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ABSTRACT

The Protein Folding Database (PFD) is a publicly
accessible repository of thermodynamic and kinetic
protein folding data. Here we describe the first
major revision of this work, featuring extensive
restructuring that conforms to standards set out
by the recently formed International Foldeomics
Consortium. The database now adopts standards
for data acquisition, analysis and reporting pro-
posed by the consortium, which will facilitate the
comparison of folding rates, energies and structure
across diverse sets of proteins. Data can now be
easily deposited using a rich set of deposition tools.
Enhanced search tools allow sophisticated search-
ing and graphical data analysis affords simple data
analysis online. PFD can be accessed freely at
http://www.foldeomics.org/pfd/.

INTRODUCTION

The Protein Folding Database (PFD) is a relational database
that collects thermodynamic and kinetic data for the folding
of proteins into a searchable, structured repository (1). The
aims of the initial release in 2004 were 2-fold. First, to fulfill
the need for an archive of folding data that was not being met
by standard methods of publication. Providing a freely acces-
sible, centralized data repository was the key task in this
effort. Second, to allow rudimentary data analysis such as
the investigation of the relationship between protein structure
and folding characteristics [e.g. the relationship between
topology and folding rate (2,3)].

Recently, Maxwell et al. (4) outlined a comprehensive
strategy for the standardization of data reporting, acquisition
and analysis, and as a result the International Foldeomics
Consortium was formed. This is a multidisciplinary alliance
of >35 researchers, spanning eight countries, with the aim

of initiating the collection, validation and analysis of protein
folding data on a global basis. A main goal of these efforts is
to set uniform standards for the experimental community and
to initiate a self-consistent dataset that will aid ongoing
efforts to understand the folding process. There is significant
interest in using empirical and theoretical relationships to
predict the rates at which proteins fold (5-9), but this is
non-trivial due to a variety of difficulties associated with
the comparison of folding rates, energies and structures
across diverse sets of proteins (4). Such comparative studies
are onerous due to several factors; the large variability in
experimental conditions and methodology; uncertainty of
the structural details of the characterized protein; no standard
method of data analysis, error estimation, or reporting; and
no standard units. In order to address these limitations, we
rebuilt the PFD such that it conforms to the proposals set
out in Maxwell et al. (4).

RESTRUCTURING AND NEW FEATURES
Database structure

A main aim of the database is to allow the investigation of the
empirical and theoretical relationships between folding rates
and structural characteristics of a protein, such as topology.
Therefore new tables were added to the database in order to
capture information such as construct length, sequence,
expression tags, disordered regions and the PDB identifier.
Additional tables also allow the deposition of raw kinetic
data (see below), and errors for all numerical data are now
recorded.

Data deposition and validation

We have built a set of deposition tools that allow a registered
user to deposit their folding data (Figure 1). This is achieved
using a forms-based system via a web-browser. In order to
expedite this process and remove redundancy new deposi-
tions can be based upon existing entries, and the process
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Figure 1. A typical data deposition form, here showing kinetic data. User progress is shown on the left-hand side, which can be used to navigate back and forth
through the complete deposition process, in order to check the data before submission.

may be paused and resumed at a later date, without losing
data. The data deposition process is structured into several
logical sections and the user is guided carefully through the
process. Once data are deposited, an annotator is automati-
cally alerted by email, who then performs editing and further
annotation using a similar set of web forms. Once this process
is complete the entry is made available on the website.

The deposition form is divided into several logical sec-
tions: Protein, Construct, Publication, Mutations, Equilibrium
Method, Kinetic Method, Equilibrium Data, Kinetic Data and
Other Data and Comments. Depending on the format of data
required, the form provides a mixture of text or number entry
boxes and drop-down menus, often with the capacity to add
new details if none of the existing options are applicable.
In addition to allowing deposition of a complete set of equi-
librium and kinetics folding data (e.g. kinetic rates of folding
and unfolding, equilibrium free energies), particular emphasis
is placed on recording experimental details and methods
[e.g. spectroscopic technique (probe), method of perturbation
(e.g. denaturant), instrument details, temperature, pH, buffers
and additives]. Where possible some data fields are derived
automatically in the web form, e.g. molecular weight from
sequence, kcal-kJ unit conversion and folding rate from
In(folding rate). Relevant links to other knowledge
databases such as the UniProt (10), SCOP (11) and NCBI
PubMed databases are also established through the data
entry form. In addition to specified details, fields are
provided for supplementary notes that may be useful to
other users.

Mutant datasets. The deposition of mutant data are consider-
ably more challenging because it often involves large datasets
for several mutants, and the ability to deposit these data in
one step is clearly important. To achieve this we have deve-
loped an EXCEL spreadsheet that also serves to calculate
derived equilibrium and kinetic values. For example, this
allows the deposition of values such as the logs of folding
rates, ‘m’ values, AG and AAG values, BT and @ values.
This spreadsheet is therefore useful in its own right, and is
freely available for download.
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Figure 2. (A) Raw data, such as In(k,s) versus denaturant concentration can
be deposited and automatically plotted (the chevron plot is shown) and (B)
the contact order plot shown here is automatically calculated from the
database contents. Each data point represents a protein, and can be selected
directly from the plot.

Raw data. Much of the folding data reported in publications
is derived from raw data, which goes unpublished. Such raw,
unanalyzed data are often useful at a later date when more
advanced tools become available, or in the light of new
methods. A particularly good example is the Chevron plot
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Figure 3. (A) Advanced searching, e.g. by kinetic and equilibrium data; (B) typical results of a search, shown here sorted by folding rate. This is a summarized
table, containing most of the important folding data and (C) part of a full folding entry.

[In (kops) versus denaturant concentration]. In cases where the
arms of the chevron plot are linear, a simple linear fit can be
used to estimate rate constants in the absence of denaturant
(12). However, there are many examples of where the pres-
ence of intermediates or aggregation results in non-linear
chevron plots (so called ‘kinetic-rollover’). Since there are
several approaches to fitting these data, and new approaches
may be developed in the future, making available the raw
kinetic data will allow future researchers to refit the data
using different models. Similarly, capturing the raw equili-
brium data (e.g. spectroscopic signal versus denaturant con-
centration) is also important. As such we allow raw
chevron and equilibrium data to be deposited in the database,
again using an EXCEL spreadsheet format. Once deposited

and validated, both datasets can be visualized graphically
(see below).

Data visualization

Raw equilibrium and chevron data can be visualized graphi-
cally (Figure 2A). Accordingly we have developed data fit-
ting algorithms using the open source statistics package ‘R’
(www.r-project.org) which fits the data graphically, and pro-
vides estimates of folding and unfolding rates and associated
errors (Figure 2A). We have also developed graphical means
of visualizing relationships between structural parameters,
such as contact order and folding rates (2). This graphical
representation of data are displayed automatically and



elements of the graph are hyperlinked directly to the data
such that a mouse-click on a data point will retrieve the
data in the standard text format. We currently supply contact
order plots (Figure 2B), and further work is planned allowing
the graphical visualization of relationships between structural
and folding characteristics of wild type and mutant proteins.

Advanced searching and reporting

For most purposes the search box can be used to search by
obvious parameters such as protein name. However, more
stringent searching can be performed using the advanced
search feature (Figure 3A). The database can be queried by
numerous parameters. These include text searches of protein
names, and literature references, searches of experimental
details, and searches of construct and structure type. More
complex mathematical searches can be made on a wide
range of protein descriptive and folding characteristics. In
this way proteins may be retrieved on the basis of length,
folding intermediates, folding rates, and various derived
terms such as @ or BT values. Search results are presented
in a tabular fashion (Figure 3B), and various data types can
be selected for display and can be sorted on any heading
(this proves useful for fast visualization of trends). Individual
records are structured logically in sections as in data
deposition (Figure 3C).

METHODS

PFD was created using open-source MySQL relational
database server software (version 4.1.18; www.mysql.com),
Apache web server (version 1.3.33; www.apache.org), run-
ning on an Apple Dual 2.0 GHz G5/0OS X Server (version
10.4.7). The database consists of 38 tables. All web-based
forms and query interfaces to the database were created
using a multi-tier web site written in PHP (version 5.1.2;
www.php.net) and PEAR database abstraction classes.
Numerical fitting was done using the open source statistics
package ‘R’ (version 2.2.01; http://www.r-project.org), and
the algorithms used for chevron and equilibrium fitting are
available on the web site.

AVAILABILITY AND SUBMISSIONS

PFD is freely available at http://www.foldeomics.org/pfd/.
Enquiries should be emailed to Ashley.Buckle@med.
monash.edu.au

CONCLUSIONS AND FUTURE EXTENSIONS

The PFD has been rebuilt according to the guidelines set out
by the International Foldeomics Consortium. New deposition
tools will encourage growth of the database, and novel means
of representing the data graphically will enhance its use in the
field of protein science. Future work will focus predominantly
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on the development of further graphical representations of the
folding data. This will be extended as much as possible such
that the database is not just a data archive, but becomes a
powerful analytical tool in folding research.
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