Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 1999;8(6):295–303. doi: 10.1080/09629359990306

Prostaglandin E2 affects differently the release of inflammatory mediators from resident macrophages by LPS and muramyl tripeptides.

P Dieter 1, U Hempel 1, S Kamionka 1, A Kolada 1, B Malessa 1, E Fitzke 1, T A Tran-Thi 1
PMCID: PMC1781814  PMID: 10815618

Abstract

LPS and MTP-PE (liposome-encapsulated N-acetyl-muramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-:[1',2'dipalmitoyl -sni-glycero-3-(hydroxy-phosphoryl-oxyl)] etylamide) induce in liver macrophages a synthesis and release of TNF-alpha, nitric oxide and prostanoids. Both agents induce an expression of mRNA's encoding TNF-alpha, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and of corresponding proteins. LPS and MTP-PE induce a rapid activation of the extracellular regulated kinase (ERK) isoenzymes-1 and -2. Inhibition of map kinase isoenzymes leads to a decreased release of TNF-alpha, nitric oxide and prostaglandin (PG) E2 after both agents. The transcription factors NF-kappaB and AP-1 are strongly activated by LPS within 30 minutes. MTP-PE induces a weak activation of both transcription factors only after 5 hours. Inhibition of NF-kappaB inhibits the LPS- but not the MTP-PE-induced release of TNF-alpha, nitric oxide and PGE2. PGE2 release after LPS is higher than after MTP-PE. Exogenously added PGE2 inhibits the activation of map kinase and TNF-alpha release by LPS, but not by MTP-PE. Release of nitric oxide after LPS and MTP-PE is enhanced after prior addition of PGE2. PGD2 is without any effect. MTP-PE, but not LPS, induces a cytotoxicity of Kupffer cells against P815 tumor target cells. The MTP-PE-induced cytotoxicity is reduced by TNF-alpha neutralizing antibodies, indicating the involvement of TNF-alpha. Thus our results suggest that the different potencies of LPS and MTP-PE as immunomodulators probably result from different actions on Kupffer cells, resulting in differences in the amounts and kinetics of released TNF-alpha and PGE2, and that PGE2 plays an important regulatory role in the action of LPS, but not in the actions of MTP-PE.

Full Text

The Full Text of this article is available as a PDF (254.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambs P., Baccarini M., Fitzke E., Dieter P. Role of cytosolic phospholipase A2 in arachidonic acid release of rat-liver macrophages: regulation by Ca2+ and phosphorylation. Biochem J. 1995 Oct 1;311(Pt 1):189–195. doi: 10.1042/bj3110189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Busam K. J., Homfeld A., Zawatzky R., Kästner S., Bauer J., Gerok W., Decker K. Virus-vs endotoxin-induced activation of liver macrophages. Eur J Biochem. 1990 Aug 17;191(3):577–582. doi: 10.1111/j.1432-1033.1990.tb19160.x. [DOI] [PubMed] [Google Scholar]
  3. Busam K. J., Schulze-Specking A., Decker K. Endotoxin-refractory liver macrophages secrete tumor necrosis factor-alpha upon viral infection. Biol Chem Hoppe Seyler. 1991 Mar;372(3):157–162. doi: 10.1515/bchm3.1991.372.1.157. [DOI] [PubMed] [Google Scholar]
  4. Büscher D., Hipskind R. A., Krautwald S., Reimann T., Baccarini M. Ras-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages. Mol Cell Biol. 1995 Jan;15(1):466–475. doi: 10.1128/mcb.15.1.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chan E. D., Winston B. W., Uh S. T., Wynes M. W., Rose D. M., Riches D. W. Evaluation of the role of mitogen-activated protein kinases in the expression of inducible nitric oxide synthase by IFN-gamma and TNF-alpha in mouse macrophages. J Immunol. 1999 Jan 1;162(1):415–422. [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Decker K. Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem. 1990 Sep 11;192(2):245–261. doi: 10.1111/j.1432-1033.1990.tb19222.x. [DOI] [PubMed] [Google Scholar]
  8. Dieter P., Ambs P., Fitzke E., Hidaka H., Hoffmann R., Schwende H. Comparative studies of cytotoxicity and the release of TNF-alpha, nitric oxide, and eicosanoids of liver macrophages treated with lipopolysaccharide and liposome-encapsulated MTP-PE. J Immunol. 1995 Sep 1;155(5):2595–2604. [PubMed] [Google Scholar]
  9. Dieter P., Fitzke E. Formation of diacylglycerol, inositol phosphates, arachidonic acid and its metabolites in macrophages. Eur J Biochem. 1993 Dec 1;218(2):753–758. doi: 10.1111/j.1432-1033.1993.tb18430.x. [DOI] [PubMed] [Google Scholar]
  10. Dieter P., Schulze-Specking A., Karck U., Decker K. Prostaglandin release but not superoxide production by rat Kupffer cells stimulated in vitro depends on Na+/H+ exchange. Eur J Biochem. 1987 Dec 30;170(1-2):201–206. doi: 10.1111/j.1432-1033.1987.tb13687.x. [DOI] [PubMed] [Google Scholar]
  11. Duyster J., Schwende H., Fitzke E., Hidaka H., Dieter P. Different roles of protein kinase C-beta and -delta in arachidonic acid cascade, superoxide formation and phosphoinositide hydrolysis. Biochem J. 1993 May 15;292(Pt 1):203–207. doi: 10.1042/bj2920203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ellouz F., Adam A., Ciorbaru R., Lederer E. Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem Biophys Res Commun. 1974 Aug 19;59(4):1317–1325. doi: 10.1016/0006-291x(74)90458-6. [DOI] [PubMed] [Google Scholar]
  13. Eyhorn S., Schlayer H. J., Henninger H. P., Dieter P., Hermann R., Woort-Menker M., Becker H., Schaefer H. E., Decker K. Rat hepatic sinusoidal endothelial cells in monolayer culture. Biochemical and ultrastructural characteristics. J Hepatol. 1988 Feb;6(1):23–35. doi: 10.1016/s0168-8278(88)80459-8. [DOI] [PubMed] [Google Scholar]
  14. Faure V., Hecquet C., Courtois Y., Goureau O. Role of interferon regulatory factor-1 and mitogen-activated protein kinase pathways in the induction of nitric oxide synthase-2 in retinal pigmented epithelial cells. J Biol Chem. 1999 Feb 19;274(8):4794–4800. doi: 10.1074/jbc.274.8.4794. [DOI] [PubMed] [Google Scholar]
  15. Flick D. A., Gifford G. E. Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. J Immunol Methods. 1984 Mar 30;68(1-2):167–175. doi: 10.1016/0022-1759(84)90147-9. [DOI] [PubMed] [Google Scholar]
  16. Fogler W. E., Wade R., Brundish D. E., Fidler I. J. Distribution and fate of free and liposome-encapsulated [3H]nor-muramyl dipeptide and [3H]muramyl tripeptide phosphatidylethanolamine in mice. J Immunol. 1985 Aug;135(2):1372–1377. [PubMed] [Google Scholar]
  17. Foletta V. C., Segal D. H., Cohen D. R. Transcriptional regulation in the immune system: all roads lead to AP-1. J Leukoc Biol. 1998 Feb;63(2):139–152. doi: 10.1002/jlb.63.2.139. [DOI] [PubMed] [Google Scholar]
  18. Freudenberg M. A., Freudenberg N., Galanos C. Time course of cellular distribution of endotoxin in liver, lungs and kidneys of rats. Br J Exp Pathol. 1982 Feb;63(1):56–65. [PMC free article] [PubMed] [Google Scholar]
  19. Frost H. MTP-PE in liposomes as a biological response modifier in the treatment of cancer: current status. Biotherapy. 1992;4(3):199–204. doi: 10.1007/BF02174206. [DOI] [PubMed] [Google Scholar]
  20. Gaillard T., Mülsch A., Klein H., Decker K. Regulation by prostaglandin E2 of cytokine-elicited nitric oxide synthesis in rat liver macrophages. Biol Chem Hoppe Seyler. 1992 Sep;373(9):897–902. doi: 10.1515/bchm3.1992.373.2.897. [DOI] [PubMed] [Google Scholar]
  21. Goppelt-Struebe M., Hahn A., Stroebel M., Reiser C. O. Independent regulation of cyclo-oxygenase 2 expression by p42/44 mitogen-activated protein kinases and Ca2+/calmodulin-dependent kinase. Biochem J. 1999 Apr 15;339(Pt 2):329–334. [PMC free article] [PubMed] [Google Scholar]
  22. Grewe M., Duyster J., Dieter P., Henninger H., Schulze-Specking A., Decker K. Prostaglandin D2 and E2 syntheses in rat Kupffer cells are antagonistically regulated by lipopolysaccharide and phorbol ester. Biol Chem Hoppe Seyler. 1992 Aug;373(8):655–664. doi: 10.1515/bchm3.1992.373.2.655. [DOI] [PubMed] [Google Scholar]
  23. Grewe M., Gausling R., Gyufko K., Hoffmann R., Decker K. Regulation of the mRNA expression for tumor necrosis factor-alpha in rat liver macrophages. J Hepatol. 1994 Jun;20(6):811–818. doi: 10.1016/s0168-8278(05)80154-0. [DOI] [PubMed] [Google Scholar]
  24. Hobbie S., Chen L. M., Davis R. J., Galán J. E. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J Immunol. 1997 Dec 1;159(11):5550–5559. [PubMed] [Google Scholar]
  25. Izbicki J. R., Raedler C., Anke A., Brunner P., Siebeck M., Leinisch E., Lüttiken R., Ruckdeschel G., Wilker D. K., Schweiberer L. Beneficial effect of liposome-encapsulated muramyl tripeptide in experimental septicemia in a porcine model. Infect Immun. 1991 Jan;59(1):126–130. doi: 10.1128/iai.59.1.126-130.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Killion J. J., Fidler I. J. Therapy of cancer metastasis by tumoricidal activation of tissue macrophages using liposome-encapsulated immunomodulators. Pharmacol Ther. 1998 Jun;78(3):141–154. doi: 10.1016/s0163-7258(98)00004-7. [DOI] [PubMed] [Google Scholar]
  27. Landmann R., Obrist R., Denz H., Ludwig C., Frost H., Wesp M., Rordorf C., Towbin H., Gygax D., Tarcsay L. Pharmacokinetics and immunomodulatory effects on monocytes during prolonged therapy with liposomal muramyltripeptide. Biotherapy. 1993;7(1):1–12. doi: 10.1007/BF01878149. [DOI] [PubMed] [Google Scholar]
  28. Lazdins J. K., Woods-Cook K., Walker M., Alteri E. The lipophilic muramyl peptide MTP-PE is a potent inhibitor of HIV replication in macrophages. AIDS Res Hum Retroviruses. 1990 Oct;6(10):1157–1161. doi: 10.1089/aid.1990.6.1157. [DOI] [PubMed] [Google Scholar]
  29. Lederer E., Adam A., Ciorbaru R., Petit J. F., Wietzerbin J. Cell walls of Mycobacteria and related organisms; chemistry and immunostimulant properties. Mol Cell Biochem. 1975 May 30;7(2):87–104. doi: 10.1007/BF01792076. [DOI] [PubMed] [Google Scholar]
  30. Peters T., Karck U., Decker K. Interdependence of tumor necrosis factor, prostaglandin E2, and protein synthesis in lipopolysaccharide-exposed rat Kupffer cells. Eur J Biochem. 1990 Aug 17;191(3):583–589. doi: 10.1111/j.1432-1033.1990.tb19161.x. [DOI] [PubMed] [Google Scholar]
  31. Pierce J. W., Schoenleber R., Jesmok G., Best J., Moore S. A., Collins T., Gerritsen M. E. Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem. 1997 Aug 22;272(34):21096–21103. doi: 10.1074/jbc.272.34.21096. [DOI] [PubMed] [Google Scholar]
  32. Thomas K., Nijenhuis A. M., Dontje B. H., Daemen T., Scherphof G. L. Antitumor reactivity induced by liposomal MTP-PE in a liver metastasis model of colon cancer in the rat. Clin Exp Metastasis. 1995 Sep;13(5):328–336. doi: 10.1007/BF00121909. [DOI] [PubMed] [Google Scholar]
  33. Tran-Thi T. A., Decker K., Baeuerle P. A. Differential activation of transcription factors NF-kappa B and AP-1 in rat liver macrophages. Hepatology. 1995 Aug;22(2):613–619. doi: 10.1002/hep.1840220235. [DOI] [PubMed] [Google Scholar]
  34. Ziegler-Heitbrock H. W., Passlick B., Käfferlein E., Coulie P. G., Izbicki J. R. Protection against lethal pneumococcal septicemia in pigs is associated with decreased levels of interleukin-6 in blood. Infect Immun. 1992 Apr;60(4):1692–1694. doi: 10.1128/iai.60.4.1692-1694.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES