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Annotation of protein-coding genes is a key goal of genome sequencing projects. In spite of tremendous recent
advances in computational gene finding, comprehensive annotation remains a challenge. Peptide mass spectrometry is
a powerful tool for researching the dynamic proteome and suggests an attractive approach to discover and validate
protein-coding genes. We present algorithms to construct and efficiently search spectra against a genomic database,
with no prior knowledge of encoded proteins. By searching a corpus of 18.5 million tandem mass spectra (MS/MS)
from human proteomic samples, we validate 39,000 exons and 11,000 introns at the level of translation. We present
translation-level evidence for novel or extended exons in 16 genes, confirm translation of 224 hypothetical proteins,
and discover or confirm over 40 alternative splicing events. Polymorphisms are efficiently encoded in our database,
allowing us to observe variant alleles for 308 coding SNPs. Finally, we demonstrate the use of mass spectrometry to
improve automated gene prediction, adding 800 correct exons to our predictions using a simple rescoring strategy.
Our results demonstrate that proteomic profiling should play a role in any genome sequencing project.

[Supplemental material is available online at www.genome.org.]

Annotation of protein-coding genes is a key goal of genome se-
quencing projects. In spite of recent advances in computational
gene finding, a comprehensive annotation of protein coding
genes remains challenging. In most annotation pipelines, a com-
putationally predicted gene must be confirmed by independent
evidence and/or manual validation before it is accepted. The ad-
ditional evidence is often in the form of conservation across dis-
tant organisms or evidence of transcription. This evidence, while
compelling, is not sufficient (see Gupta et al. 2004). Conserva-
tion across species is not limited to protein coding regions.
Roughly 5%–20% of the human genome is conserved against
mouse, of which just 1%–2% is considered to be coding for pro-
teins (Waterston et al. 2002). Likewise, most cDNA sequences are
obtained from single-pass, high-throughput sequencing and con-
tain sequencing errors, prespliced mRNA, as well as untranslated
regions. Thus it is hard to determine if every alternative splice
form predicted from an EST is also expressed at the protein level.
Alternative splicing and overlapping genes present particularly
difficult annotation problems. Some estimates suggest that the
majority of human genes undergo alternative splicing (Mironov
et al. 1999; Modrek and Lee 2002; Florea et al. 2005).

Therefore, it is customary to provide a conservative genome
annotation and then rely upon community efforts to refine an-
notations and fill in missing genes. While the genome annota-
tion process is unlikely to be fully automated, high-throughput
methods are an important part of any genome annotation strat-
egy. Tandem mass spectrometry is an attractive technique for
validating gene predictions. It measures proteins directly, verify-

ing putative gene products at the level of translation. Also, it
provides an orthogonal line of evidence, with different error
sources than nucleotide-based approaches.

A tandem mass spectrum can be viewed as a collection of
fragment masses from a single peptide (eight to 30 amino acids
from an enzymatically digested protein). This set of mass values
is a “fingerprint” that identifies the peptide. The spectra are usu-
ally not analyzed de novo. Instead, they are compared against
peptides from a database of known proteins (Aebersold and
Mann 2003). Much research has been devoted to improving the
accuracy of this search by refining scoring (Yates et al. 1995b;
Perkins et al. 1999; Bafna and Edwards 2001, Creasy and Cottrell
2002; Lu and Chen 2003; Sadygov and Yates 2003; Tabb et al.
2003), improving search speed (Craig and Beavis 2003; Frank et
al. 2005), and handling post-translational modifications (Tsur et
al. 2005).

In this context, it is natural to ask if we can search translated
genomic databases directly. Each match from such a search con-
firms a genomic locus to be part of a protein-coding gene. This
has been proposed in a number of studies (Yates et al. 1995a;
Choudhary et al. 2001; Kuster et al. 2001; Carlton et al. 2002;
Fermin et al. 2006). However, in eukaryotes, searching a straight-
forward six-frame translation is problematic. The typical exon in
a multi-exonic gene is short, with an average length of 150 bp (50
amino acids). A significant fraction (∼25%) of trypsin-digested
peptides from eukaryotes span an exon boundary and so cannot
be identified with an ORF database. Predicting the correct introns
is a difficult step in gene finding, and such exon-spanning pep-
tides are critical to confirming and annotating splicing. Also,
only a small fraction of the genome codes for proteins. A six-
frame translation of the human genome has 6-Gb residues, while
the size of the known human proteome is just 25 Mb. Scaling up
to a larger database makes searches slower by orders of magni-
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tude. In addition to the issue of speed, searches are known to
have a significant error rate, and larger databases incur a higher
false-positive rate. Polymorphisms are also a potential source of
error in such a search.

We overcome these issues with several technical improve-
ments. First, instead of searching translated genomes directly, we
search a compact representation of all putative exons, splice vari-
ants and polymorphisms. This representation takes the form of a
directed acyclic graph which we call the exon graph. Our search
is efficient, using a database filtering technique based on tagging
(Frank et al. 2005) that extends directly to searching graphs in-
stead of sequences. We also use improved scoring (Keller et al.
2002; Tanner et al. 2005) to keep the false discovery rate at 2.5%.
We show that evidence from mass spectrometry can be fed into
computational gene finding methods to improve gene predic-
tions. An outline of our method is presented in Figure 1.

Methods

Exon and intron predictions
Exon predictions were generated by GeneID (Parra et al. 2000;
Blanco et al. 2002) against build 35 (May 2004) of the human
genome. All putative exons with a score of ��1 were retained,
producing 4,110,476 exons with considerable overlap. Splice
junctions were considered between all pairs of exons with com-
patible reading frames and intron length between 25 and 20,000
bases. Each interval was linked to the closest intervals with a
compatible reading frame. At most 10 introns were considered
per genomic position.

We extracted human sequences from dbEST (6,587,476 se-
quences) (Boguski 1993). These sequences were aligned against
the May 2004 assembly of the human genomic sequence using
ESTMapper (Florea et al. 2005). A total of 7,153,771 alignments
were generated (including multiple alignments for some se-
quences). Because genomic contamination and sequencing er-
rors produce noise in EST data, we filtered the set of putative
exons and introns. Mappings with sequence identity <90% or
containing cDNA gaps were removed. We also compared each
splice junction against the consensus splice signal using a posi-
tion weight matrix. We discarded any putative intron that (1)
occurred in only one EST mapping and (2) had a poor (fifth
percentile or less) signal score. Roughly 10% of all introns
(336,833) were discarded in this way. The signal score and occur-
rence count of each intron are stored in the database for later

reference. After filtering, 6,923,229 EST mappings were gener-
ated, with an average of 2.2 intervals per EST.

Database construction
Our goal is to build a compact representation of all the exons and
introns derived from GeneID and ESTMapper. Let I and J be the
collection of intervals and splice junctions for a chromosome
strand. The endpoints of interval In are denoted as Ln and Rn,
with the convention that In includes the bases from Ln up to (but
not including) Rn. We call a point a “junction point” if it is an
edge of any putative intron. Refer to Figure 2 for an overview of
the procedure, and Figure 3 for an example of the final graph.

Gene prediction algorithms often produce putative exons of
various lengths which overlap. Similarly, because ESTs have vary-
ing read lengths, it is common for them to map to overlapping
genomic intervals. If intervals Ii and Ij overlap, we can merge
them into a larger interval without loss of information, so long as

1. Li = Lj, or max(Li,Lj) is not a junction point.
2. Ri = Rj, or min(Ri,Rj) is not a junction point.

We perform all such legal merges. This phase greatly reduces the
redundancy of the set of intervals. If an interval overlaps the edge
of a putative intron, we cut the interval into two subintervals at
the junction point. At the end of this phase, our set of intervals
is disjoint. We now add an edge between any adjacent intervals
(Ii and Ij such that Ri = Lj). For each putative intron, we add a
splice edge between the corresponding intervals. We now incor-
porate polymorphisms. If an interval contains a coding SNP, we
add intervals for each allele. Thus, each SNP produces a “bulge”
in the graph.

We derive an exon graph from the genomic interval graph.
For each node in the interval graph, add one node to the exon
graph for each legal reading frame. Each exon graph node has a
protein sequence and may have an untranslated prefix and suf-
fix. If intervals are joined by an edge, then the corresponding
exons (with compatible reading frame) are similarly joined.
Edges are annotated with an amino acid when a codon is split
between exons.

In order to remove noncoding “noise” from the database,
we remove all nodes and edges that are not part of a coding
sequence of length 50 or more. This procedure removes nodes
corresponding to translation of EST mappings in the wrong read-
ing frame. The finished exon graph contains a total of 133 M
amino acids, in 3.5 M exons, with 2 M splice junctions.

Mass spectra
Proteins were extracted from HEK293 cell culture. Our standard
extraction contains 2% RapiGest (Waters) in TNE buffer. Disul-
fide bonds were reduced using a final concentration of 2 mM
TCEP for 30 min. A final concentration of 5 mM iodoacetamide
was used to alkylate sulfhydryl groups. Protein concentration was

Figure 1. Overview of the workflow for genome annotation through
mass spectrometry. The exon graph database is constructed without ref-
erence to prior annotations of the genome. Putative exons and exon-pairs
are generated through EST alignment and de novo predictions; homol-
ogy maps are another potential source. Peptide matches identify the true
exons (and introns) among the gene predictions

Figure 2. Overview of the procedure for turning a collection of puta-
tive exons and introns into an exon graph. Adjacent edges are repre-
sented by dotted lines, splice events by solid lines.
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measured with a Bradford assay. Proteins were then digested with
trypsin (1:50) overnight.

An Agilent 1100 HPLC system (Agilent Technologies) was
used to deliver a flow rate of 300 nL min�1 to the mass spec-
trometer through a splitter. Chromatographic separation was ac-
complished using a three-phase capillary column. Using an in-
house constructed pressure cell, 5 µm Zorbax SB-C18 (Agilent)
packing material was packed into a fused silica capillary tubing
(200-µm inner diameter (ID), 360-µm outer diameter (OD), 20
cm long) to form the first dimension RP column (RP1). A similar
column (200-µm ID, 5 cm long) packed with 5 µm PolySulfoethyl
(PolyLC) packing material was used as the SCX column. A zero
dead volume 1-µm filter (Upchurch, M548) was attached to the
exit of each column for column packing and connecting. A fused
silica capillary (100-µm ID, 360-µm OD, 20 cm long) packed with
5 m Zorbax SB-C18 (Agilent) packing material was used as the
analytical column (RP2). One end of the fused silica tubing was
pulled to a sharp tip with the ID <1 µm using a laser puller (Sutter
P-2000) as the electro-spray tip. The peptide mixtures were
loaded onto the RP1 column using the same in-house pressure
cell. To avoid sample carryover and keep good reproducibility, a
new set of three columns with the same length was used for each
sample. Peptides were first eluted from the RP1 column to the
SCX column using a 0%–80% acetonitrile gradient for 150 min.
The peptides were fractionated by the SCX column using a series
of salt gradients (from 10 mM–1 M ammonium acetate for 20
min), followed by high-resolution reverse phase separation using
an acetonitrile gradient of 0%–80% for 120 min. We have found
that a three-dimensional run can provide significantly more re-
solving power but at the cost of a longer separation time. For
three dimensions, we elute fractions with acetonitrile from RP1
in 10% increments and then perform the salt elutions as de-
scribed above but with a resolving gradient for RP2 of acetonitrile
equal to the gradient used to elute from RP1.

Spectra were acquired on LTQ linear ion trap tandem mass
spectrometers (Thermo Electron Corporation) employing auto-
mated, data-dependent acquisition. The mass spectrometer was
operated in positive ion mode with a source temperature of 150°C.
As a final purification step, gas phase separation in the ion trap was
employed to separate the peptides into three mass classes prior to
scanning; the full MS scan range was divided into three smaller scan
ranges (300–800, 800–1100, and 1100–2000 Da) to improve dy-
namic range. Each mass spectrometry (MS) scan was followed by 4
MS/MS scans of the most intense ions from the parent MS scan. A
dynamic exclusion of 1 min was used to improve the duty cycle.

In addition, we downloaded all human, non-ICAT-labeled
spectra publicly available (as of March 2006) in the PeptideAtlas
data repository (Desiere et al. 2004). These data consist of spectra
from the erythroleukemia K526 cell line (Resing et al. 2004), and
from the HUPO Plasma Proteome Project (Omenn et al. 2005).
The data include a total of 1.8 million spectra in 621 MS runs,
most of them from ion trap mass spectrometers.

The HEK293 mass spectra are available from http://
bioinfo2.ucsd.edu, together with spectrum annotations.

Database search
The database search proceeds by a modified version of the In-
spect search algorithm (Tanner et al. 2005). Given a spectrum, we
perform partial de novo reconstruction to generate a peptide se-
quence tag of three or more amino acids. To accommodate de
novo errors, we generate multiple tags and store them in a trie
(Aho and Corasick 1975). When a tag sequence is found in the
database, we perform a depth-first search in the graph to find all
extensions that match the tag’s flanking masses. The source code
for our software is available from our laboratory’s Web page
(http://peptide.ucsd.edu/).

When a tag and its flanking masses are matched, a candidate
peptide is produced. Each candidate peptide is scored to compute
the probability of that peptide generating the query spectrum
(Tanner et al. 2005). Inspect computes match quality scores
based upon fragment presence and intensity, and the presence of
unexplained “noise” peaks. Once the database scan is complete,
the top matches are reported. If the same peptide sequence is ob-
served multiple times, up to 10 loci matching the peptide are re-
ported. To improve filtering of incorrect matches, we also consider
the difference between the top match score and the score of the
next-best peptide (delta-score). To correct for the dependence of
delta-scores on database size, we take the ratio of a match’s delta-
score to the average delta-score across all matches. The weighted
sum of the match quality score and delta-score is called an F-score.

The empirical distribution of F-scores can be fit by a mixture
model of a gamma distribution (representing false annotations)
and a normal distribution (representing true annotations) (Keller
et al. 2002). We select an F-score cutoff which corresponds to a
P-value of 0.05 (95% probability of correct annotation).

As an additional measurement of false discovery rate, we
constructed a reversed database by reversing the sequences of all
nodes and reversing the direction of each edge. We measured an
empirical false discovery rate by searching 700,000 spectra
against the reversed databases. Our F-score cutoff yields 1200
matches on the reversed database, for a false annotation rate of
0.2%. In a search of the forward database, 47,000 spectra passed
this same score cutoff. Based on these results, we estimate that
1200 of the 47,000 spectrum matches against the true database
are incorrect, for a false discovery rate of 2.5%. In addition to this
filter at the spectrum level, we pay particular attention to exons
hit by multiple peptides; no such instances were observed for the
search of the reversed database.

Post-processing of the search results was performed to deal
with peptides which occur in multiple proteins. We note that in
addition to closely related paralogs, the predicted exons may in-
clude some pseudogenes highly similar to their source genes. As
an extreme example, the peptide AMGIMNSFVNDIFER (from
H2B histone family, member S) is found in >20 valid and invalid
ORFs. Therefore, when measuring coverage, we iteratively select
a set of genes. At each stage, the gene which can be used to
annotate the greatest number of spectra is selected, and the se-
lected gene “absorbs” all shared peptides. We require at least two
peptide hits before judging a protein present. This procedure en-
sures that redundant or questionable protein records are not se-
lected. When considering alternative splicing, we select multiple
isoforms of a protein only if we must do so in order to account for
all the peptides matched.

Mapping known proteins to the genome
We wish to ensure the exon graph database captures the exons
and introns from known genes. To do this, we produce the full
genomic alignment of each protein, including splice junctions.
We first identify “seeds,” positions on the genome which appear

Figure 3. A portion of the exon graph for heterogeneous nuclear ribo-
nuclear protein K. The labeled edge represents a codon split across a
splice junction. The dotted edge is an “adjacent edge” corresponding to
a longer form of an exon. Searching the exon graph reveals peptides
spanning both outgoing edges from the central node, confirming alter-
native splicing at the level of translation.
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to match the protein. The chromosome locations are stored for
most (54,032) of the IPI database records. In addition, each pro-
tein was searched against the repeat-masked human genome us-
ing TBLASTN. Finally, the exon graph was searched for any gene
containing length-8 substrings (words) from the full protein; the
three records with best coverage were retained as seeds. As a fil-
tering step, we consider only seed matches that cover at least 30
residues of (an exon from) the source protein.

The heuristic alignment algorithm enumerates 6-mers from
the protein found in the six-frame translation of the genomic
region of interest. Adjacent hits are merged into putative exons.
Using dynamic programming, we find a chain of exons which
cover the entire protein. Exons close to each other can be
merged, to step over mismatches between the protein sequence
and genome. Finally, exon endpoints are refined to capture the
best available splice signals.

A total of 56,725 proteins (98%) were mapped against the
genome with �95% sequence identity. Of these, 37,849 (65%)
were mapped with 100% identity. Of the records not successfully
aligned, many have no satisfactory “seed” in the TBLASTN re-
sults. Records that represent short signal peptides are often
missed in this way (data not shown). Many of the nonaligned
proteins are predicted protein sequences derived from cDNA,
which may be chimeric.

Each peptide identified in our database was compared to the
locations of known proteins. If a peptide was found multiple
times in the genome, or if two matches had equivalent match
scores, we considered each locus. When selecting a locus, the
order of preference was as follows: match to a known gene,
match a known gene with SNPs, match a novel single-exon pep-
tide, match a novel intron-spanning peptide. This procedure
helps us avoid proposing new exons which correspond to pseu-
dogenes.

Improving gene predictions
Our goal was to demonstrate automated refinement of gene pre-
diction by incorporating MS search results. We selected the
GeneID software because it uses a simple two-pass approach to
gene prediction. It first predicts a collection of coding exons and
then chains these exons into complete genes. Our strategy is to
search the exon graph and then boost the scores of exons and
introns that correspond to peptides. The assignment of peptide
matches to known genes was not used when improving gene
predictions.

We first ran GeneID against the human genome, retaining
all predicted exons with score ��5. We note that exon scores are
derived from a log odds ratio; GeneID attempts to avoid incor-
porating exons with negative scores. We then examined the
number of peptide matches which hit each exon, and the P-value
of these matches. We note that if the coding sequence for a
peptide spans exons, one of which accounts for just one base
pair, there may be several plausible exon pairings that encode the
same peptide. Therefore, to reduce false positives, we register an
exon hit only if the peptide match is “anchored” by at least 7 bp
on the exon.

For each exon, we consider three parameters. The parameter
c is equal to the number of spectrum annotations that are con-
tained in the exon of interest. The parameter Pa is set to the best
P-value of a peptide match covering the splice acceptor of the
exon. We set Pa = 1 if there are not at least two spectrum anno-
tations covering the acceptor site. Otherwise, we add 0.001 to the
P-value to limit the effects of matches with extremely low P-
values. Similarly, Pd is the best P-value of a match covering the
splice donor. The score S of each exon is modified as follows:

S� = S + w1log(1 + c) + w2(�log(Pa) � log(Pd))

The weights w1 and w2 were tuned to 1.0 and 0.8, respectively, by
computing accuracy over a test set of 100 genes from chromo-
some 1.

For each gene of interest, we extract the genomic interval
containing the exons from the gene. We run GeneID in exon-
chaining mode to predict a gene on this interval using the origi-
nal exons, then using the rescored exons.

Results

Search algorithm comparison

We compared the performance of Inspect to that of SpectrumMill
(version 3.1, Agilent) on a collection of 800,000 spectra (34 runs)
from the HEK293 data set. Both tools searched these spectra
against the same database consisting of the IPI database, together
with the reversed sequence of each protein. We assume that spu-
rious matches are distributed randomly throughout the database.
Using this assumption, if 5% of all matches come from reversed
proteins, then the false discovery rate among matches from valid
proteins is also 5%. Sorting the SpectrumMill matches by score,
we obtain 94,633 spectrum annotations (27,845 distinct pep-
tides) at a false discovery rate of 5%.

Sorting the Inspect matches by score, we obtain 135,192
spectrum annotations (43,311 distinct peptides) at this same
false discovery rate. These results (40% more spectra, 70% more
peptides) indicate that Inspect’s filtering and scoring are effective
on this data set.

Exon graph construction

One goal in building the exon graph database is to keep the
database size as small as possible while still covering all splice
variants of all genes. The exon graph contains a total of 134
million amino acid residues, a significant savings over the full
length of the EST database (2 billion residues), or the concat-
enated exon predictions from GeneID (630 million residues). The
graph contains a total of ∼3 M exon nodes and ∼8 M edges.
Modeling possible splicing events as a graph is a familiar formal-
ism (Heber et al. 2002; Leipzig et al. 2004), although our construc-
tion of the exon graph differs from previous work (see Methods).

To verify the completeness of the exon graph, we considered
the IPI database (version 3.15) as a representative corpus of
known human proteins (Kersey et al. 2004). The IPI database
contains 25 million residues in 58,099 records. We note that the
database is not complete and contains some hypothetical se-
quences. We aligned these proteins against the human genome
using known genomic locations and BLAST, as described in the
Methods. We restrict our attention to the 56,725 records mapped
to the human genome at 95% or greater sequence identity, the
“mapped proteins.” We use this large reference set to estimate
the proportion of known genes contained in the exon graph.

The mapped proteins include multiple isoforms of many
genes. Counting known proteins that share exons as one gene,
we reach a gene count of 32,493, of which 10,583 have multiple
isoforms (Supplemental Fig. 1). These gene mappings include a
total of 442,572 distinct exons. We show later the annotation of
peptides corresponding to isoforms that are not contained in the
IPI database but have been deposited in GenBank.

For each mapped protein, we determined whether GeneID
predictions and/or EST mappings captured the genomic intervals
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(exons) and putative splice junctions (introns) of the protein.
Table 1 summarizes the results.

This table reflects the extremely high EST coverage of the
human proteome. The exon predictions from GeneID cover most
true exons, but the intron coverage is lower. The low intron cov-
erage likely results from the simplistic exon-joining algorithm
used in constructing the exon graph. A more sophisticated ap-
proach may cover more splice junctions. The exons missed in
this construction typically come from the edges of the protein.
The coverage rates for first and last exons are 81% for ESTs and
60% for GeneID, significantly lower than the average overall.
Further research will target these problematic exons. Given the
high coverage of known proteins by the algorithmically derived
exon graph, we turn now to the results of mass spectrometric
annotation with the exon graph.

Search results

We obtained ∼18.5 M spectra from various tissue types and
searched them against the exon graph. Searches of this large data
set were run over a grid of 1.6-GHz compute nodes (FWGrid
Project). The average search time on a node was ∼2.5 sec per
spectrum. Low-quality matches were filtered out a threshold
based on the distribution of match scores (see Methods). Matches
shorter than eight amino acids were discarded due to the diffi-
culty in assigning short peptides to a unique locus.

Each annotation includes the genomic location of the pep-
tide. We compare these loci to the chromosomal locations of
known proteins. We then categorize peptide matches based upon
their relationship to known genes (see Methods). Recall that the
human genome is heavily annotated. Therefore, the degree to
which known proteins are covered by annotations from this data
set is a reasonable estimate of our coverage of the full proteome.
See Figure 4 for an initial breakdown of the results. The majority
(89%) of peptides match known genes. Of these, 24% span an
exon boundary, confirming splicing events at the protein level. A
total of 121 peptides (in 1517 spectra) span two exon boundaries;
these represent cases where a tryptic peptide fully spans a short
exon. A total of 11,050 splice events are confirmed by identified
peptides. Given that only ∼20% of the exon graph corresponds to
known proteins, the enrichment for known genes suggests that
protein-coding regions of unannotated genomes can be discov-
ered by these methods. Those peptides that do not match known
genes may be discoveries of novel exons, or novel splicing events;
these cases are discussed after the results from known genes.

Protein coverage

The search results include 6252 proteins confirmed by two or
more distinct peptides, and a total of 3745 proteins are matched

by five or more distinct peptides. As noted earlier, we select a mini-
mal set of proteins which account for spectrum annotations. This
allows us to avoid listing records corresponding to multiple iso-
forms of the same protein unless both forms are in fact present.

Because protein abundances within the cell vary greatly, we
see extreme variation in the number of spectra matching each
protein, with >25,000 matches from enolase 1, (alpha) but only
one or two matches to other proteins. As with other high-
throughput techniques such as cDNA sequencing, the repeated
sampling of common elements eventually reaches saturation.
We count the number of distinct peptides (from known proteins)
discovered for a given number of identifications and plot the
resulting discovery curve. The discovery rate slows as more pep-
tides are found (Fig. 5), but is still far from saturation. The dis-
covery curve is fit well by the function y ∼ x0.55 (correlation co-
efficient 0.97). Sampling of proteins from more tissue types
promises to yield annotations for a wider range of proteins. Based
on this discovery curve, we estimate that a 10-fold larger data set
should yield high-confidence identifications (five or more dis-
tinct peptides) for >12,000 gene products.

Novel peptides

Matches to the exon graph which do not correspond to known
proteins are potentially of great interest, since they may come
from uncharacterized exons or even unannotated genes. We in-
vestigated and categorized all peptide matches that are not pre-
sent in the IPI reference database. We reiterate that searching a
larger database increases the likelihood of obtaining a high-
scoring match by chance, and we employ several safeguards to
filter such matches. First, we use a cutoff based on the false dis-
covery rate (see Methods) to limit the number of such matches.
Second, we used the results of a standard database search to filter
any novel matches that can be explained away by a known pep-
tide that is missing from the exon graph. An example of a peptide
removed by this filtering is LGEHNVEVLEGNEQFINAAK, coded
by an intron of TRBC1 (GI:135523) on the forward strand of chro-
mosome 7. The spectra for this peptide are annotated by a frag-
ment of porcine trypsin with similar sequence (LGEHNIDVLEG
NEQFINAAK).

Table 1. Coverage of residues, exons and introns from known
genes by the exon graph

Residues Exons Introns

Total 14,715,527 258,598 220,749
EST (%) 90.3 91.9 91.7
GeneID (%) 83.6 80.2 67.7
Combined (%) 95.7 95.6 94.0

Our database construction is permissive, and includes many exon vari-
ants, in order to capture nearly all proteins. The results of searches against
the database confirm specific exons and introns, allowing automated
refinement of gene models.

Figure 4. Categorization of search results by their relationship to
known proteins. The inner ring shows findings at the spectrum level; the
outer ring shows findings at the level of distinct peptides. The peptides
categorized as “unknown” include some peptides missing from the IPI
database, as well as novel exons.
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Many of the peptides not present in IPI are present in other
isoforms or proteins found in the NCBI nonredundant database.
We observe a total of 90 such peptides (1938 spectra). See Supple-
mental Table 1 for the complete list. These cases illustrate the
danger of selecting a limited set of “representative” splice forms
for a protein database. After removing such annotations, we re-
tain 58,000 novel spectra (6100 peptides). We note that incorrect
matches are more likely to be novel peptides, since 80% of the
exon graph database is novel sequence. Let us conservatively
assume the incorrect matches all fall within the novel peptides.
Given a 2.5% false discovery rate across all 1.2 M annotations, we
estimate that 28,000 spectra are correctly annotated by novel
peptides. These correspond to an estimated 3300 peptides, based
on the mean number of spectra per novel peptide. A report of all
novel peptides is provided in Supplemental Table 2.

In the remainder of our analysis, we restrict our attention to
those novel peptides strongly supported by additional lines of
evidence. We find evidence for novel exons (or extensions of
known exons) in 16 genes. These instances are supported by se-
quence homology and by the discovery of one or more peptides
in close proximity along the genome. The discovery of translated
peptides demonstrates that these sites are indeed exons and not
conserved noncoding sequences. See Figure 6 for an example of
the evidence for one exon.

Table 2 summarizes these exon discoveries. While the main
purpose of our project is the preliminary annotation of nonan-
notated or sparsely annotated genomes, the discovery of new
exons on the human genome demonstrates the power of the
technique. In most cases, the novel translation is immediately
upstream of known exons. We note that many of the reference
protein sequences are derived from
cDNA sequences. The 5� portions of such
sequences are often inferred or absent
due to truncation of cDNA. In addition,
predicted translation start sites are often
incorrect. With the exon graph, we can
use mass spectra not only to confirm
translation of these genes but to correct
their sequence annotations. Supplemen-
tal Table 3 reports the peptide hits to
these novel exons, as well as peptides
from the known exons of the protein.
Supplemental Figure 2 illustrates one
such case.

Two peptides were observed that fall
within splicing factor 1 (GI:42544130) but

not in the annotated reading frame. These peptides are of particular
interest since they fall within one of the genomic regions selected
by the ENCODE project (ENCODE Project Consortium 2004).

Alternative splicing

Evidence for alternative splicing normally comes from mRNA
sequencing projects, which may include prespliced or contami-
nating sequences. Mass spectrometry data can confirm the pres-
ence of specific isoforms in a sample at the protein level. Of our
peptide matches, ∼25% span at least one putative intron. Over-
lapping exon predictions and EST alignments can produce un-
reasonably short exons in the database; therefore, we discard
peptides undergoing two splice events within 15 bp of each
other.

We examined our search results for evidence of alternative
splicing. We consider all splice donors and splice acceptors that
have multiple partners. We ignore matches where the splice
boundaries are not part of a known protein, or where the peptide
covers six or fewer base pairs on either side of the intron. We
highlight a total of 40 instances of alternative splicing in this
way. We report these events in Supplemental Table 4.

In 24 of these instances, only one of the two isoforms is
present in the IPI database. As s conservative filter, we report such
splice junctions only if they are supported by EST evidence and/
or supported by sequences in the NCBI nonredundant database.

Polymorphisms

Each known coding SNP produces a “bulge” in the exon graph,
where a peptide sequence may not match the genomic sequence.
A total of 308 such polymorphisms in known genes were evi-
denced by at least two spectrum hits (see Supplemental Table 5).
For 94 of these cases, both alleles of the SNP were observed. In
addition, 221 sites were observed where the observed peptide
matches the genomic sequence, rather than the protein from the
IPI database. These sites may correspond to SNPs, or simply to
sequencing errors. We note that many protein records are de-
rived from error-prone sources such as single-pass cDNA sequenc-
ing.

Hypothetical proteins

Many protein records in the IPI database are derived from high-
throughput cDNA experiments or computational gene predic-
tions. Identification of peptides from these proteins serve as con-
firmation that the locus in question is, in fact, a pro-

Figure 5. Discovery curve, plotting the number of distinct peptides as
a function of the number of search hits.

Figure 6. Novel exons are supported by peptide identifications and by sequence homology. Above
is a multiple alignment for hypothetical protein sequences from chimp (gi:55639283), rat
(gi:62531299), and human (genome translation, similar to PGAM5 gi:20070384). Introns are indi-
cated by colons. The peptides identified from mass spectra are indicated below the protein sequence.
The novel 3� exon is supported by three peptide identifications, as well as >95% amino acid sequence
conservation across species.
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tein-coding gene. We examined all search results that correspond
to proteins with annotations of the form “hypothetical protein”
or “putative protein.” We disregarded any search hits that also
match “nonhypothetical” proteins, due to either exons shared
with other proteins or multiple occurrences of the peptide within
the database. The search results confirm many hypothetical pro-
teins. A total of 224 proteins are matched by a minimum of five
spectra from at least two distinct peptides. We omit from this list
any sequence present in RefSeq (Pruitt et al. 2005) with an an-
notation other than “REFSEQ PREDICTED” or “REFSEQ
MODEL.” Supplemental Table 6 summarizes the results. This
may be the first confirmation of these protein sequences at the
level of translation. Supplemental Figure 3 shows coverage of one
such protein.

Refining gene predictions

Here we address the question: Can de novo gene finding be im-
proved by incorporating evidence from mass spectrometry? Ear-
lier research has demonstrated the effectiveness of incorporating
additional lines of evidence, such as comparative genomics, to
improve gene prediction (Korf et al. 2001). By searching mass
spectra against our database of putative proteins, we accumulate
evidence supporting putative exons and introns. When predict-
ing genes, GeneID first identifies putative exons, then assembles
the exons into a collection of genes. We rescore the predicted
exons before gene assembly in an effort to improve the accuracy
of gene prediction. We boost exon and intron scores based on the
number of spectra matched by corresponding peptides and based
on the quality of these matches (see Methods).

We ran GeneID on the genomic intervals containing 1386

protein-coding genes. We selected genes for which one or more
peptides were mapped to the coding region, and for which a
single splice isoform was known (from the IPI database). We then
rescored all predicted exons by incorporating peptide matches
from our database search. The sensitivity and selectivity of gene
assembly improved (Table 3), with a gain of 863 correctly iden-
tified exons. The improvements are greatest for proteins that are
well sampled (data not shown). We also note that since we ex-
amine a broad selection of genes, including 100 that span
>100,000 bp, accuracy on this corpus may be lower than on other
test sets. Figure 7 shows an example of a gene prediction im-
proved by this method.

In a few cases (20 genes), predictions worsened after rescor-
ing. The peptide annotations used for these genes appear to be
correct. In most cases, an incorrect exon (which overlaps the true
exon) was boosted and selected for the final gene prediction. One
instance of a peptide mapped to an incorrect splice boundary was
also observed. Further work will focus on improved incorpora-
tion of MS/MS data, and integration of MS/MS search results
alongside other data that can corroborate exons (ESTs and com-
parative genomics). We anticipate that refinement of the algo-
rithm as well as acquisition of additional spectra will improve
results.

Discussion

Delineating the protein-coding genes within a eukaryotic ge-
nome remains a complex and labor-intensive process. To cite one
example, a human-curated annotation of the human X chromo-
some required an estimated 15,000 person-hours (Harsha et al.
2005), much of which was spent resolving the set of coding re-
gions. Because automated annotations are the foundation that
biologists later build upon, high-throughput methods to gener-
ate and refine annotations are needed. This study demonstrates
that with a few mass spectrometry experiments, automated
analysis can recapture many of the gene annotations that have
been made by painstaking efforts. Even on the extensively stud-
ied human genome, we discover genes and exons that have not
yet been deposited in sequence databases. The majority of our
data were drawn from two tissue sources (kidney cells and blood
plasma). Consideration of other tissues or enrichment for specific

Table 3. Integration of mass spectrometry search results
improves the gene prediction accuracy

Sensitivity Selectivity

Exons 68.1 75.8
Exons (with rescoring) 74.3 77.2
Nucleotides 84.5 79.5
Nucleotides (with rescoring) 88.5 80.3

A total of 875 correct exons are added to gene predictions by incorpo-
rating MS/MS data.

Table 2. Summary of evidence for additional exons (or exon extensions) in known genes

IPI ID Gene symbol GenBank ID Spectra Peptides Chr. Location Annotation

IPI00038698.1 C3orf63 GI:5881256 18 4 3� 56678776–56678842 Two additional 5� exons
IPI00062325.1 SLC3584 GI:39725666 8 2 5+ 139926486–139926516 Translation upstream of annotated start
IPI00643156.1 PHF10 GI:74744253 23 1 6� 169936606–169936646 Additional 5� exon
IPI00106642.4 DPYSL2 GI:62087970 75 6 8+ 26427785–26427821 Additional 5� exon
IPI00386119.1 SF1 GI:42544130 22 2 11� 64289956–64290070 Different reading frame
IPI00168158.4 C12orf51 GI:74730080 9 4 12� 111183646–111183706 Additional 5� exons
IPI00063242.3 PGAM5 GI:20070384 17 3 12+ 131907713–131907749 Additional 3� exon
IPI00004273.5 RBM25 GI:68068009 19 3 14+ 72612805–72613862 Extension of 5� exon
IPI00465071.2 TBC1D10B GI:68534049 35 6 16� 30288483–30288528 Additional 5� exon
IPI00164623.4 KIAA0664 GI:34531906 10 2 17� 2561651–2561693 Additional 5� exon
IPI00016250.3 FXR2 GI:90177782 13 2 17� 7458719–7458755 Extension of 5� exon
IPI00029863.3 WDR81 GI:74759806 28 6 17+ 1575345–1575414 Additional 5� exon
IPI00295502.3 WIZ GI:89052386a 12 2 19� 15400152–15400188 Exon between exons 3, 4
IPI00045360.1 CIC GI:74724286 32 4 19+ 47468138–47468195 Two additional 5� exons
IPI00258168.6 RBM9 GI:29840825 16 2 22� 34748835–34748901 Additional 5� exon
IPI00158615.5 THOC2 GI:41702296 95 1 X� 122566242–122566278 Additional 5� exon

aThis exon is present in the updated protein record (GI:113428129).
The genomic coordinates of one peptide representative are shown for each gene.
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organelles will surely expand our picture of the proteome. On a
less thoroughly annotated genome, we expect to see a readout of
many more novel genes.

The exon graph is a compact representation of protein splice
isoforms and polymorphisms. We observe a near 10-fold reduc-
tion in database size between dbEST and the exon graph. We
emphasize that this is difficult to accomplish with a typical da-
tabase, stored in FASTA format. Enumeration of all protein se-
quences greatly increases search time and creates confusion
when matches to dozens of “records” are explained by one gene.
Many databases sidestep the problem by including one or two
representative sequences for each protein, but this approach car-
ries omits isoforms and polymorphisms. Algorithmic improve-
ments are one way to reduce redundancy from linear protein
databases (Edwards and Lippert 2004). We believe that, if avail-
able in a standard vendor- and tool-independent file format,
exon graph databases may be of general interest to proteomics
researchers.

We used two data sources that complement each other to
construct the exon graph. An advantage of the EST evidence is
that it includes evidence for introns. Short exons, or exons with
unusual hexamer count, are difficult to identify de novo but may
be covered by ESTs. A limitation of EST evidence is that ESTs may
not be available for all genes, and may not cover the 5� portion of
a gene. Many genes are transcribed only in certain tissues or
under certain conditions and may never have been captured as
ESTs. Another drawback of EST data is the presence of unproc-
essed and truncated transcripts, as well as genomic contami-
nants. Exon predictions have the advantage that they explicitly
indicate reading frame. Database construction proceeds from pu-
tative exons and introns, independent of any specific exon pre-
diction method. We are working to integrate other signals in-
cluding the output from multiple gene finding programs, evolu-
tionarily conserved regions, etc.

Our results include 40 instances of alternative splicing. We
emphasize that we have highlighted only those instances where
two splicing events are observed at the same locus. These results
directly confirm both splice events. Many other peptide identi-
fications are unique to splice isoforms that are not considered
standard, giving indirect evidence of alternative splicing. It is
notable that many splice isoforms differ by the inclusion of a
single amino acid. These are cases where two splice donor (or
acceptor) sites are present, separated by 3 bp. Some isoforms of
biological significance differ by presence or absence of a single
amino acid (Tadokoro et al. 2005).

Fully characterizing splice events from tryptic peptides gives
rise to a phasing problem which may be avoided by top-down
mass spectrometry of complete proteins (Roth et al. 2005). Mass
spectrometry can reliably demonstrate the presence of protein
isoforms, but confirming their absence is problematic (Godovac-

Zimmermann et al. 2005). Sequence-based methods remain im-
portant, particularly for splice events that take place in the un-
translated region of genes.

Our focus in this article is on cataloging coding exons and
splice events. We note that mass spectrometry can measure other
types of information that are invaluable for annotation of genes.
These include post-translational modifications (Jensen 2006),
proteolytic cleavages (e.g., of signal peptides) (N. Gupta, S. Tan-
ner, N. Jaitly, J. Adkins, M. Lipton, R. Edwards, M. Romine, A.
Osterman, V. Bafna, R. Smith, in prep.), subcellular localization
(Dunkley et al. 2006), and relative protein expression levels be-
tween tissues (Lill 2003). These topics are a subject of ongoing
research. Our search did not consider post-translational modifi-
cations explicitly. Some modified peptides were annotated with a
sequence with the same mass as the true (modified) peptide.
For example, the putative peptide ASVVAVSDGVIK matches
the N-terminally acetylated peptide from CFL1 (A+42SGVAV
SDGVIK). The putative peptide DELHIVEAEAVYYKGSPIK
matches a modified peptide DELHIVEAEAM+16NYKGSPIK from
IPI00455423.1 (similar to NPM1). Using other algorithms devel-
oped in our laboratory (Tsur et al. 2005), we are searching these
same data sets for known and unknown post-translational modi-
fications. Similar studies are underway for bacterial genomes
(N. Gupta, S. Tanner, N. Jaitly, J. Adkins, M. Lipton, R. Edwards,
M. Romine, A. Osterman, V. Bafna, R. Smith, in prep.).

We argue that high-throughput proteomics experiments
should accompany each genome sequencing project. Mass spec-
trometry is a practical technique for annotating protein-coding
regions. The search is able to tolerate a substantial overhead of
“noise” in exon predictions. In addition, the technique is or-
thogonal to standard transcript-level methods such as cDNA se-
quencing. Mass spectrometry complements other experimental
methods. With recent advances in instrumentation, the data vol-
ume we consider in this article can be produced in 10 instru-
ment-weeks with two person-weeks of labor. Scaling up mass
spectrometry experiments to help annotate a large portion of
proteomes is an attractive prospect at feasible cost.
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