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The restriction of a small molecule’s motion on binding to a protein
causes a loss of configurational entropy, and thus a penalty in
binding affinity. Some energy models used in computer-aided
ligand design neglect this entropic penalty, whereas others ac-
count for it based on an expected drop in the number of accessible
rotamers upon binding. However, the validity of the physical
assumptions underlying the various approaches is largely unex-
amined. The present study addresses this issue by using Mining
Minima calculations to analyze the association of amprenavir with
HIV protease. The computed loss in ligand configurational entropy
is large, contributing �25 kcal/mol (4.184 kJ/kcal) to �G°. Most of
this loss results from narrower energy wells in the bound state,
rather than a drop in the number of accessible rotamers. Coupling
among rotation/translation and internal degrees of freedom com-
plicates the decomposition of the entropy change into additive
terms. The results highlight the potential to gain affinity by
designing conformationally restricted ligands and have implica-
tions for the formulation of energy models for ligand scoring.

drug design � translation � rotamer � affinity � rotation

A drug-like molecule that binds a protein becomes less mobile,
and the resulting loss in configurational entropy opposes the

attractive forces that drive binding. A number of empirical energy
models used in virtual ligand screening include a term to account
for this entropic penalty, but the underlying physics is not well
characterized and hence merits critical examination. For example,
most energy models assume that the ligand’s entropy change can be
decomposed into additive components, although correlated mo-
tions could lead to nonadditivity (see, e.g., refs. 1 and 2). Also,
energy models often account for changes in torsional entropy with
a term related to the number of rotatable bonds in the ligand, based
on reasoning about the number of rotamers each bond can adopt
(e.g., refs. 3–8) and a computational analysis of changes in vibra-
tional and conformational entropy on protein folding (9). However,
the physical rationale and accuracy of this approach is largely
unexamined, especially in the context of protein-ligand binding.
Similarly, the common assumption that changes in rotational and
translational entropy are constant from one ligand to another
appears to be unsupported.

Recent calculations with the second-generation Mining Minima
algorithm (M2) have provided insight into changes in configura-
tional entropy upon binding for small host–guest systems (10, 11).
The computed entropic penalty was found to range as high as �20
kcal/mol, considerably more than typically assumed in ligand–
protein scoring functions. The validity of these results is supported
by the fact that the computed binding free energies were accurate
to within �1 kcal/mol. The entropy change was furthermore found
to vary significantly across complexes of the same ligand with
different receptors and even across different bound conformations
of the same ligand and receptor. No clear correlation was observed
between entropy change and the number of rotatable bonds, but the
snugness of the guest’s fit in the host’s binding site correlated with
entropy loss.

The present study uses the M2 algorithm to characterize changes
in ligand entropy upon protein–ligand binding, through analysis of
amprenavir’s association with HIV protease. The issues examined
include the magnitude of the entropy loss associated with amprena-
vir’s motions, the validity of rotamer counting as a model for

entropy loss, and the problem of decomposing the entropy change
into contributions from rotation and translation, bond torsions,
bond angles, and bond stretches. The results shed light on common
assumptions regarding the magnitude and causes of changes in
configurational entropy upon binding and may help formulate
improved empirical models for ligand screening and design.

Results
Loss of Amprenavir’s Configurational Entropy. Amprenavir loses 26.4
kcal/mol worth of configurational entropy on binding HIV pro-
tease, according to the M2 calculations. This value includes both the
conformational and vibrational contributions and accounts for
decreases in mobility along translational, rotational, and internal
coordinates. The quasiharmonic calculations yield a similar value of
25.0 kcal/mol, and a second M2 calculation with the simpler
distance-dependent dielectric treatment of solvent yields an en-
tropic penalty within 3 kcal/mol of the full calculation.

The large loss of configurational entropy results primarily from
the narrowness of the energy wells of bound amprenavir relative to
those of free amprenavir: the change in vibrational entropy is 24.6
kcal/mol, whereas the change in conformational entropy is only 1.8
kcal/mol. The large loss in vibrational entropy is traceable to a
combination of factors, including loss of translational and rotational
freedom and narrower torsional ranges, as detailed below. The
small magnitude of the loss in conformational entropy results from
the fact that the number of stable conformers (i.e., distinct energy
wells) does not fall much upon binding. The M2 calculations
generated �960 distinct conformations of free amprenavir within
10 kcal/mol of the most stable free conformer, but only one highly
occupied conformer for bound amprenavir. Even if free amprena-
vir were equally stable in all 960 energy wells, the change in
conformational entropy would reach only RTln 960 � 4.1 kcal/mol,
much less than the vibrational contribution. The additional fact that
only a few of these 960 conformations are significantly occupied
causes the actual loss of conformational entropy to be even smaller,
only 1.8 kcal/mol as noted above. In particular, the single most
stable conformation has a probability of 0.23, the 6 most stable
conformations have a combined probability of 0.51, and the 45 most
stable conformations have a combined probability of 0.91.

Entropy Decomposition. The M2 method was also used to examine
the contributions of specific classes of degrees of freedom to the
change in entropy. Bond stretches and angle bends are usually
considered ‘‘hard’’ degrees of freedom, which do not contribute
much to molecular flexibility and hence to changes in entropy. Not
surprisingly, then, M2 calculations with bond lengths held fixed
yielded an essentially unchanged entropy loss of 26.3 kcal/mol.
However, fixing bond angles caused the computed entropy loss to
fall by 1.7 kcal/mol to 24.7 kcal/mol, which corresponds to an
average contribution of only 0.024 kcal/mol of entropy per angle or
a 4% narrowing of each angle’s fluctuations. Different angles
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contributed differently to the change in angular entropy: the largest
contributions are associated with angles at sp3 carbons near the
center of the molecule, but angles within the phenyl ring make no
significant contribution. Repeating the M2 calculations accounting
exclusively for torsional degrees of freedom yielded an entropy loss
of 12.2 kcal/mol, whereas the six rotational and translational
degrees of freedom alone yielded 15.7 kcal/mol. (Note that the
latter varied with the standard concentration.) Interestingly, these
values sum to 27.9 kcal/mol, more than the entropy loss of 26.4
kcal/mol for all degrees of freedom and the value of 24.7 kcal/mol
obtained for the combination of torsions, rotations, and transla-
tions. The lack of additivity indicates coupling among the various
degrees of freedom.

Table 1 presents an alternative decomposition of entropic con-
tributions based on a covariance analysis of the entropy contribu-
tions from each type of ligand motion, for the most stable energy
well of the free and the bound states, respectively. Each diagonal
term is computed with only the corresponding set of degrees of
freedom (e.g., all torsions). Each off-diagonal term reports on the
correlation between the corresponding sets of motions and is
computed as the difference in the entropy when two sets of motions
are considered, versus the sum of the two entropies found when the
two sets of motions are treated separately (see Methods). The
off-diagonal terms are always positive because the entropy is always
lower when correlations are accounted for than when they are
neglected. Note that all torsional degrees of freedom are accounted
for here, not just freely rotatable bonds. The entropy loss associated
with rotation and translation is �12 kcal/mol, and the torsional
losses also are substantial at 7 kcal/mol. Angle bends lead to a
smaller entropy loss of �2 kcal/mol, but the contribution from bond
stretching is again negligible. Modest but nontrivial additional
entropy losses (off-diagonal elements in Table 1) result from
increased correlations among the various degrees of freedom upon
binding. Such correlations make it difficult to unambiguously
decompose the full entropy loss into parts associated with specific
degrees of freedom.

The arbitrariness of such decompositions is illustrated by the fact
that significantly different decompositions are obtained with the
M2 and covariance analyses (above); for example, these respective
methods yield values of 12 and 7 kcal/mol for the loss in torsional

entropy. The differences have at least two causes. First, the M2
calculations consider multiple energy wells for the free ligand,
whereas the covariance method considers only one. More impor-
tantly, removing degrees of freedom in the M2 calculations freezes
them and thus reduces the fluctuations of those that remain,
because of coupling; whereas removing degrees of freedom in the
covariance method does not freeze them, but only removes their
fluctuations and the correlations of their fluctuations with the
remaining motions. In the M2 calculations, it is reasonable that
torsional freedom is strongly restricted by freezing the rotations and
translations of the bound ligand, because rotation, translation, and
torsions are strongly coupled with each other in this case. Note that
there is no coupling between torsions and rotational/translational
motions for the free ligand. The covariance method, in contrast,
computes the torsional entropy of the bound ligand without re-
straining rotation or translation; hence it yields a smaller torsional
entropy loss on binding.

The quasiharmonic analysis provides an independent value for
the change in rotational and translational entropy on binding, based
on the fluctuations in position and orientation of the bound ligand.
Because all other ligand (and protein) degrees of freedom are also
mobile in the molecular dynamics simulation, the result is most
suitably compared with the covariance result above, rather than the
M2 result in which other degrees of freedom are frozen. The result,
11.6 kcal/mol, agrees well with the value of 12.3 kcal/mol from the
covariance method. Note that both calculations use the same root
atoms and protein atoms to define the position and orientation of
amprenavir in the binding site. Using different root atoms would
have made the two calculations difficult to compare on an equal
footing.

Discussion
Importance of Configurational Entropy. The loss of amprenavir’s
configurational entropy upon binding is found to be remarkably
large, opposing binding by �25 kcal/mol. The full free energy cost
of configurational entropy is almost certainly even larger, because
the present calculations omit any contribution from the restriction
of protein motions. The protein contribution could be especially
important for HIV protease, where binding is associated with a
marked reduction in the mobility of the active site flaps; significant
coupling of protein and ligand motions also is expected. Interest-
ingly, the loss of ligand configurational entropy found here is as
great as the largest combined loss of host and guest configurational
entropy in prior studies of host–guest systems (10, 11). It is likely
that other high-affinity protein–ligand systems undergo similarly
large losses of configurational entropy on binding, because there is
nothing peculiar about the amprenavir–HIV protease system.
However, low-affinity systems are expected to undergo much
smaller entropy losses, based on entropy–energy correlation (11).

The reliability of the present results is supported by the accuracy
of M2 calculations of host–guest binding free energies, for which
such calculations are tractable (10, 11). It is also worth noting that
the average energies, �U � W�, provided by M2 for model com-
pounds were found to agree with MD simulations to within 1
kcal/mol (12). This observation supports the accuracy of the
partitioning of free energy into entropy and enthalpy by the M2
method. The marked reduction of ligand motion reflected by the
present results appears to be consistent with a molecular dynamics
analysis of saquinavir bound to HIV protease, which shows highly
restricted torsional fluctuations of at most 10° in the course of a 1-ns
simulation (13). The changes in configurational entropy reported
here are robust with respect to computational methodology, based
on the agreement between M2 and quasiharmonic results and the
insensitivity of the M2 results to the choice of solvent model.
Unfortunately, direct experimental evaluation of the present results
does not appear to be possible currently: calorimetric studies
provide the change in entropy upon binding, but do not yield the
configurational part in isolation. It may be possible to examine these

Table 1. Decomposition of amprenavir’s change in
configurational entropy upon binding, calculated via
submatrices of the covariance matrices of the dominant
free and bound energy wells

R�T Tors Angle Stretch

Free
R�T �7.07 0 0 0
Tors 54.5 3.6 0.1
Angle 78.1 1.0
Stretch 109.52

Bound
R�T 7.02 1.5 0.8 0.08
Tors 61.6 4.1 0.13
Angle 80.1 1.2
Stretch 109.55

Difference
R�T 12.3 1.5 0.8 0.08
Tors 7.1 0.5 0.03
Angle 2.0 0.2
Stretch 0.04

Entropy values multiplied by �T to yield free energy contributions in
kcal�mol. R�T, rotational and translation part, including RT ln(8�2�C°) for the
free ligand. Tors, torsional. Ang, angle bend. Stretch, bond stretch.
Off-diagonal terms are entropy changes caused by changes in correlations
between classes of motions, e.g., Stors,stretch

corr � Stors,stretch � Stors � Sstretch. Lower
triangle terms are not listed because the matrix is symmetric.
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questions further with detailed MD simulations (M.K.G., B. J.
Killian, and J. Y. Kravitz, unpublished work).

It has long been recognized that a more rigid ligand is likely to
lose less entropy upon binding than a more flexible one, and thus
should bind more tightly, all other things being equal. The large
magnitude of the entropy loss observed here highlights the poten-
tial significance of this concept for the selection of candidate ligands
and the optimization of lead compounds. In particular, it appears
that increasing the intrinsic rigidity of even part of a ligand could
readily improve affinity by several kcal/mol, i.e., by an amount more
customarily associated with the formation of a new hydrogen bond
or another favorable ligand–protein interaction. These results also
suggest an explanation for the common observation that natural
products, with their complex, rigid ring systems, are a particularly
rich source of high-affinity ligands: they presumably have less
entropy to lose. Thus, highly rigid natural products may be able to
beat the usual entropy–energy compensation graphs (e.g., refs. 10,
11, and 14) and achieve particularly high binding efficiencies (15,
16). The challenge of a rigid ligand, of course, is that it must possess
precisely the right conformation for binding, because it will not
readily adjust to fit the site.

Conformational Versus Vibrational Entropy. It is often assumed that
the loss of ligand entropy upon binding results chiefly from a drop
in the number of accessible rotamers. The present results contrast
with this view, because only �2 kcal/mol (�T�Sconf) of the entropy
loss is found to result from a drop in the number of stable
conformers. Instead, most of the entropy loss is vibrational, result-
ing from narrower, rather than fewer, energy wells after binding
(�T�Svib). Given these differing physical pictures, it is worth
examining the common view more closely. The loss in torsional
entropy is typically estimated as 0.3–0.54 kcal/mol per torsional
degree of freedom (see, e.g., ref. 17), which would imply that
amprenavir, with �12 rotatable bonds, must possess 400–49,000
equally stable free conformers. It is not clear that these large
numbers are supported by experimental or theoretical evidence.
Indeed, NMR studies frequently reveal marked conformational
preferences of drug-like compounds in solution, such as the
‘‘folded’’ conformation of tandospirone (18) and the preorganized
conformation of KNI-272, despite its 15 rotatable bonds (19). Such
results weigh against the suitability of ligand rotamer counting as a
basis for estimating the loss of ligand entropy on binding.

There is significant literature on the contributions of conforma-
tional and vibrational entropy to changes in side-chain configura-
tional entropy on protein folding, and it is appropriate to ask
whether this literature bears on protein–ligand binding. It is often
held that the loss of side-chain conformational entropy on folding
is much greater than the loss of vibrational entropy (e.g., refs. 3, 9,
and 20), in contrast with the present view of amprenavir binding.
Perhaps the binding of amprenavir to HIV protease simply is more
restrictive than the ‘‘binding’’ of a side chain in the interior of a
protein, leading to more marked narrowing of energy wells. Alter-
natively, it is possible that the loss of vibrational entropy when a side
chain is buried has been underestimated, as recently suggested (21).
The chief evidence that changes in vibrational entropy on folding
are small is found in a pioneering paper (9) comparing the mean
vibrational entropy of an amino acid in folded BPTI, 34 kcal/mol
per residue, with the mean vibrational entropies of short peptides
modeling the unfolded state, 19–48 kcal/mol per residue depending
on the type of amino acid. If the mean entropy of a residue in the
unfolded protein were in the middle of this range, then the
vibrational entropy would indeed change little upon folding; but if
the mean were close to 48, then the loss in vibrational entropy would
be substantial. It is also important to note that BPTI is a small
protein and many of its side chains project into solvent rather than
into the protein’s interior. Solvent-exposed side chains undergo
little change in entropy upon folding (21), so the average loss of

entropy of BPTI’s side chains may not be directly informative about
the entropic consequences of side-chain burial or ligand binding.

Rotational, Translational, and Torsional Entropy. Losses in the rota-
tional and translational entropy of amprenavir are found here to
oppose binding by 12–16 kcal/mol, depending on the choice of
decomposition. These values are bracketed by the results of prior
calculations (22–28) for different systems and with different meth-
ods; the range is �6 to 18 kcal/mol. It is physically reasonable that
there should be significant variations in the translational and
rotational freedom of bound ligands, depending on how snugly each
ligand is held in the binding site, as noted (11). Thus, 4-hydroxy-
2-butanone binds the protein FKBP with a relatively small affinity
of �4.5 kcal/mol, and the computed loss in translational and
rotational entropy is only several kcal/mol (23). On the other hand,
small entropy losses have been reported for the high-affinity
biotin–streptavidin interaction (17, 24, 29). This complicated over-
all picture probably is caused by the fact that the computed change
in rotational and translational entropy depends on the method used
to carry out the entropy decomposition and the choice of coordi-
nate system (30, 31). For example, the position fluctuations of the
ligand can be defined based on root atoms in the ligand and nearby
reference atoms in the protein, as done here, or on the center of
mass of the ligand and the center of mass of the protein (e.g., ref.
17), and there is no reason to expect that the results will be the same.
Note, however, that the computed change in the total entropy upon
binding should not depend on the choice of coordinates, even
though individual components can. Other methodologic details also
can affect the results, as recently highlighted (26). For example, the
quasiharmonic approximation can lead to errors because it over-
estimates entropy when multiple energy wells are sampled (12).

The losses in torsional entropy computed here correspond to
�0.6–1 kcal/mol per rotatable bond, depending on which decom-
position is chosen. These values range higher than typical empirical
values of 0.30 to 0.54 (e.g., ref. 17) and are a little higher than
measured entropy changes of 0.38–0.86 kcal/mol per rotor for
freezing of liquid alkanes (see, e.g., ref. 32). However, the present
values are smaller than the measured entropy losses of 1.4–1.6
kcal/mol per rotor for condensation of gaseous alkanes into the
solid phase (33). Arguably, the condensation data are at least as
helpful in this context, because the molar entropy of a liquid alkane
is lowered by intermolecular correlations (32): in effect, the alkane
molecules lose entropy because they solvate each other. Such
correlations are not relevant to the configurational entropy of
amprenavir in water, and the condensation data avoid this problem
because gas-phase alkane molecules do not interact significantly.

Implications for Scoring Functions. The present results indicate that
losses in configurational entropy affect binding free energies as
strongly as better-understood energetic interactions, such as elec-
trostatics and the hydrophobic effect. It thus seems unlikely that the
energy functions used in computer-aided drug discovery will
achieve high accuracy without improved treatments of entropy. A
number of current models account for losses in the torsional
entropy of the ligand with a penalty proportional to the number of
rotatable bonds (e.g., refs. 4–6), and at least two models (7, 8)
furthermore adjust the entropy loss associated with a given rotor
depending on its environment, although not according to the
chemical nature of the rotor, which also can affect the entropy (34).
However, the present results suggest that the physical model
underlying these rotamer-counting approaches overestimates the
rather small number of stable conformations accessed by a drug-
like ligand in the free state. Also, the common assumption that all
ligands lose the same amount of rotational and translational
entropy upon binding does not appear to be well supported, and
both physical reasoning (32) and recent calculations suggest the
opposite (11).

It is thus important to seek better ways of accounting for entropy
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changes within scoring functions. One suitable approach might be
to use the standard rigid rotor/harmonic oscillator approximation
to the free and bound system, as frequently done in quantum studies
of gas-phase dimerization (e.g., ref. 35), making sure to use the 1 M
standard concentration customary for solutions (36) rather than the
gas-phase standard state of 1 atm (1 atm � 101.3 kPa). Indeed, the
rigid rotor/harmonic oscillator approximation could be used to
compute the partition functions of multiple energy wells, and these
could be combined by Eq. 12. Although such an approach would
omit the corrections that a full M2 calculation provides, it should
capture much the same physical picture. Whatever method is used,
the present study highlights the importance of accounting for
couplings among the different motions of the ligand, because they
produce significant nonadditivity. In fact, the increase in coupling
upon binding contributes to the overall loss in entropy, as evidenced
by the off-diagonal terms in Table 1. Also, the loss of angle-bending
entropy may be nontrivial, the largest angular contributions here
arising from angles at sp3 atoms near the center of the ligand,
whereas angles in rigid rings contribute negligibly. This unexpected
result, if confirmed, deserves attention in the formulation of scoring
functions. Finally, the dominance of the vibrational entropy over
the conformational entropy suggests that the change of ligand
entropy on binding can be assessed accurately without enumerating
many different energy minima.

Methods
Configurational Entropy: Definition and Decomposition. The stan-
dard free energy of binding of a protein P and a ligand L that form
a complex PL can be written as (30):

�Go � �PL
o � �P

o � �L
o � �RT ln � Co

8�2

ZPL

ZP ZL
� [1]

ZX �� J�rint	e�EX�rint	�RTdrint [2]

EX�rint	 � UX�rint	 � WX�rint	 . [3]

Here �°X is the standard chemical potential of molecular species
X, where X � PL, P, or L; R is the gas constant; T is absolute
temperature; C° is the standard concentration; ZX is the con-
figuration integral over the internal coordinates of species X;
J(rint) is the Jacobian determinant for the internal coordinates;
and E(rint) is the sum of the potential energy (U) and solvation
free energy (W) of the molecule or complex as a function of its
conformation, where the conformation is specified by the inter-
nal coordinates rint. Eq. 1 omits a pressure-volume term that is
negligible for most systems of interest (30). The terms ‘‘chemical
potential’’ and ‘‘free energy’’ will be used interchangeably in this
article, in conformity with common usage. In addition, the term
‘‘entropy’’ is used loosely to mean the free energy contribution
�TS associated with entropy S. For the complex, PL, the internal
coordinates include 6 degrees of freedom specifying the position
and orientation of the ligand relative to the protein. When the
distance unit of the internal coordinates is specified in Å, C° �
1 mole/liter must be converted to 6.02 
 10�4 molecules per Å3.
This concentration may be thought of as corresponding to a
‘‘standard volume’’ of 1/C° � 1,661 Å3 per molecule.

The standard entropy change upon binding is the temperature
derivative of the standard free energy of binding at constant
pressure (37):

�So � �
��Go

�T
. [4]

Application of this expression to Eq. 1 allows the entropy change on
binding to be partitioned, without approximation, into a configu-

rational part, �Sconfig
o , which is associated with only the degrees of

freedom of the protein and the ligand, and a solvent part, �Ssolv,
which is the ensemble-averaged change in the mean solvation
entropy upon binding:

�So � �Sconfig
o � �S solv [5]

�Sconfig
o � �

�Go

T
�

��U � W�

T
[6]

�Ssolv � � � �WPL

�T � � � �WP

�T � � � �WL

�T � [7]

��U � W� � �UPL � WPL� � �UP � WP� � �UL � WL�. [8]

Here angle brackets indicate ensemble averages, ��U � W� is the
change on binding of the ensemble-averaged sum of potential
energy and solvation energy, and the temperature derivative of
the solvation free energy W has been identified as the solvation
entropy, much as in Eq. 4. It is worth pointing out that �Sconfig

o

depends on the standard concentration, C°, consistent with the
expectation that the loss of translational entropy upon binding
depends on the standard volume allotted to each molecule in the
free state. This study focuses on the configurational entropy; the
implicit solvation model used here does not yield accurate
temperature derivatives, so changes in solvation entropy cannot
be obtained at this time.

The configurational entropy itself can be further partitioned into
a ‘‘conformational’’ part, which reflects the number of occupied
energy wells, and a ‘‘vibrational’’ part, which reflects the average
width of the occupied wells (9):

Sconfig
o � Sconf � Svib

o . [9]

In the special case of M equally stable energy wells, the conforma-
tional entropy equals simply �Rln M; when the energy wells are not
equally stable, the conformational term generalizes to:

Sconf � �R �
j

M

pj ln pj, [10]

where pj is the probability of occupying energy well j. It is
straightforward to show that the difference between this con-
formational entropy and the total configurational entropy is
exactly the Boltzmann-averaged entropy of the individual energy
wells, so that:

Svib
o � �Sj

o� � �R �
j

M

pjSj
o � �R �

j

M

pj � �E� j � � j
o

T � ,

[11]

where �E�j is the average energy of well j and �j
o is its standard

chemical potential. This decomposition of configurational en-
tropy into conformational and vibrational parts was originally
provided without derivation, as recently noted (21), so a deri-
vation is provided in Appendix. The vibrational entropy depends
formally on standard concentration because each multidimen-
sional energy well includes three translational dimensions, whose
ranges are determined by the standard volume.

One can, alternatively, decompose the configurational entropy
according to different classes of degrees of freedom: overall
rotation and translation, bond torsion, bond angles, and bond
stretches. However, the component entropies need not add up to
the full entropy unless motions along the various degrees of
freedom are uncorrelated with each other; not only pairwise but
also higher-order correlations can occur. Here, two decompo-
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sitions are applied. The first compares the entropy obtained by
the M2 method (below) with all ligand degrees of freedom, to
that obtained when a subset of motions, such as bond angles, are
frozen; this method includes both the conformational and vi-
brational contributions discussed in the previous paragraph. The
second approach limits attention to the single most stable energy
well of the free ligand or the bound ligand. The second derivative
matrix of the energy with respect to all degrees of freedom is
inverted to provide the covariance matrix (38), and the entropy
associated with the motions of interest (e.g., the torsional entopy
Stors) is then computed from the determinant of the submatrix
associated with these degrees of freedom. This calculation
neglects correlations with other classes of motion (e.g., bond
stretching), which can lower the net entropy, but correlations can
be examined by extracting the submatrix associated with two
classes of motion (e.g., torsions and stretches), computing the
associated entropy (e.g., Stors,stretch), and subtracting the individ-
ual entropy terms to generate the contribution of correlation to
the entropy; e.g., Stors,stretch

corr � Stors,stretch � Stors � Sstretch.

Calculations with Mining Minima. Computing the change in con-
figurational entropy upon binding with Eq. 6 requires evaluation
of �Go and �U � W�. The Mining Minima algorithm (10) is used
to compute �Go as the difference in standard chemical poten-
tials (Eq. 1), where the standard chemical potential of a molecule
or complex is computed via a sum of contributions from M local
energy wells j:

�o � �RT ln � �
j�1

M

e��j
o�RT�

[12]

�j
o � �RT ln � 8�2

Co zj� ,

where �j
o and zj are, respectively, the standard chemical potential

and the local configuration integral over internal coordiates of the
molecule in energy well j. The probability of well j is:

pj �
zj

�j
Mzj

�
e��j

o�RT

� j
M e��j

o�RT
. [13]

Each local configuration integral zj is estimated via an enhanced
version of the harmonic approximation (39), in which the second
derivative matrix of the energy at the energy minimum is
diagonalized, and numerical integrals are evaluated along the
eigenvectors with low force constants. If the numerical integral
deviates from the harmonic approximation by 1 kcal/mol, then
the numerical integral along that mode is substituted for the
harmonic approximation. The full integral for the energy well is
computed as the product of all of the single-mode integrals. In
the present calculations the energy wells were so close to
harmonic that the numerical integrals were never substituted for
the analytic harmonic results.

The harmonicity of the wells allows the average energy of well j
to be obtained via the equipartition theorem:

�E�j � Eo, j �
NintRT

2
, [14]

where Ej
o is the energy at the local energy minimum and Nint is

the number of internal degrees of freedom rint. The energy
averaged over all energy wells is:

�E� � �
j�1

M

pj�Ej� � �
j�1

M

pj Eo, j �
NintRT

2
. [15]

The calculations use a coordinate system consisting of bond
lengths, bond angles, and bond torsions (36, 39). The position
and orientation of the ligand are specified via the coordinates of
three ‘‘root’’ atoms, here numbered 1, 2, and 3 for convenience,
where atoms 1 and 2 are connected by a covalent bond, as are
atoms 2 and 3. The position of atom 1 defines the translational
position of the ligand, the orientation of the 1–2 bond defines
two orientational coordinates of the ligand, and the orientation
of the 2–3 bond defines the third orientational coordinate of the
ligand. For the free ligand, each row (and each column) of the
second derivative matrix corresponds to a bond length, bond
angle, or bond torsion; the position and orientation of the free
ligand do not affect the energy and hence do not appear in the
matrix. For the bound ligand, six position and orientation
coordinates appear in the matrix because these affect the energy
when the ligand is bound.

As noted in the previous subsection, the use of bond
angle–torsion coordinates permits examination of the entropic
contributions of the different classes of molecular motion to
the change in entropy upon binding. This is done by artificially
deleting the rows and columns corresponding to undesired
degrees of freedom from the second derivative matrix and
repeating the M2 integrals with the reduced matrix, for the
same set of energy minima. For example, the entropy change
can be calculated after removing all rows and columns corre-
sponding to bond lengths. The issue of correlation is consid-
ered in Results.

The energy minima of the free ligand were found with the
Tork search algorithm (41). For the bound ligand, the protein
was held rigid and candidate poses of the ligand in the protein
were generated with the program Vdock (42, 43). These con-
formations were energy-minimized, along with the protein, to
local energy minima, and duplicate conformations were elimi-
nated with a method that accounts for chemical symmetry (44).

Quasiharmonic Approximation. The quasiharmonic approximation
(45) was used to provide a check on the M2 results for the bound
complex. Although the quasiharmonic approximation has been
shown to be inaccurate when it encompasses multiple energy
wells (12), it should be accurate for bound amprenavir because
the M2 calculations indicate that there is only one significantly
occupied energy well. The method was implemented with a
300-K molecular dynamics simulation with CHARMM (46) in
which both the ligand and the protein were mobile, with time
steps of 2 fs, nonbonded cutoffs of 15 Å, and a generalized Born
model of the solvent (47). The total simulation time was 2 ns, and
snapshots were saved every 0.4 ps for the last 1.6 ns, for a total
of 4,000 snapshots. The Cartesian coordinates in the saved
snapshots were converted to bond angle–torsion coordinates
with the same root atoms as the M2 calculations, and the
covariance matrix of the bond angle–torsion coordinates was
computed and used in the standard formula for entropy (45).

Fig. 1. Amprenavir.

1538 � www.pnas.org�cgi�doi�10.1073�pnas.0610494104 Chang et al.



Structures and Parameters. The initial structure of the complex of
HIV protease and amprenavir was drawn from crystal structure
1hpv (48) in the Protein Data Bank (49, 50), and all ionizable
groups were assigned protonation states normally expected at
pH 7. In the M2 calculations, potential energies U(r) (Eq. 3) were
computed with the CHARMM 22 parameter set (51), and the
solvation energy W(r) was computed with a generalized Born
model (40), using a water dielectric constant of 80. For com-
parison, an additional calculation was done with the distance-
dependent dielectric Dij � 4rij, where rij is the distance between
atoms i and j in Å. Three carbons in the tetrahydrofuran ring of
amprenavir (Fig. 1) were used as root atoms. Their positions in
the protein’s reference frame were defined by a pseudobond, two
pseudoangles, and three pseudodihedral angles rooted in atoms
associated with the center of the protease flap: one hydrogen of
the flap water, the main-chain nitrogen of Ile 50, and the
main-chain carbon of Gly-49. (The mobility of the flap water
during the molecular dynamics simulation is similar to that of
nearby protein atoms.)

Appendix
This appendix derives the decomposition of the configurational
entropy into a conformational and a vibrational part. Let the full
configuration space of a molecule be partitioned into energy wells
j, such that the configuration integrals within each well, zj, sum to
the full configuration integral Z, either exactly or approximately if
one neglects high energy regions between the wells as in the M2
method. The standard chemical potential of the molecule is given
by Eq. 12, and the partial molar configurational entropy at standard
concentration is:

� TSo � �o � �E� . [16]

The conformational entropy in Eq. 10 can be written as:

� TSconf � RT �
j
	 e��j

o�RT

� j e��j
o�RT � � � j

o

RT
� ln �

j

e��j
o�RT� 


� ��
j

p j� j
o � RT ln �

j

e��j
o�RT. [17]

Eqs. 9, 12, and 15–17 yield the vibrational entropy as:

� TSvib
o � �TSconfig

o � TSconf

[18]

� �RT ln �
j

e��j
o�RT � �

j

p j�E� j � �
j

p j� j
o

� RT ln �
j

e��j
o�RT

� �
j

p j�� j
o � �E� j�

� �T �
j

p jSj
o � �T�Sj� .

Thus, the difference between the total configurational entropy and
the conformational entropy is the mean entropy of the individual
energy wells, �Sj

o�, q.e.d.
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