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Abstract
Objective—Previous studies of subjects with dementia of the Alzheimer type (DAT) have reported
correlations between increases in activity of the hypothalamic-pituitary-adrenal (HPA) axis and
hippocampal degeneration. In this study, we sought to determine whether increases in plasma cortisol,
a marker of HPA activity, were associated with clinical and cognitive measures of the rate of disease
progression in DAT subjects.

Method—Thirty-three subjects with very mild and mild DAT and 21 nondemented comparison
subjects were assessed annually for up to 4 years using the Clinical Dementia Rating scale and a
battery of neuropsychological tests. Plasma was obtained at 8AM on a single day and assayed for
cortisol. Rates of change over time in the clinical and cognitive measures were derived from growth
curve models.

Results—In the DAT subjects, but not in the nondemented comparison subjects, higher plasma
cortisol levels were correlated with more rapidly increasing symptoms of dementia and more rapidly
decreasing performance on neuropsychological tests associated with temporal lobe function. Similar
correlations were not observed between higher plasma cortisol levels and clinical and cognitive
assessments obtained at the single assessment closest in time to the plasma collection.

Conclusions—Higher HPA activity, as reflected by increased plasma cortisol levels, is associated
with more rapid disease progression in DAT subjects.

Introduction
Chronic psychosocial stressors trigger increases in the levels of glucocorticoid (GC) stress
hormones that, in turn, have deleterious effects on the structure and function of central nervous
system (CNS) structures, especially the hippocampus (1,2). For example, in rodents, atrophy
of neuronal dendrites within the cornu ammonis (CA) of the hippocampus (3) and deficits in
spatial memory (4) develop after administration of chronic behavioral stress or the GC
hormone, corticosterone. In humans with chronic depression, a psychiatric disorder frequently
associated with increased activity of the hypothalamic-pituitary-adrenal (HPA) axis (5),
decreases in the volume of the hippocampus have been correlated with the duration of illness
(6,7). The cellular mechanisms underlying the potentially neurotoxic effects of GC hormones
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are under intense investigation (5). In animals, behavioral stressors and corticosterone
administration increase excitatory amino acid release (8,9), as well as the expression of N-
methyl-D-aspartate (NMDA) -type glutamate receptors (10). Thus, GC-triggered increases in
excitotoxicity have been proposed as one mechanism of GC-induced neuronal injury (5). Also,
because the hippocampus plays a central role in inhibiting the activity of the HPA axis (11),
hippocampal damage could produce a repetitive cycle of increasing HPA dysregulation and
ongoing hippocampal injury (1).

GC-related neuronal injury has also been proposed as a mechanism by which the CNS might
be affected by “healthy” aging (1,12). Age-related increases in corticosterone levels were first
reported in rodents more than 25 years ago (13), and have been correlated with spatial memory
deficits (14). More recently, correlations have been reported between increased plasma cortisol
levels, memory impairments, and smaller hippocampal volumes in non-demented elderly
subjects (15,16). However, caution should be used in interpreting such findings since a portion
of such subjects could have preclinical forms of Alzheimer’s disease (AD) (17). In another
study, Lupien, et al (18), suggested that elderly subjects could be clustered into subgroups
characterized by increases, decreases, and no change in plasma cortisol levels over time. Again,
a possible explanation for such findings is that the subjects in such subgroups may differ with
regard to the frequency of preclinical forms of AD.

Increases in HPA axis activity have also been directly associated with AD. Increases in plasma
cortisol levels have been reported in individuals with probable AD (19,20,21,22,23), but have
been generally interpreted as evidence that the disease process of AD (i.e., AD-induced
hippocampal degeneration) leads to dysinhibition of the HPA axis. In line with this hypothesis,
correlations have been reported between increases in HPA axis activity and dementia severity
(24) or hippocampal volume loss (25,26) in individuals with probable AD. Finally, decreases
in cortical concentrations of corticotropin-releasing hormone (CRH) and increases in CRH
receptors have been reported in post-mortem studies of AD subjects (27,28). However, as with
the correlations between plasma cortisol and hippocampal volumes, these findings have been
interpreted as evidence of the effect of the AD disease process on CRH expression.

The purpose of the current study was to assess the relationship between plasma cortisol levels
and clinical and cognitive measures of the rate of disease progression in subjects with very
mild or mild dementia of the Alzheimer type (DAT). Our hypothesis was that higher levels of
HPA axis activity, as reflected by higher plasma cortisol levels, would be correlated with more
rapid progression of clinical and cognitive deficits in DAT subjects. Among cognitive
measures, we were most interested in the relationship between cortisol levels and measures of
memory performance, because of previous reports linking increased HPA axis activity to
hippocampal volume loss and dysfunction in elderly individuals (5). We also studied non-
demented subjects matched to the DAT subjects with respect to age and gender so that
normative relationships, if any, between cortisol levels and cognition could be assessed.

Methods
All subjects in this study were community dwelling and enrolled in longitudinal studies of
aging and dementia at the Alzheimer’s Disease Research Center (ADRC) at Washington
University School of Medicine. Written informed consent was obtained from each subject after
the nature and risks of the study were explained. Each subject was assessed on an annual basis
using a standard protocol (29) that included semi-structured interviews with the subject and a
collateral source (generally a spouse or an adult child) who was knowledgeable about the
subject. The Clinical Dementia Rating scale (CDR) was used as the primary method of
recording the presence and severity of dementia (30). The CDR rates the presence or absence
of cognitive impairment on a 5 point scale (0, 0.5, 1, 2, 3 - from none to severe) in 6 domains
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or “boxes”: 1) memory, 2) orientation, 3) judgment and problem solving, 4) function in the
community, 5) function at home and hobbies, and 6) personal care. An overall CDR score is
then derived using the individual ratings in the 6 domains in accordance with standard scoring
rules (30), such that a CDR score of 0 indicates no dementia and CDR scores of 0.5, 1, 2, and
3 indicate very mild, mild, moderate and severe dementia, respectively. Also, the individual
box scores can be totaled to yield a sum-of-boxes total score (29) that ranges from 0 (0x6 when
there is no impairment in any domain) to 18 (3x6 when there is maximal impairment in all
domains). Inter-rater reliability for the CDR is high (31,32). Individuals at our ADRC rated as
CDR 0.5 progress in a predictable manner to greater stages of dementia severity, and at autopsy,
the large majority of such individuals have neuropathological AD (33). Similarly impaired
individuals have been considered by other investigators as having “mild cognitive
impairment” (34).

The subjects recruited for this study had CDR scores of 1 (mild dementia), 0.5 (very mild
dementia), or 0 (no dementia) at the time of their assessment. To measure the rate of change
of dementia severity in conjunction with the date of plasma sampling in each subject, all
available annual CDR assessments were used for a time period of up to two years before and
two years after the date of plasma sampling. The average number of assessments available in
the subject groups was similar (i.e., mean (SD) - 3.2 (0.4) for CDR 1 subjects, 3.2 (0.7) for
CDR 0.5 subjects, and 2.7 (0.8) for CDR 0 subjects). CDR sum-of-boxes total scores were
used as the clinical measure of dementia severity. Also, because of suggested links between
hypercortisolemia and depression in the elderly (5), symptoms of depression were assessed at
the time of the annual assessments using the Geriatric Depression Scale (GDS) (35).

To measure the rate of change in cognitive function, the subjects’ performance was assessed
using a comprehensive neuropsychological battery obtained in conjunction with the annual
assessments, but independently of the protocol that yielded the CDR. Clinicians were unaware
of the results of neuropsychological test battery and the psychometricians were unaware of the
results of the CDR evaluation. The neuropsychological battery included measures of episodic
memory, semantic memory, speeded psychomotor performance, visuospatial ability, and
attention (36). It was previously used to describe the pattern of cognitive deficits in 407
individuals with very mild and mild DAT (i.e., CDR 0.5 and 1) (37). In that study, a factor
analysis revealed three factors that accounted for ~70% of the variance in cognitive
performance. In a subset of these subjects who later came to autopsy (n = 41), scores for the
three factors were correlated with the frequency of β-amyloid plaques in three general regions
of the brain (i.e., temporal lobe, parietal lobe and frontal lobe). Thus, the three factor scores
were named according to these brain regions (i.e., Temporal Factor, Parietal Factor, Frontal
Factor). In the present study, these three factor scores were calculated for each of the subjects
using weightings derived from the prior factor analyses on the subjects with very mild and mild
DAT (37).

Apolipoprotein E (apoE) gene allele status was also determined in all of the subjects; 3 (5.6%)
subjects had two apoE4 alleles, 18 (33.3%) subjects had one apoE4 allele, and 33 (61.1%)
subjects had no apoE4 alleles.

Cortisol levels were determined using plasma samples collected in conjunction with a study
of cerebrospinal fluid biomarkers of AD conducted by two of the authors (AMF and DMH).
Blood samples were collected onto ice by venipuncture between 7:45 and 8:00 AM after an
overnight fast, plasma was prepared, and then stored at −80° C until the time of assay. Cortisol
concentrations were assayed in duplicate using a commercially available double-antibody
radioimmunoassay (Clinical Assays, DiaSorin, Stillwater, MN). Mean values were used for
all analyses. The interassay coefficient of variation (CV) of this assay is less than 15% at cortisol
concentrations between 3 and 40 μg/ml and the limit of detection is 1 μg/ml.
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Statistical analyses to test for an association between the rate of change of sum-of-boxes total
scores and neuropsychological battery factor scores and plasma cortisol concentrations were
performed using general linear mixed models. Random coefficients models were constructed
(38), which assumed a linear growth for CDR total scores and the three neuropsychological
battery factor scores over time for each subject and an unstructured covariance matrix between
the intercept and the slope across the subjects within the three groups of subjects defined by
their CDR scores (i.e., 1, 0.5 and 0). We further assumed that the slope over time was a linear
function of cortisol levels, allowing us to assess the association between the longitudinal rate
of change of the sum-of-boxes total scores and neuropsychological battery factor scores and
plasma cortisol levels. This assumption was justified because no higher order term provided a
significant effect in any of the models used in the analyses. In all T or F tests from these models,
the Satterthwaite’s approximation was used to adjust the degrees of freedom for the
denominator (39). All these models were implemented using PROC MIXED/SAS (40).

Results
The clinical characteristics, sum-of-boxes scores, neuropsychological battery factor scores,
and plasma cortisol levels for the three groups of subjects (i.e., CDR 1, 0.5 and 0) are
summarized in Table 1. One-way ANOVA suggested a trend toward a group effect for plasma
cortisol levels (F=2.3, df=2,51, p=.092); post-hoc comparisons of the mean plasma cortisol
levels across groups suggested that CDR 1 subjects had slightly higher plasma cortisol levels
than both CDR 0 (p = .013) and CDR 0.5 (p = .046) subjects, but that CDR 0 and CDR 0.5
subjects had similar plasma cortisol levels (p = .47).

Combining the two groups of subjects with DAT (i.e., CDR 0.5 and CDR 1) together (n = 33),
there was a significant positive association between higher plasma cortisol levels and a more
positive rate of change (i.e., worsening) in sum-of-boxes scores (T=2.86, p=.007). Also, there
was a significant negative association between higher plasma cortisol levels and a more
negative rate of change (i.e., worsening) in Temporal Factor scores (T=−2.59, p=.014), but no
association with the rates of change in Parietal or Frontal Factor scores. The magnitude of these
associations was substantial, as reflected by estimating the impact of a physiologically-relevant
change in plasma cortisol. For an increase of 1 μg/ml in plasma cortisol, the annual rate of
change in sum-of-boxes scores would be increased by 0.150 (SE=0.052) or 19% of the observed
rate of change in sum-of-boxes scores (0.80 (SE=0.190)), and the annual rate of change in
Temporal Factor scores would be decreased by 0.025 (SE=0.010) or 16% of the observed rate
of change in Temporal Factor scores (−0.16 (SE=0.040)). In contrast, there were no significant
associations between plasma cortisol levels and sum-of-box scores or Temporal Factor scores
obtained from the assessment closest in time to the collection of the blood cortisol sample in
the combined group of DAT subjects.

When the CDR 0.5 subjects (n = 23) were evaluated separately, there again were significant
associations between plasma cortisol levels and the rates of change in sum-of-boxes scores
(T=2.53, p=.017) and Temporal Factor scores (T=−2.58, p=.016), but not Parietal Factor scores
or Frontal Factor scores. However, when the CDR 1 subjects (n = 10) were evaluated separately,
there were no significant associations between plasma cortisol levels and the rates of change
in sum-of-boxes scores, Temporal Factor scores, Parietal Factor scores or Frontal Factor scores.

In the nondemented subjects (i.e., CDR 0) (n = 21), there were no significant associations
between plasma cortisol levels and the rates of change in sum-of-boxes scores, Temporal Factor
scores, Parietal Factor scores or Frontal Factor scores.

When apoE allelic status was taken into the consideration, the positive association between
plasma cortisol levels and the rate of change in sum-of-boxes scores in DAT subjects (i.e.,
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CDR 0.5 and CDR 1 combined) with no apoE4 alleles remained significant (T=2.76, p=0.009),
but not in DAT subjects with at least 1 apoE4 allele. Also, our data suggested a trend for an
association between higher plasma cortisol levels and a more negative rate of change in
Temporal Factor scores in DAT subjects with at least 1 apoE4 allele (T=−1.94, p=0.063), but
not in DAT subjects with no apoE4 alleles. There were no significant associations between
plasma cortisol levels and sum-of-box scores or Temporal Factor scores in non-demented
subjects (i.e., CDR 0) regardless of their apoE status.

There was no significant difference in mean GDS scores obtained from the assessment closest
in time to the collection of the plasma cortisol sample among the three groups of subjects (i.e.,
CDR 1, 0.5 and 0) (F=2.27, p=0.118). There was also no significant correlation between plasma
cortisol levels and GDS scores obtained during the assessment closest in time to the collection
of the blood cortisol sample in the CDR 1 subjects (Pearson’s r=−0.22, p=0.598), the CDR 0.5
subjects (r=−0.11, p=0.700), or in the CDR 0 subjects (r=−0.14, p=0.587).

Discussion
These results provide preliminary support for our hypothesis that increased GC hormone levels,
as reflected by morning plasma cortisol concentrations, are associated the rate of change of
both clinical and cognitive measures of dementia severity in subjects with DAT. It is especially
intriguing that plasma cortisol levels were associated with the rate of change in the
neuropsychological Factor measure weighted towards memory function and previously found
to be associated with AD neuropathologic burden in the temporal lobe (i.e., Temporal Factor
scores) (37). This association is consistent with previous reports of relationships between
increased HPA axis activity and age-related hippocampal volume loss (5). There have been
conflicting reports about the density of GC receptor expression in the hippocampus relative to
other regions of the primate brain (41,42,43). Nonetheless, our findings raise the intriguing
possibility that increased GC levels may have a disproportionate impact on the AD disease
process as it develops in the hippocampus and other structures of the medial temporal lobe
(e.g., entorhinal cortex) (44).

The fact there were no significant associations between plasma cortisol levels and measures
of dementia severity at the time of blood sampling suggests that increased cortisol levels were
associated with more rapid rates of disease progression rather than the severity of disease.
Taking this interpretation one step further, these results suggest that increased activity of the
HPA axis as reflected by plasma cortisol levels may be associated with an acceleration of the
disease process in AD, rather than being the product of the degenerative effects of the disease
on the hippocampus and HPA dysinhibition.

We were surprised to find no associations between plasma cortisol and the rates of change in
sum-of-boxes or neuropsychological Factor scores in the elderly non-demented subjects. This
finding is in apparent conflict with the prior report of a correlation between plasma cortisol
levels and the severity of cognitive impairment in non-demented elderly volunteers (16). One
explanation for this discrepancy might be that the age range was too limited in our small group
of CDR 0 subjects (see Table 1). Also, our CDR 0 subjects were rigorously screened to exclude
even very mild signs of dementia. At the present time, only 3 (5.6%) of these individuals have
come to autopsy, so it is not possible to determine the frequency of preclinical AD in our
nondemented subjects. Also, we did not find any association between the severity of depressive
symptoms and plasma cortisol levels in any of the subject groups. However, any subjects who
met syndromal criteria for depression were also excluded from our study.

Our findings of a relationship between plasma cortisol levels and markers of disease
progression in DAT subjects may be particularly applicable to the early stages of AD. This is
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suggested by the fact that significant correlations were observed between plasma cortisol
concentrations and measures of disease progression in the CDR 0.5 subjects, but not in the
CDR 1 subjects, when these groups were examined separately. While the correlations between
plasma cortisol levels and markers of disease progression would have been more difficult to
evaluate in the small group of CDR 1 subjects, the values of the correlations observed in CDR
1 subjects were not even suggestive of a trend.

At present, the mechanism by which increased HPA axis activity could accelerate the disease
process of AD is unknown. Behavioral stressors and administration of GC hormones have been
reported to increase excitatory amino acid release (8,9) and the expression of NMDA-type
glutamate receptors (10) in rodents. Using mice that overexpress the human form of amyloid
precursor protein (APP), we recently observed that chronic stress (i.e., isolation) accelerated
the deposition of amyloid plaques as well as appearance of deficits in learning and memory
that usually accompany Aβ deposition (45). Also, Harris-White and Chu (46) have reported
that GC hormones may decrease the clearance of Aβ, which itself can have neurotoxic effects
(47). Alternatively, behavioral stressors could influence cognition by decreasing hippocampal
neurogenesis (48). Thus, stress-related increases in GC levels could either directly or indirectly
influence neuronal dysfunction and cognitive impairment associated with Aβ deposition.

There are some notable weaknesses to this study. First, our measure of the subjects’ stress
responsivity was plasma cortisol levels at one time point on a single day. Our study was
retrospective and the only available plasma samples were collected in coordination with a study
of CSF AD biomarkers, which involved obtaining blood and CSF on a single day. However,
a correlation has been previously reported between 8AM cortisol levels and dementia severity
in DAT subjects (24). Also, our subjects may have had anticipatory anxiety on that day related
to the lumbar puncture. Nonetheless, the associations found between our simple measure of
HPA axis activity and the rates of clinical and neuropsychological decline were substantial.
Second, the samples available for this study, and especially the sample of mildly demented
subjects (i.e., CDR 1), were small. Larger numbers of subjects with a wider range of dementia
severity would have made it possible to more clearly determine whether the relationship
between plasma cortisol concentrations and the rate of disease progression were specific to a
particular stage of AD.

The results of this study need to be confirmed and extended by examining other measures of
disease progression in larger numbers of DAT subjects that have been assessed over longer
periods of time and wider ranges of dementia severity. Studies of neuroanatomical markers of
disease progression, such as measures of the structure of the hippocampus itself (49,50), would
be particular useful. If the hypothesis that stress can increase GC levels and accelerate the
progression of the disease process of AD is confirmed, it would give impetus to the
development of therapeutic approaches, both pharmacological (51,52) and non-
pharmacological (53), to decrease stress and the levels of stress-related GC hormones.
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Figure 1. Correlations Between Plasma Cortisol Concentrations and Measures of Disease
Progression in Subjects with Very Mild to Mild DAT
Relationships between plasma cortisol concentrations and measures of disease progression
were examined in a combined group of subjects with very mild (CDR 0.5) and mild (CDR 1)
DAT. Panel A shows the scatterplot for the association between cortisol concentrations and
rates of change (i.e., slopes) in sum-of-box scores. Panel B shows the scatterplot for the
association between 8AM cortisol concentrations and rates of change (i.e., slopes) in Temporal
Factor scores. Plasma was collected for cortisol at 8AM after an overnight fast. Rates of change
in sum-of-box scores were generated using general linear mixed models and up to 4 annual
assessments.
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Table 1
Clinical Characteristics and Plasma Cortisol Concentrations in Elderly Subjects With and Without Dementia of
the Alzheimer Type

Group CDR 0 CDR 0.5 CDR 1

N 21 23 10
Age (years) 77.6 (9.7) 74.2 (7.5) 76.0 (4.6)
Sex (M/F) 7/14 15/8 4/6

Sum-of Boxes .07 (.18) 2.17 (1.00) 6.50 (1.68)
Temporal Factor 1.42 (.80) .72 (.80) −.78 (.41)
Frontal Factor .49 (.71) .34 (.66) −.41 (.88)
Parietal Factor .78 (.32) .62 (.51) −.17 (.62)

Cortisol (μg/ml) 14.26 (4.10) 15.08 (3.13) 17.98 (4.29)

Values for all variables, except for N and Sex, are group means (SD). For age, Sum-of-Boxes, Temporal Factor, Frontal Factor, and Parietal Factor, the
assessments conducted closest in time to the time of plasma cortisol sampling were used to calculate the group means.
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