View full-text article in PMC Theor Biol Med Model. 2006 Dec 15;3:41. doi: 10.1186/1742-4682-3-41 Search in PMC Search in PubMed View in NLM Catalog Add to search Copyright and License information Copyright © 2006 Liebermeister and Klipp; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. PMC Copyright notice Table 3. Convenience rate laws for common reaction stoichiometries Reaction formula Rate law Turnover rates k±cat MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGRbWAdaqhaaWcbaGaeyySaelabaacbaGae83yamMae8xyaeMae8hDaqhaaaaa@342E@ Irreversible A ↔ B k+cata˜−k−catb˜1+a˜+b˜ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabdUgaRnaaDaaaleaacqGHRaWkaeaaieaacqWFJbWycqWFHbqycqWF0baDaaGccuWGHbqygaacaiabgkHiTiabdUgaRnaaDaaaleaacqGHsislaeaacqWFJbWycqWFHbqycqWF0baDaaGccuWGIbGygaacaaqaaiabigdaXiabgUcaRiqbdggaHzaaiaGaey4kaSIafmOyaiMbaGaaaaaaaa@42CB@ kV(k˜AMk˜BM)±1/2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGRbWAdaahaaWcbeqaaGqaaiab=zfawbaakiabcIcaOmaalaaabaGafm4AaSMbaGaadaqhaaWcbaGae8xqaeeabaGae8xta0eaaaGcbaGafm4AaSMbaGaadaqhaaWcbaGae8NqaieabaGae8xta0eaaaaakiabcMcaPmaaCaaaleqabaGaeyySaeRaeGymaeJaei4la8IaeGOmaidaaaaa@3DB9@ k+cata˜1+a˜ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabdUgaRnaaDaaaleaacqGHRaWkaeaaieaacqWFJbWycqWFHbqycqWF0baDaaGccuWGHbqygaacaaqaaiabigdaXiabgUcaRiqbdggaHzaaiaaaaaaa@37C2@ A + X ↔ B k+cata˜x˜−k−catb˜1+a˜+x˜+a˜x˜+b˜ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabdUgaRnaaDaaaleaacqGHRaWkaeaaieaacqWFJbWycqWFHbqycqWF0baDaaGccuWGHbqygaacaiqbdIha4zaaiaGaeyOeI0Iaem4AaS2aa0baaSqaaiabgkHiTaqaaiab=ngaJjab=fgaHjab=rha0baakiqbdkgaIzaaiaaabaGaeGymaeJaey4kaSIafmyyaeMbaGaacqGHRaWkcuWG4baEgaacaiabgUcaRiqbdggaHzaaiaGafmiEaGNbaGaacqGHRaWkcuWGIbGygaacaaaaaaa@4A81@ kV(k˜AMk˜XMk˜BM)±1/2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGRbWAdaahaaWcbeqaaGqaaiab=zfawbaakiabcIcaOmaalaaabaGafm4AaSMbaGaadaqhaaWcbaGae8xqaeeabaGae8xta0eaaOGafm4AaSMbaGaadaqhaaWcbaGae8hwaGfabaGae8xta0eaaaGcbaGafm4AaSMbaGaadaqhaaWcbaGae8NqaieabaGae8xta0eaaaaakiabcMcaPmaaCaaaleqabaGaeyySaeRaeGymaeJaei4la8IaeGOmaidaaaaa@41B2@ k+cata˜x˜1+a˜+x˜+a˜x˜ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabdUgaRnaaDaaaleaacqGHRaWkaeaaieaacqWFJbWycqWFHbqycqWF0baDaaGccuWGHbqygaacaiqbdIha4zaaiaaabaGaeGymaeJaey4kaSIafmyyaeMbaGaacqGHRaWkcuWG4baEgaacaiabgUcaRiqbdggaHzaaiaGafmiEaGNbaGaaaaaaaa@3F78@ A + X ↔ B + Y k+cata˜x˜−k−catb˜y˜1+a˜+x˜+a˜x˜+b˜+y˜+b˜y˜ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabdUgaRnaaDaaaleaacqGHRaWkaeaaieaacqWFJbWycqWFHbqycqWF0baDaaGccuWGHbqygaacaiqbdIha4zaaiaGaeyOeI0Iaem4AaS2aa0baaSqaaiabgkHiTaqaaiab=ngaJjab=fgaHjab=rha0baakiqbdkgaIzaaiaGafmyEaKNbaGaaaeaacqaIXaqmcqGHRaWkcuWGHbqygaacaiabgUcaRiqbdIha4zaaiaGaey4kaSIafmyyaeMbaGaacuWG4baEgaacaiabgUcaRiqbdkgaIzaaiaGaey4kaSIafmyEaKNbaGaacqGHRaWkcuWGIbGygaacaiqbdMha5zaaiaaaaaaa@523F@ kV(k˜AMk˜XMk˜BMk˜YM)±1/2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGRbWAdaahaaWcbeqaaGqaaiab=zfawbaakiabcIcaOmaalaaabaGafm4AaSMbaGaadaqhaaWcbaGae8xqaeeabaGae8xta0eaaOGafm4AaSMbaGaadaqhaaWcbaGae8hwaGfabaGae8xta0eaaaGcbaGafm4AaSMbaGaadaqhaaWcbaGae8NqaieabaGae8xta0eaaOGafm4AaSMbaGaadaqhaaWcbaGae8xwaKfabaGae8xta0eaaaaakiabcMcaPmaaCaaaleqabaGaeyySaeRaeGymaeJaei4la8IaeGOmaidaaaaa@45AD@ k+cata˜x˜1+a˜+x˜+a˜x˜ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabdUgaRnaaDaaaleaacqGHRaWkaeaaieaacqWFJbWycqWFHbqycqWF0baDaaGccuWGHbqygaacaiqbdIha4zaaiaaabaGaeGymaeJaey4kaSIafmyyaeMbaGaacqGHRaWkcuWG4baEgaacaiabgUcaRiqbdggaHzaaiaGafmiEaGNbaGaaaaaaaa@3F78@ 2 A ↔ B k+cata˜2−k−catb˜1+a˜+a˜2+b˜ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabdUgaRnaaDaaaleaacqGHRaWkaeaaieaacqWFJbWycqWFHbqycqWF0baDaaGccuWGHbqygaacamaaCaaaleqabaGaeGOmaidaaOGaeyOeI0Iaem4AaS2aa0baaSqaaiabgkHiTaqaaiab=ngaJjab=fgaHjab=rha0baakiqbdkgaIzaaiaaabaGaeGymaeJaey4kaSIafmyyaeMbaGaacqGHRaWkcuWGHbqygaacamaaCaaaleqabaGaeGOmaidaaOGaey4kaSIafmOyaiMbaGaaaaaaaa@4759@ kV((k˜AM)2k˜BM)±1/2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGRbWAdaahaaWcbeqaaGqaaiab=zfawbaakiabcIcaOmaalaaabaGaeiikaGIafm4AaSMbaGaadaqhaaWcbaGae8xqaeeabaGae8xta0eaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaaakeaacuWGRbWAgaacamaaDaaaleaacqWFcbGqaeaacqWFnbqtaaaaaOGaeiykaKYaaWbaaSqabeaacqGHXcqScqaIXaqmcqGGVaWlcqaIYaGmaaaaaa@4094@ k+cata˜21+a˜+a˜2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabdUgaRnaaDaaaleaacqGHRaWkaeaacqqGJbWycqqGHbqycqqG0baDaaGccuWGHbqygaacamaaCaaaleqabaGaeGOmaidaaaGcbaGaeGymaeJaey4kaSIafmyyaeMbaGaacqGHRaWkcuWGHbqygaacamaaCaaaleqabaGaeGOmaidaaaaaaaa@3C43@ 2 A ↔ B + Y k+cata˜2−k−catb˜y˜1+a˜+a˜2+b˜+y˜+b˜y˜ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabdUgaRnaaDaaaleaacqGHRaWkaeaaieaacqWFJbWycqWFHbqycqWF0baDaaGccuWGHbqygaacamaaCaaaleqabaGaeGOmaidaaOGaeyOeI0Iaem4AaS2aa0baaSqaaiabgkHiTaqaaiab=ngaJjab=fgaHjab=rha0baakiqbdkgaIzaaiaGafmyEaKNbaGaaaeaacqaIXaqmcqGHRaWkcuWGHbqygaacaiabgUcaRiqbdggaHzaaiaWaaWbaaSqabeaacqaIYaGmaaGccqGHRaWkcuWGIbGygaacaiabgUcaRiqbdMha5zaaiaGaey4kaSIafmOyaiMbaGaacuWG5bqEgaacaaaaaaa@4F17@ kV((k˜AM)2k˜BMk˜YM)±1/2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGRbWAdaahaaWcbeqaaGqaaiab=zfawbaakiabcIcaOmaalaaabaGaeiikaGIafm4AaSMbaGaadaqhaaWcbaGae8xqaeeabaGae8xta0eaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaaakeaacuWGRbWAgaacamaaDaaaleaacqWFcbGqaeaacqWFnbqtaaGccuWGRbWAgaacamaaDaaaleaacqWFzbqwaeaacqWFnbqtaaaaaOGaeiykaKYaaWbaaSqabeaacqGHXcqScqaIXaqmcqGGVaWlcqaIYaGmaaaaaa@448F@ k+cata˜21+a˜+a˜2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabdUgaRnaaDaaaleaacqGHRaWkaeaacqqGJbWycqqGHbqycqqG0baDaaGccuWGHbqygaacamaaCaaaleqabaGaeGOmaidaaaGcbaGaeGymaeJaey4kaSIafmyyaeMbaGaacqGHRaWkcuWGHbqygaacamaaCaaaleqabaGaeGOmaidaaaaaaaa@3C43@ 2 A + X ↔ B k+cata˜2x˜−k−catb˜(1+a˜+a˜2)(1+x˜)+b˜ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabdUgaRnaaDaaaleaacqGHRaWkaeaaieaacqWFJbWycqWFHbqycqWF0baDaaGccuWGHbqygaacamaaCaaaleqabaGaeGOmaidaaOGafmiEaGNbaGaacqGHsislcqWGRbWAdaqhaaWcbaGaeyOeI0cabaGae83yamMae8xyaeMae8hDaqhaaOGafmOyaiMbaGaaaeaacqGGOaakcqaIXaqmcqGHRaWkcuWGHbqygaacaiabgUcaRiqbdggaHzaaiaWaaWbaaSqabeaacqaIYaGmaaGccqGGPaqkcqGGOaakcqaIXaqmcqGHRaWkcuWG4baEgaacaiabcMcaPiabgUcaRiqbdkgaIzaaiaaaaaaa@4F9F@ kV((k˜AM)2k˜XMk˜BM)±1/2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGRbWAdaahaaWcbeqaaGqaaiab=zfawbaakiabcIcaOmaalaaabaGaeiikaGIafm4AaSMbaGaadaqhaaWcbaGae8xqaeeabaGae8xta0eaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaGccuWGRbWAgaacamaaDaaaleaacqWFybawaeaacqWFnbqtaaaakeaacuWGRbWAgaacamaaDaaaleaacqWFcbGqaeaacqWFnbqtaaaaaOGaeiykaKYaaWbaaSqabeaacqGHXcqScqaIXaqmcqGGVaWlcqaIYaGmaaaaaa@448D@ k+cata˜2x˜(1+a˜+a˜2)(1+x˜) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabdUgaRnaaDaaaleaacqGHRaWkaeaacqqGJbWycqqGHbqycqqG0baDaaGccuWGHbqygaacamaaCaaaleqabaGaeGOmaidaaOGafmiEaGNbaGaaaeaacqGGOaakcqaIXaqmcqGHRaWkcuWGHbqygaacaiabgUcaRiqbdggaHzaaiaWaaWbaaSqabeaacqaIYaGmaaGccqGGPaqkcqGGOaakcqaIXaqmcqGHRaWkcuWG4baEgaacaiabcMcaPaaaaaa@4493@ The rate laws follow from the enzyme mechanism and reflect the reaction stoichiometry; for each case, the thermodynamically independent expression of the turnover rates and the irreversible form are also shown. We use the shortcuts a˜=a/kAM MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuWGHbqygaacaiabg2da9iabdggaHjabc+caViabdUgaRnaaDaaaleaacqqGbbqqaeaacqqGnbqtaaaaaa@34F3@ and k˜AM=kAGkAM MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuWGRbWAgaacamaaDaaaleaaieaacqWFbbqqaeaacqWFnbqtaaGccqGH9aqpcqWGRbWAdaqhaaWcbaGae8xqaeeabaGae83raCeaaOGaem4AaS2aa0baaSqaaiab=feabbqaaiab=1eanbaaaaa@38E8@ for metabolite A and analogous shortcuts for the other metabolites. For brevity, the prefactors for enzyme concentration and enzyme regulation are not shown.