm for in vivo diffusion values of 1.0 mm2 ms�1. Fig. 3 a
shows the average relative error of [Hb], and average § error is

given in Fig. 3 b. The inclusion of blood vessel signal pro-

duced a systematic underestimation (Fig. 3 c) as in the static

dephasing simulations. This underestimation was eliminated

when only the spin echo was fit (data not shown).

Diffusion causes a suppression of the effect of deoxyhemo-

globin in small vessels, thereby biasing the measured hemo-

globin concentration to the larger venules and veins. Spin

refocusing relies on equal precession during the free induction

and spin echo formation. Differences in the magnetic field

during these times result in nonequal precession for isochro-

mats. The magnetic field gradients around small vessels have

more rapid spatial variation than around large vessels. This

leads to an average increase in the variation in local magnetic

field experienced by an isochromat during the time course of

the spin echo. Specifically, differences in precession frequency

during the free induction decay and spin echo refocusing result

in different phase accumulation at the spin echo. The NMR

signal is the sum of all individual isochromats, and the larger

the differences in precession angle, the greater the dephasing of

the signal. This signal dephasing results in a signal loss during

the spin echo formation that is not accounted for in the static

dephasing regime analytical model. When the susceptibility

induced field distortions are comparable to the diffusion

distance, the precession frequency becomes time dependent

and hence leads to irreversible signal loss. This transition to a

fast dephasing regime for small blood vessels results in a

violation of the static dephasing assumption of the applied

analytical model and therefore an underestimation of blood

volume and deoxyhemoglobin concentration.

For large vessels, there is an overestimation of the blood

volume that increases with diffusion. This is not a result of

change in the long time regime behavior, as the slope, and

hence the [Hb] estimate, is accurate. The diffusion results in

FIGURE 2 Simulation and fit time course for vessel network with 92

vessels of 15 mm radius in a 1.5 mm isotropic voxel with (intra) and without

intravascular contributions. The inset shows the large deviation due to

intravascular component for short times.
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a decrease of the signal during the short time regime that is

particularly pronounced at higher diffusion rates (Fig. 4).

Since the estimate of blood volume is derived from the

difference in extrapolated long time regime and short time

regime signal at the spin echo, this causes an overestimation

of the blood volume. Even small changes in the short time

regime significantly affect blood volume concentrations. The

free permeability of the vessel wall enables a mixing of intra-

vascular and extravascular pools. This reduces the rephasing

efficiency and therefore the spin echo signal. However, it has

only a negligible effect on the rate, which results in an over-

estimation of blood volume.

Dual networks

The estimated [Hb] from the combined network simulation

was the sum of the estimates from the separate networks at all

five levels of diffusion. This could be expected due to the

superposition of the frequency offsets. The superposition of

two vessel networks with 2 mm and 15 mm radii shows that the

large vessel network dominates the predicted values when

diffusion is present (Figs. 5 and 6). This is expected because

diffusion suppresses the spin refocusing from smaller vessels,

allowing larger vessels to dominate the spin echo formation.

This creates a natural biasing of predictions to the deoxy-

hemoglobin concentration of larger venous vessels.

CONCLUSIONS

The magnitude of the error introduced by a finite number of

vessels has important implications for in vivo applications.

To achieve 2% error or better in both [Hb] and §, the

isotropic voxel size has to be 2.7 mm or larger for typical

vascular densities. Voxel volumes ,20 mm3 cannot reason-

ably be expected to yield accurate results. This means that

FIGURE 3 (a) Average relative error in [Hb] shows sharp underestima-

tion that increases with diffusion and for smaller vessels. (b) Average

relative error in blood volume fraction, §, shows general overestimation for

large vessel that is offset by an underestimation for small vessels. The

simulation did not include intravascular signal. (c) Average relative error §

shows general underestimation when the intravascular signal is included and

the full time course is fit. Simulation done with diffusion values of 0 (h),

0.8 (=), 1.0 (e), 1.2 (D), and 2.5 (s) mm2/ms.

FIGURE 4 Normalized signal decay due to dephasing and diffusion in the

presence of 25 mm radius vessel network. Increasing diffusion of 0, 0.8, 1.0,

1.2, and 2.5 mm2/ms from top to bottom produces a reduced short time

regime signal.
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the minimum imaging resolution for accurate [Hb] and §

estimation is not bound by hardware limitations, but rather

the underlying tissue structure. Since the effect of macroscopic

gradients, which also cause a contaminating recoverable sig-

nal dephasing, increases with voxel size, a competing bal-

ance between macroscopic gradient effects and statistical

errors must be reached. Small animal imaging also tends to

use much smaller voxel sizes. This will generally lead to

inaccurate results, and the voxel size must be matched to the

capillary and venule vessel sizes.

The systemic underestimation of blood volume fraction is

mitigated for in vivo application due to the ability to selec-

tively suppress intravascular signal. Intravascular signal is

naturally decreased by the bulk flow, and can be further sup-

pressed using flow suppression techniques (20). This blood

vessel underestimation does not account for previous experi-

mental results that calculate blood volumes that are greater

than typical blood volume fractions (2,21,22), which is more

likely related to the systematic overestimation observed with

diffusion or macroscopic magnetic field inhomogeneities

that lead to an increased decay rate during the long time

domain. These increased decay rates lead to higher extrap-

olated initial and spin echo signals and therefore an elevated

blood volume fraction. Although the effects of small

capillaries are not completely suppressed by diffusion, the

natural biasing of reversible decay to larger vessels may

provide a benefit for measurements of oxygen consumption.

This natural venous weighting, as the vessel radius increases,

provides a better estimate of the outflowing deoxyhemoglo-

bin concentration required for consumption calculations.

The biophysical model used in the simulations still relies

on the assumption that capillaries can be approximated as

infinitely long cylinders. More realistic vessel networks should

be developed to investigate the effect of this assumption. Other

parameters affecting the accuracy of in vivo measurements,

such as spin echo time and gradient echo spacing, can also be

investigated with this method. Pulse sequences for measuring

underlying tissue structure must be tuned to the assumptions

underlying the theoretical signal time course. For [Hb] and §,

this means that the voxel size limits are established by the

vasculature and not the NMR hardware.
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