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SUMMARY
Recent advances in proteomic technologies provide tremendous opportunities for biomarker-related
clinical applications; however, the unique characteristics of human biofluids such as the high dynamic
range in protein abundances, and extreme complexity of the proteomes present tremendous
challenges. In this review we summarize recent advances in LC-MS based proteomic profiling and
its applications in clinical proteomics, as well as discuss the major challenges associated with
implementing these technologies for more effective candidate biomarker discovery. Developments
in immunoaffinity depletion and various fractionation approaches in combination with substantial
improvements in LC-MS platforms have enabled the plasma proteome to be profiled with
considerably greater dynamic range of coverage, allowing many proteins at low ng/mL levels to be
confidently identified. Despite these significant advances and efforts, major challenges associated
with the dynamic range of measurements and extent of proteome coverage, confidence of peptide/
protein identifications, quantitation accuracy, analysis throughput, and the robustness of present
instrumentation must be addressed before a proteomic profiling platform suitable for efficient clinical
applications can be routinely implemented.
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INTRODUCTION
Advances in mass spectrometry (MS) technologies, high resolution liquid phase separations,
and informatics/bioinformatics for large scale data analysis have made MS-based proteomics
an indispensable research tool with the potential to broadly impact biology and laboratory
medicine1. In particular, proteomic technologies have been increasingly applied to the study
of disease-related clinical samples (e.g., human blood serum/plasma, proximal fluids, and
disease tissues) for the purposes of identifying novel disease-specific protein biomarkers,
gaining better understandings of disease processes, and discovering novel protein targets for
therapeutic interventions and drug developments2.

Proteomics-based candidate biomarker discovery efforts have recently gained significant
attention due to the power of these technologies for analyzing complex protein mixtures and
their potential for identifying novel markers indicative of disease. It is widely accepted that
many complex human diseases, including cancers, might be effectively cured if specific disease
biomarkers were available to enable detection and treatment at very early stages of disease3.
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Despite noteworthy efforts, only a handful of cancer biomarkers have been approved by the
US Food and Drug Administration (FDA) for clinical use, with the majority of these being
protein biomarkers 4. While existing markers play a significant role in screening, monitoring,
and staging, effective biomarkers are not currently available for most cancers, and are generally
nonexistent for early detection3. Therefore, there is a clear need for applying advanced
technologies such as proteomics in the quest for novel candidate clinical biomarkers.

Although widely speculated that advances in genomics and proteomics would alter the
landscape of clinical biomarker discovery and validation, the declining trend of new FDA-
approved biomarkers reported over the last decade5 highlights the magnitude of the challenges
associated with human clinical samples and validation of candidate biomarkers. Contributing
to these challenges are the substantial complexity of the human proteome itself and the
tremendous heterogeneity of the human population, both of which make the search for
biomarkers from either biofluids or disease tissues a daunting task. As a result of this
heterogeneous nature of humans and the complexity of diseases like cancer, a panel of
biomarkers rather than a single marker may be required to achieve the high sensitivity and
specificity required for clinical applications3. Proteomics technologies offer significant
potential for discovering such panels of markers.

Many different technologies have been applied for biomarker discovery and other clinical
applications, including two-dimensional (2D) gel-electrophoresis6, liquid chromatography
coupled with mass spectrometry (LC-MS), and protein- and antibody-based microarrays7-9.
LCMS or tandem MS (MS/MS) based proteomic technologies offer highly sensitive analytical
capabilities and a relatively large dynamic range of detection, and have increasingly become
the method of choice for in-depth profiling of complex protein mixtures1. In addition, the
relatively high throughput of LC-MS technologies is amenable to clinical applications that
involve human biofluids and disease tissues. The application of LC-MS/MS for human biofluid
protein profiling initiated with the first global shotgun proteomic study of human plasma/serum
published in 2002 by Adkins et al.10 An explosion of LC-MS based applications in human
plasma/serum and various biofluids soon followed due to the tremendous interest in identifying
disease related proteins11, 12. Various depletion/fractionation/ enrichment techniques have
been developed along the way and coupled to LC-MS to increase coverage of the biofluid
proteomes13.

Human blood serum/plasma remains the most commonly used clinical sample to date for
proteomic applications since it has the potential to contain specific biomarkers for virtually all
human diseases due to its either direct or indirect interaction with the entire cell complement
of the body, i.e., tissue-specific proteins may be released into the blood stream upon cell damage
or cell death. Additionally, serum/plasma can be readily obtained by clinical sampling.
However, the magnitude of the previously mentioned challenges associated with human
clinical samples coupled with the anticipation that potential biomarkers of interest could be
present at extremely low concentrations in plasma has raised doubts as to whether disease
biomarkers can be accurately detected or identified from plasma by using a proteomic
approach. As a result, analysis of various other biofluids/tissues has gained increasing attention.
Due to their proximity to the source of disease or perturbation in the body, tissues14 and various
biofluids such as cerebrospinal fluid15, bronchoalveolar lavage fluid16, synovial fluid17,
nipple aspirate fluid18, saliva19, and urine20 are believed to provide a more focused pool of
potential biomarkers of interest. In addition, tumor interstitial fluids (TIF) have also been
reported as a novel source for proteomic biomarker and therapeutic target discovery21, offering
a unique alternative to direct tissue analysis.
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In the following review, we highlight LC-MS based proteomic profiling for clinical
applications by summarizing recent advances, as well as the major challenges facing this
technology for more effective candidate biomarker discovery.

Challenges and Requirements for Designing a Robust LC-MS Discovery Platform
The unique nature of human biofluid proteomes, in particular, the serum/plasma proteome,
presents significant challenges for current analytical technologies aimed at quantitative protein
profiling and biomarker discovery. First, the serum/plasma protein content is dominated by
several very abundant proteins (i.e., the 22 most abundant proteins represent approximately
99% of the total protein mass in plasma), yet at the same time presents an extraordinary dynamic
range (>10 orders of magnitude) in protein concentrations that begins with serum albumin at
∼45 mg/mL and extends to cytokines (and potentially many disease-related proteins) at around
1-10 pg/mL or lower5. Second, the serum/plasma proteome presents tremendous biological
complexity as a result of tissue “leakage” proteins from the entire body, complex post-
translational plasma protein modifications such as glycosylation, as well as the existence of
various forms (i.e., splicing variants, proteolytic products, and the tremendous variability in
the immunoglobulin class) for each expressed gene. Finally, the substantial genetic and non-
genetic biological variability of human clinical samples contributes significantly to the overall
analytical challenge.

In spite of significant recent advances, major challenges remain to prevent routine
implementation of a LC-MS protein profiling platform suitable for efficient biomarker
discovery (Table 1). To effectively address these challenges, a protein profiling platform
suitable for biomarker discovery and clinical applications must provide at the very minimum:
(1) overall high dynamic range of measurements and extensive coverage of the proteome for
effective detection of low abundance proteins, (2) highly confident and specific protein
identifications, (3) accurate quantitation of relative protein abundances across many clinical
samples, and (4) high throughput capable of analyzing large numbers of clinical samples to
provide sufficient statistical power needed to address biological variability. In addition, the
platform, including both sample processing and LC-MS instrumentation, must be robust and
include efficient informatics software capabilities for data mining and statistical analyses.
Currently, there is a broad consensus that no existing platform meets all of these requirements
for effective biomarker discovery.

Figure 1 shows a component-based diagram of an LC-MS protein profiling platform. Note that
such a platform is not based on a single instrument, but rather on a compilation of current
technologies to achieve high dynamic range quantitative proteome profiling for clinical
samples. A key performance factor of any such platform is the overall dynamic range of
detection and extent of proteome coverage, which in turn dictates its ability to detect low
abundance proteins. Many disease specific proteins in plasma/serum are anticipated to be
present at very low levels (ng/mL or even lower), e.g., within the same range as current FDA
approved markers such as prostate specific antigen (PSA, 0.01-100 ng/mL) and Troponin-T
(0.02-100 ng/mL). This is particularly obvious for cancer markers of early detection, where
tumor size is very small (millimeter size) and cancer specific proteins in plasma may present
at pg/mL or lower levels. This overall dynamic range presents a tremendous challenge for any
MS-based technology. The achievable dynamic range or proteome coverage for a platform
depends on the peak capacity (the number of chromatographic peaks that can be fit into the
length of separation) of the on-line LC separations prior to MS measurements, the dynamic
range of the MS instrumentation, and the efficiency of sample enrichment or fractionation steps
at both protein and peptide levels prior to LC-MS analyses. Analysis throughput inevitably
determines the size of any clinical study sample set and largely depends on factors such as
automation of each platform component, LC-MS analysis duty cycle, and the extent of pre-
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fractionation prior to LC-MS analysis. While the application of more extensive fractionation
can lead to a higher dynamic range of detection, the overall throughput can be severely reduced.
Other key performance factors are the confidence of protein identifications and the quantitative
accuracy, which determine the ability of the platform to confidently identify a potential
biomarker based on the abundance differences between healthy and diseased conditions. Both
the reproducibility of sample processing/fractionation prior to LC-MS and the LC-MS
instrumentation will contribute to the accuracy of quantitation.

Advances in LC-MS Technologies
A high resolution LC (or LC/LC) separation coupled on-line with MS is the central component
of many proteomics platforms. Over the past decade, there have been significant advances in
LC separations, as well as in MS instrumentation and electrospray ionization (ESI). To date,
the “bottom-up” proteomic strategy that combines high efficiency separations with MS to
characterize highly complex peptide mixtures still accounts for the majority of proteomics
measurements. This strategy relies on the identification of peptides sufficiently unique for
protein identification. Protein mixtures from cellular lysates or biofluids are typically digested
by trypsin (or other proteases) into polypeptides, which are then separated by capillary LC and
analyzed by MS on-line via an electrospray ionization (ESI) interface. Peptide sequences are
identified by using automated database searching algorithms such as SEQUEST 22, MASCOT
23, or X!Tandem24 to correlate experimental MS/MS spectra to theoretical mass spectra based
on sequences in a given protein database for a specific organism. With the recent development
of high speed 2D linear ion-trap instruments, i.e., LTQ, the protein profiling coverage has been
greatly enhanced compared to traditional 3D ion-trap systems25. When coupled with SCX
fractionation either on-line or offline,26, 27 LC-MS/MS technologies now routinely allow for
identification of thousands of proteins from complex mammalian tissues and cells. Although
routinely used for peptide/protein identifications, data-dependent LC-MS/MS still has an
inherent “under-sampling” limitation whereby only a portion of the species observed in the
survey MS scan is selected for fragmentation28.

To overcome the under-sampling issue, our laboratory developed an accurate mass and time
(AMT) tag approach that utilizes highly accurate mass measurements from a high resolution
mass spectrometer (e.g., Fourier transform ion cyclotron resonance (FTICR) or time-of-flight
(TOF) mass spectrometer) in conjunction with accurate elution time measurements from high
resolution capillary LC separations to achieve high throughput proteome profiling without
routine MS/MS measurements29, 30. The concept of this AMT tag approach is based on the
principle that the accurate mass and time measurements will allow reliable peptide
identifications by correlating the mass and time of detected peaks to a pre-established peptide
AMT tag reference library for a particular biological system (e.g., plasma). With this approach,
LCMS/MS proteome analyses coupled with extensive fractionation only need to be performed
once to create an effective reference database of peptide markers defined by accurate masses
and elution times, i.e., AMT tags, for a particular biological system, such as serum/plasma.
The AMT tag database then serves as a comprehensive “look-up table” for subsequent higher
throughput LC-MS analyses, allowing many peptides in each spectrum to be identified without
MS/MS. Figure 2 exemplifies an LC chromatogram and 2D display of ∼2,800 peptides
identified using the AMT tag strategy resulting from a single LC-FTICR analysis of a
ProteomeLab™ IgY-12 depleted human plasma sample.

The fact that application of the AMT tag approach obviates the need for routine MS/MS is
particularly attractive in high throughput repeated analyses of similar samples (e.g., serum/
plasma) in clinical proteomic studies. We have recently demonstrated the application of the
AMT tag approach coupled with 18O labeling for quantitative profiling of the human plasma
proteome in response to lipopolysaccharide administration31. The availability of commercial
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high performance mass spectrometers (e.g., ThermoElectron Finnigan LTQ-FT, LTQ-
Orbitrap) will likely lead to an even broader range of applications based on this LC-MS only
approach for higher throughput peptide identifications.

As mentioned previously, the achievable dynamic range for the LC-MS platform depends
significantly on the peak capacity of the on-line gradient reversed phase separations, the
dynamic range of the MS system, and the efficiency and stability of the ESI interface. A single
MS spectrum can provide a dynamic range of up to 103 for a high resolution instrument (e.g.,
FTICR), and one would expect to achieve a dynamic range of at least 105 by coupling this
instrument to an on-line high resolution LC separation that provides a peak capacity of ∼1000.
However, the observed dynamic range of measurements can be significantly reduced for
complex biological samples such as human plasma due to the charge competition of co-eluting
high abundance species, which leads to ion suppression of the relatively low abundance species.
Ion suppression is a particular issue when analyzing human biofluid samples, as these samples
are dominated by a handful of highly abundant proteins. Significant ion suppression will occur
when peptides originating from low abundance proteins of interest co-elute with peptides
originating from high abundance proteins, which leads to the inability to detect the co-eluting
low abundance peptides.

Table 2 provides a summary of the relative proteome coverage and estimated dynamic ranges
achieved by coupling high resolution reversed phase capillary LC separations with either MS/
MS using an LTQ instrument or MS using a 9.4 tesla FTICR instrument. The enhanced
coverage and dynamic ranges obtained by the removal of high abundance proteins and SCX
fractionation are illustrated. All results shown in this table are based on triplicate experiments
that involved a pooled plasma sample from healthy subjects. The number of peptide
identifications are reported with >95% confidence based on either a reversed database
evaluation for MS/MS data32 or a shifted database evaluation for the LC-FTICR data (Petyuk
et al., manuscript submitted), with all proteins identified using a minimum of two different
peptides. As shown, the single LC-MS/MS analysis only identifies ∼100 proteins with high
confidence and provides a dynamic range of ∼103. With the removal of either the top-6 (MARS)
or top-12 (IgY-12) abundant proteins, the overall dynamic range is enhanced to ∼105. LC-
FTICR shows greater coverage for both peptide and protein identifications compared to LC-
MS/MS, and the dynamic range is estimated to be similar to that observed for LC-MS/MS.
When IgY-12 depletion and SCX fractionation are combined with LC-MS/MS, a dynamic
range of 106-107 can be achieved, allowing identification of nearly 500 proteins in plasma with
high confidence, including many at the low ng/mL level. Note that this dynamic range still
falls three orders of magnitude short for detecting pg/mL protein concentrations. In addition,
it should be noted that not all the proteins within the estimated dynamic range will be detected
due to the differences in digestion efficiency and ion-suppression effects for different proteins/
peptides within the complex sample.

One key area of recent advances in LC-MS technologies is the improvement associated with
capillary LC instrumentation that provides enhanced peak capacities and dynamic range of
detection needed to analyze clinical samples. These improvements have been achieved
primarily through the use of very high pressure (10-20 kpsi), very small porous particles (3
μm or less), smaller inner diameter (i.d.) columns (50 μm i.d. or less), nano-electrospray
interfaces, and relatively long columns and long gradients for separations33-35. For example,
high efficiency separations with peak capacities of ∼1000 have been achieved by using 15-75
μm i.d. and 85 cm long capillary columns packed with 3 μm C18-bonded silica particles
operated at 10 kpsi. By employing smaller i.d. columns (e.g., 15 μm)34, the sensitivity of the
system continues to increase inversely as the mobile phase flow rates drop to as low as 20 nL/
min, which demonstrates the advantages of ESI-MS analyses at very low liquid flow rates36,
37. More recently, the use of 20 kpsi capillary LC columns packed with 1.4-3 μm porous
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C18-bonded silica particles has been demonstrated to provide chromatographic peak capacities
of 1000-1500 for complex peptide and metabolite mixtures35. While these very high pressure
systems present technical challenges for robust automated operations, the recently
commercialized WATERS nanoACQUITY UPLC System that takes advantage of 1.7 μm sized
particles and operates at >10 kpsi demonstrates the feasibility of such high performance
systems for routine applications. With further improvements in robustness, these “ultra-
performance” systems may become a powerful component for separating complex mixtures
such as human biofluids while concurrently providing the high dynamic range needed for
candidate biomarker discovery applications.

Multidimensional Fractionation Strategies Coupled with LC-MS for Improved Proteome
Coverage

Given the tremendous dynamic range of protein abundances and the extraordinary complexity
of human biofluid proteomes, many different fractionation techniques have been developed
and applied in a multidimensional fashion to enhance dynamic range of detection and improve
proteome coverage13. Multi-component immunoaffinity removal of highly abundant proteins
in human plasma/serum38, 39 has increasingly become the method of choice for
prefractionating human plasma samples due to the high specificity, efficacy, and the ease of
coupling to other fractionation techniques. As shown in Table 2, coupling the immunoaffinity
depletion step to LC-MS provides an additional one to two orders of magnitude increase in
dynamic range, which allows for detection of more low abundance proteins by effectively
increasing the sample loading; similar improvements were reported in other studies40, 41.
Good reproducibility was demonstrated by performing immunoaffinity depletion with an
automated LC system; however, some of the nontarget low abundance proteins have also been
observed to bind to the columns, but in a reproducible fashion42. A possible approach to
counter this effect is to analyze both the flow-through and bound fractions in more of a
“partitioning” method instead of a pure “depletion” approach,39 with the accompanying trade-
off of an increased number of required analyses. A further enhancement to the platform
dynamic range will stem from the continuous improvement of antibody-based microbead
technologies that will allow for removal of more highly- to moderately-abundant proteins.

Several different techniques for protein-level fractionation have been applied to human plasma/
serum proteome profiling, including common gel-based techniques43, 44, PF2D automated
chromotofocusing/reversed phase LC (RPLC)45 and other liquid chromatography-based
separations46, free-flow electrophoresis41, 47, and isoelectric focusing (IEF) 46, 48-51. IEF
is a common fractionation technique that has been applied to plasma profiling at both peptide
and protein levels. Various forms of liquid-phase IEF techniques have been developed,
including offgel electrophoresis48, Rotofor49 or MiniRotofor46, microscale solution IEF
(ZOOM)50, and a preparative multi-channel electrolyte (MCE) system51. A common feature
of these systems is the multiple tandem electrode chambers used to partition complex protein
samples. Immobilized pH gradient (IPG) IEF followed by in-gel digestion has also been used
for plasma protein fractionation prior to LC-MS/MS52. A number of recent large scale
proteome profiling studies have combined different protein- and peptide-level fractionation
techniques (e.g., PF2D53, SCX/RPLC54, FFE-IEF/RPLC47, ZOOM/SDS-PAGE50, and
Rotofor/RPLC/SDS-PAGE49 protein fractionation) with peptide-level LC-MS/MS analyses
to achieve more comprehensive coverage of the plasma proteome.

An alternative to plasma protein fractionation is to specifically enrich functional
“subproteomes” such as the glycoproteome or the cysteinyl-subproteome by using chemical
tagging or capture agents, which significantly reduces overall sample complexity and enhances
detection of low abundance proteins. For example, we have recently demonstrated a simple
procedure for effectively enriching cysteinyl-peptides from complex proteomes (including
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human biofluids55), which provides significantly improved proteome coverage when used as
a peptide-level fractionation technique27. Additionally, hydrazine chemistry can be applied to
specifically enrich N-linked glycopeptides56, 57, and multi-lectin affinity chromatography can
be used to isolate and characterize glycoproteins from human plasma and serum samples58.
Our laboratory has recently developed a strategy that combines immunoaffinity depletion and
subsequent chemical fractionation based on cysteinyl peptide and N-glycoprotein captures with
2D LC-MS/MS for in-depth plasma profiling (Figure 3)59. Application of this “divide-and-
conquer” strategy to trauma patient plasma samples resulted in confident identification of
∼1,500 different proteins (with a minimum of two peptides per protein; ∼99.5% confidence
level based on reversed database evaluation) and illustrated an overall dynamic range of
detection of >107 (low ng/mL concentrations for six identified low abundance proteins were
verified by ELISA).

Analysis Throughput
While integration of extensive multi-dimensional fractionation/separations with MS greatly
increases the overall proteomic analysis dynamic range and the extent of proteome coverage,
this general approach suffers from the limitation of very low throughput. To date, most reports
involving extensive fractionation have been limited to small scale studies of one or two pooled
clinical samples rather than larger scale quantitative studies. The development of more
effective depletion/fractionation strategies and improved LC-MS platforms will most likely
reduce the total number of fractions necessary for the detection of low abundance and clinically
relevant proteins, and thus provide higher throughput.

Several recent technology developments hold potential for greatly enhancing the overall
analysis throughput of clinical samples. The first is the development of very fast LC separations
for proteomic analyses. Current automated LC-MS proteomic platforms typically involve LC
separations with gradients of 100 min or longer, which limits throughput to ∼10 sample
analyses per day per MS instrument. Several reports have explored the use of smaller-particle
packed columns or monolithic columns for fast LC separations (10 min or less), as well as
multiplex column systems to significantly improve the throughput60, 61. However, it is unclear
whether sufficient separation power can be achieved with these fast liquid phase separations
since the increase in the solvent gradient speed can degrade the separation peak capacity 60,
which in turn reduces the overall dynamic range of detection. Other strategies for achieving
robust fast separations include liquid phase chromatographic and electrophoretic separations
on a microfluidic chip platform 62-64. Such chip-based separation devices also have the
advantage of providing better robustness, reliability, and ease of operation.

Very fast (millisecond scale) gas phase separations based on ion mobility spectrometry (IMS;
a separation method that is somewhat analogous to electrophoresis in the gas phase) are another
powerful alternative to liquid phase separations for significant improvement in throughput. At
its simplest, an IMS stage consists of a drift tube filled with a non-reactive gas (commonly He
or N2), and a uniform electric field established along the axis of separation. Mixtures of
peptides, proteins, or small molecules are separated by their gas-phase cross-sections (size) in
addition to charge, and knowledge of their mobility provides another separation dimension to
aid in identification.

The power of IMS has been advanced by several recent technical developments. IMS coupled
with a TOF MS platform and combinatorial libraries 65 has been recently demonstrated for
analysis of proteolytic digests 66. Since an IMS separation typically requires 1-100 ms and has
a resolving power of 50-200, a single species IMS peak exits the drift tube over a ∼ 0.1-1 ms
period. Generation of a typical TOF MS spectrum requires ∼30-100 μs, which allows multiple
mass spectra to be obtained during the “elution” of an IMS peak. More recently, LC has been
coupled to IMS-TOF MS via an ESI interface, providing 2D separations prior to MS analysis
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67. Despite enormous potential for high-throughput analyses of complex samples, the
application of IMS-TOF MS has been limited by low sensitivity due to ion losses at the IMS-
MS interface; however, the recent implementation of electrodynamic ion funnels at both the
ESI-IMS and IMS-TOF MS interfaces has significantly improved the sensitivity of the overall
LC-ESI-IMS-TOF MS platform (Figure 4)68 such that the sensitivity is now comparable to
that of a commercial ESI-MS. Although still in the development stage, the very fast separation
speed and potential high dynamic range of measurements offered by the 2D liquid phase-gas
phase separations make the LC-ESI-IMS-TOF MS an attractive and practical platform for high
throughput clinical applications.

Confidence of Peptide/Protein Identifications
One of the challenges associated with MS/MS-based proteome profiling is how to assess the
confidence levels of peptide and protein identifications that result from automated database
searching. It is recognized that a significant portion of the protein identifications in previously
published proteomic datasets of human plasma are likely comprised of false positive
identifications32, 69-71. For example, four different plasma proteomic datasets that originated
from different methodologies were combined into a list that included 1175 non-redundant
proteins; however, only 46 of these non-redundant proteins (∼4%) were observed across all
four studies.70 This surprisingly low overlap suggests the potential for a very large number of
false protein identifications. In a plasma profiling study using nano-scale LC-MS/MS, Shen et
al. reported a nearly two-fold difference in the number of identified proteins (ranging from 800
to 1,600) depending on which set of previously published criteria were used to filter the data.
69 This criteria dependent difference illustrates the need for more detailed statistical
evaluations to ensure high-confidence protein identifications.

To address the issue of false peptide identifications, we recently performed a probability-based
evaluation of peptide identifications derived from LC-MS/MS and SEQUEST analysis in
which selected human proteomes, including human plasma were searched against a sequence-
reversed human protein database32, similar to a previous report applying the reversed database
strategy to the yeast proteome72. The reversed protein database was created by reversing the
order of amino acid sequences for each protein (the carboxyl terminus becomes the amino
terminus, and vice versa) in the original human protein database. This approach assumes that
the numbers of false positives that arise from “random” hits should be the same for both the
normal database and the reversed database since the reversed database is identical in number
of protein entries, protein size, and distribution of amino acids as the normal database. Figure
5 shows a histogram of Xcorr distribution for unique peptides (charge state 2+; fully tryptic)
from a human plasma sample identified by searching the normal (solid line) and reversed
(dashed line) databases. The Xcorr distribution allows an estimated confidence level for any
given Xcorr bin, as well as the overall false positive rate for a given Xcorr cutoff to be calculated
by dividing the area beneath the dashed line (reversed database hits) by the area beneath the
solid line (normal database hits) for a given Xcorr range. This study also revealed the high
false positive rates for plasma/serum peptide/protein identifications in several previously
published studies10, 69, 70, 73, 74. For example, ∼30% false positives were observed when
the often-cited Washburn et al. filtering criteria75 were applied to human plasma. Thus,
filtering criteria that provided overall >95% confidence at the unique peptide level for both
human cell lines and human plasma were proposed. When identical filtering criteria were used,
the observed false positive rates of peptide identifications for human plasma were significantly
higher than those for the human cell lines, suggesting that the false positive rates are
significantly dependent upon sample characteristics, particularly the number of proteins found
within the detectable dynamic range for different samples. Additionally, Xie et al. reported the
increased potential for false positive identifications for the 2D linear ion trap (LTQ) when
compared to a traditional 3D ion trap (LCQ) instrument, and more stringent filtering criteria
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are required for LTQ compared to LCQ to minimize false positive identifications76. These
results suggest that peptide/protein identification confidence levels not only depend on sample
characteristics, but also on components of the LCMS platform.

Table 3 illustrates differences in filtering criteria stringency by comparing peptide/protein
identification results from the same plasma MS/MS dataset (obtained from a recent profiling
study using trauma patient plasma samples59) that was filtered using three different sets of
criteria77, 78. As shown, the reversed database filtering criteria generated the smallest number
of peptide and protein identifications, consistent with the significantly lower percentage of
false positive identifications (∼4%), while the human proteome organization (HUPO) plasma
proteome project recommended criteria77 and the criteria recently reported by Hood et al.78
generated nearly ∼25% and ∼66% false positives at the peptide level, respectively. The
comparison shows that the number of peptide/protein identifications from an individual protein
profiling study could be easily inflated if a statistical evaluation of false positives was not
performed.

A similar observation was recently reported for proteins identified from data acquired on
different instruments from 18 laboratories as part of the large scale HUPO plasma proteome
collaborative study77. Application of a rigorous statistical approach that employed multiple
hypothesis-testing techniques and took into account the length of coding regions in genes
reduced the initial list of 9,504 proteins (of which 3,020 identified with two or more peptides)
to 889 proteins (containing both multi-peptide and single-peptide protein identifications)
identified with a confidence level of at least 95% 71. Interestingly, this length-dependent
statistical approach was applied to re-analyze one of our previously published datasets69 and
resulted in 1,073 proteins using the HUPO criteria and 433 proteins using the >95% confidence
length-dependent statistics71. Similarly, a ∼two-fold difference in protein identifications
between the reversed database filtering results and the HUPO criteria (Table 3) was observed,
which suggests similar performance between the length-dependent statistical approach and
reversed database filtering with >95% confidence.

PeptideProphet provides another independent statistical model for evaluating potential false
positive peptide identifications. The model utilizes the expectation maximum algorithm to
derive a mixture of correct and incorrect peptide assignments from the data79. This approach
has been directly compared with the reversed database approach for analyzing the same dataset
derived from human plasma59. Following filtering with reversed database criteria, 6,279
unique peptides were identified from this dataset with >95% confidence, while 6,341 unique
peptides were identified by PeptideProphet using a minimum computed probability of 0.95.
Approximately 95% of peptides were common between the two datasets, suggesting
comparable results from these two statistical approaches. The use of ProteinProphet, another
statistical model that computes the probability of the presence of proteins, addresses the issue
of whether peptides are present in more than one entry in the protein database (protein
redundancy problem) 80. The list of identified peptides from both the PeptideProphet and the
reversed database filtering approaches can serve as input for ProteinProphet to generate a list
of non-redundant protein identifications. Several other statistical methods have been recently
described for evaluating peptide assignments from MS/MS spectra81-83. Ideally, universal
acceptance of a statistical model that optimizes both sensitivity and specificity for confident
peptide identifications from MS/MS spectra will allow cross-comparison of protein profiling
results from different laboratories, which currently remains as an unresolved challenge.

Similar challenges exist for evaluating false positive identifications from MS-only approaches
that utilize accurate mass measurements for peptide/protein identifications. The utility of
accurate mass measurements initially was demonstrated in the “peptide mass fingerprinting”
approach for protein identification, in which a set of peptide fragments unique to each protein
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are created by digestion and the mass of these peptide fragments used as a “fingerprint” to
identify the original protein84-86. Thus far, this approach has been limited to simple protein
mixtures or single proteins. The more recently reported AMT tag approach utilizes accurate
LC retention time measurements in addition to accurate mass measurements to identify
peptides and has been successfully applied to global proteome profiling, including the human
plasma proteome31, 87. With the AMT tag approach, peptides are identified by matching LC-
MS observed masses and normalized elution time (NET) features to AMT tags in the
preestablished reference database (“look-up table” of peptides) with a given mass error and
NET error tolerances (typically 1-5 ppm for mass and 1-3% for NET). The potential false
positive identifications resulting from random matching of features to the reference database
are indicated on histograms of mass error (the difference between observed mass and calculated
mass for the matched peptide in the database), exemplified in Figure 6A for a human plasma
dataset analyzed by LC-FTICR. Note that the use of the NET constraint significantly reduces
the level of random matches as indicated by the background level for each histogram. Similar
to the reversed database approach for MS/MS, we have recently applied a shifted database
approach for evaluating the false positive rate in the AMT tag process (Petyuk, et al.,
manuscript submitted). As shown in Figure 6B, ∼3% false positive rate for this human plasma
dataset was estimated as the ratio of the area beneath the blue curve that represents matches to
the shifted database and the area beneath the magenta curve that represents matches to the
normal database within a +/− 2 ppm window. In addition to being used for direct identification
in the MS-only approach, the accurate mass information also has been utilized for improving
the confidence of peptide identifications by MS/MS through application of the new generation
of LTQ-FT and LTQ-Orbitrap mass spectrometers88, 89.

Quantitation Strategies
The ability to quantitatively measure relative protein abundance differences between different
clinical samples is essential for identifying candidate protein biomarkers; however, the vast
majority of proteomic work related to biomarker discovery published to date has been
qualitative, which highlights the need for more robust quantitative approaches for such
applications. Our initial application for comparative proteome analysis of human plasma
following lipopolysaccharide (LPS) administration involved a semi-quantitative strategy based
on the total number of peptide identifications per protein (peptide hits or spectrum count)74.
In this study, standard SCX-LC-MS/MS analysis was performed at 0 h time point (control)
and a 9 h time point following LPS administration and peptide hits were used to obtain a relative
quantitative measure between the control and 9 h time point. Several known inflammatory
response and acute phase proteins were observed to be up-regulated upon LPS administration.
Several other studies have shown that this peptide hits approach can be used as a semi-
quantitative approach for initial screening when applied with proper controls and with adequate
thresholds90-93.

More recently, we have demonstrated 16O/18O labeling combined with the AMT tag strategy
as an effective global quantitative approach for quantifying relative protein abundance
differences in human plasma31. By incubating tryptic peptides in 18O water55, 94 in the
presence of trypsin, the 18O atoms are incorporated into the C-terminus of tryptically cleaved
peptides via a post-digestion trypsin-catalyzed oxygen exchange reaction. The 16O/18O labeled
peptide pairs provide a 4 Da mass difference (Figure 7A), which allows a high resolution mass
spectrometer such as FTICR or TOF to effectively resolve the 16O- and 18O-labeled peptide
pairs and accurately measure the relative abundances. The advantage is that all types of samples
(e.g., tissues, cells, and biological fluids) can be effectively labeled using this simple and
specific enzyme-catalyzed reaction. Figure 7A shows a partial 2D-display of detected peptide
pairs in mass vs. time dimensions. The 18O/16O peptides are readily visualized as co-eluting
pairs (4 Da apart) and the abundance ratio can be precisely calculated for each 18O/16O pair.
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In this initial comparative analysis demonstration of two human plasma samples obtained from
a healthy individual prior to (control) and following LPS administration, relative abundance
differences between the two plasma samples were quantified for a total of 429 plasma proteins.
Figure 7B shows the normalized fold changes in 429 quantified proteins and demonstrates the
significant changes in abundance for a set of proteins following LPS administration. The
combined 16O/18O labeling-AMT tag strategy can also be easily coupled with subsequent
peptide-level fractionation approaches such as cysteinyl-peptide enrichment55 and SCX
fractionation.

Other stable isotope labeling methods based on relative peptide/protein abundance
measurements include metabolic labeling95-97 and chemical labeling of specific functional
groups using reagents such as isotope-coded affinity tags (ICAT)98 and iTRAQ99, 100 have
been routinely used for quantitative proteomic analysis. In clinical proteomic applications,
these stable isotope labeling techniques are well suited for detecting accurate changes in pair-
wise comparisons, provided the samples can be effectively labeled; however, in biomarker
discovery applications, it is often challenging to compare across a large number of clinical
samples. One alternative to the use of these labeling techniques is the use of a labeled reference
sample (often a pooled composite) that is spiked into each normally processed individual
clinical sample that allows relative quantitation between each clinical sample and the reference
sample, and cross-comparison among the entire set of clinical samples. The 18O labeling
strategy is well suited for generating such a labeled reference sample as all other clinical
samples can be processed with natural 16O on the C-termini without labeling; 16O/18O peptide
pairs are formed after spiking the samples with the 18O-labeled reference.

Alternatively, “label-free” direct quantitation approaches hold interest because of greater
flexibility for comparative analyses and simpler sample processing procedures compared to
labeling approaches. The isotope labeling and label-free approaches are complementary and
each approach has different sources of variations. Several initial studies suggest that the use
of normalized LC-MS peak intensities for detected peptides can be used to compare relative
abundances between similar complex samples101-103. It has been demonstrated that
abundance ratios of separate model proteins may be predicted to within ∼20% in complex
proteome digests by using measured peptide ion intensities obtained in LC-MS analyses101.
Among the main challenges for label-free quantitation are the multiple issues that affect the
usefulness of peptide peak intensities for relative quantitation, such as differences in
electrospray ionization efficiencies among different peptides and different samples37,
differences in the amount of sample injected in each analysis, and sample preparation
reproducibility. These issues are often peptide-dependent, leading to observed disparity among
relative abundances of different peptides originating from the same protein. The significant
bias and ion suppression effects caused by charge competition (ionization bias) during
ESI104 are often considered a major limitation for accurate label-free quantitation. Recent
studies have demonstrated substantial advantages for ESI-MS analyses at nano-flow regimes
(<100 nL/min) afforded by narrower i.d. capillary columns for separations36, 37. It is well
demonstrated that smaller i.d. columns with lower flow rates provide significantly higher
sensitivity than larger i.d. columns with higher flow rates34 because of the significant
improvements in both ionization and MS sampling efficiencies. Reversed phase packed
nanoscale LC and monolithic nanoscale LC separations have been developed and coupled to
ESI for improved ionization and quantitation 34, 105. As ionization efficiencies are increased
for nano-electrospray, detection biases are decreased since undesired matrix effects and/or ion
suppression effects are either reduced or eliminated104-106, which provides the basis for
improved quantitation. With further improvements to the robustness of these nano-LC-ESI-
MS systems, label-free quantitation may be widely applied in clinical applications.
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Another challenge for quantitative clinical proteomic applications is the variability introduced
during multiple steps of sample processing. With continued development of clean-up products
for more consistent performance and automated sample processing, such reproducibility issues
may be minimized, leading to further improvements in quantitation when applying either the
stable isotope labeling or label-free approaches.

Implications of Human Heterogeneity in Clinical Proteomic Studies
The ability to identify disease-specific differences by using a proteomic approach relies on
multiple factors integral to the overall analysis pipeline, For example, when performing
peptide-level measurements, achieving high peptide identification quality is a prerequisite for
assuring confidence in all other downstream parameters (i.e., confidence in both protein
identification and quantitation), while the ability to quantify differences between any two
samples largely depends on the reproducibility of the overall platform. Due to inherent
variations that stem from sample preparation and instrument analysis, technical replicates are
often performed to evaluate and minimize technical variability arising from the overall analysis
pipeline. Technical variability will be minimized as technologies continue to mature and
platforms will likely become more robust and reproducible; however, biological variability
within the same comparative groups remains as a challenge for identifying real differences
between different conditions. Although ideally one would like to either control or minimize
such biological variability by utilizing more controlled model systems such as cell cultures, an
in vitro model system, or even inbred mouse strains, this is not always possible. Most clinical
studies are based on “real world” human clinical samples where inherent human individual
heterogeneity makes discovery efforts more difficult. The human heterogeneity challenge in
proteomic studies stems from the high probability that two equally “healthy” individuals will
have overall significantly different individual protein abundance levels when sampled at any
given time. This heterogeneity can be due to individual genetic variability (i.e., gender, race,
etc.) and/or to contributing environmental factors such as diet, overall health, detrimental
environmental exposures, etc. The complexity of human diseases presents another degree of
challenge. For example, in human cancer, each tumor type typically consists of a number of
subtypes that differ with regard to their spectrum of genetic alterations107. Therefore, a
potential candidate biomarker of disease may be observed to only elevate in a certain percentage
of the pool of disease patients.

The implications of human heterogeneity in the context of LC-MS based proteomic
experiments centers mostly on the measured quantitative values for peptide/protein
identifications. Figure 8 shows an initial evaluation of the technical variation and biological
variations of human and mouse plasma samples based on the Pearson correlation of the
identified peptide intensities between any two individual samples. The technical replicate
results (Figure 8A; nine individually processed samples from one pooled reference plasma)
show overall good correlation (0.94 ± 0.02), which suggests relatively good reproducibility of
the overall analytical platform. The increased variation among human subjects (Figure 8B)
appears obvious on the basis of significantly reduced average correlation coefficients (0.85 ±
0.06) compared to the technical replicate results; whereas mouse plasma samples (Figure 8C)
show only slightly reduced correlation (0.92 ± 0.05), which suggests relatively small biological
variation in these inbred mouse models. Such large variations observed among different healthy
control subjects present a challenge for identifying disease-specific differences. To address
these challenges and increase the confidence of discovery results, it is essential for the
discovery platform to be able to analyze a relatively large number of clinical samples in a high
throughput manner to obtain sufficient statistical power.

Other proteomic studies have also described the effects of human heterogeneity in specific
model systems. Hu et al. performed a limited study that compared both intra- and inter-
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individual variability of human cerebrospinal fluid samples obtained from six individuals15.
Specific proteins were observed to fluctuate over time with the same individual, but overall
there was a higher concordance of inter-individual results than across individuals. Interestingly,
results from measuring intra-individual protein levels suggested that certain proteins tended to
fluctuate more than others, calling into question the effectiveness of using these proteins as
potential disease markers. Other studies include a report by Zhan et al. which showed the
heterogeneity in 2DE human pituitary proteome analysis108 and an interesting review by Mann
et al. that overviewed the effects of genotypic and phenotypic variations in evaluations of the
hemostatic proteome109. They reported that “normal” pro- and anti-coagulant concentrations
were observed to vary significantly and influence downstream responses, which demonstrated
how heterogeneity in individual phenotypes should influence diagnosis and therapy for
hemostatic-based diseases.

Designing experiments to minimize biological variability is imperative for clinical studies. One
example is to analyze a serial sample set, i.e., plasma or biopsy tissue samples, from the same
individual over a time course or disease progression, which in theory will alleviate a majority
of heterogeneity effects, but such samples are traditionally more difficult to obtain in addition
to the fact that most patients do not have a “control” blood or tissue sample in storage for
comparison against a possible disease diagnosis. For most studies that use cross-sectional
approaches, it is desirable to match the patients and controls in terms of age, sex, race, weight,
and even diet, if possible. A recent study reported the potential utility of pooling for reducing
the effects of biological variation in microarray studies, while retaining the accuracy of
identifying differentially expressed genes when biological replicates are retained in the study
design and providing the additional benefit of a great reduction in the total number of samples
to be analyzed110. Such a strategy might be explored and extended to clinical proteomic
studies.

A further implication in heterogeneity is the presence of protein isoforms, splice variants,
specific amino acid mutations, proteolytic products, and other post-translational modifications
that are likely present in individual samples, but are most often not explicitly included as
sequences in the searchable protein database. This exclusion makes it challenging for
traditional LC-MS/MS based bottom-up approaches to identify such modified proteins and is
possibly one of the main reasons that a large percentage of MS/MS spectra in clinical analyses
remain unidentified. The identification of amino acid specific post-translational modifications
(e.g., phosphorylation, glycosylation, glycation, nitration, oxidation, and deamination)
challenge MS/MS-based approaches due to the vast variety of possible modifications and the
potential high false positive rate that originate from database searching. Since it is recognized
that many protein biomarkers may be specific protein isoforms or modified proteins, further
technical developments for more effective identification and quantitation of protein isoforms
and modifications would be greatly desirable.

As an alternative to identifying protein isoforms and modifications, intact protein-level
separations can be used to separate different protein isoforms on the basis of their different
masses or other properties. The ability to use 2DE for resolving different isoforms and
monitoring their abundance changes has been well documented111. The recently developed
multi-dimensional intact protein analysis system (IPAS) separates intact proteins on the basis
of charge, hydrophobicity, and molecular mass; quantitation is achieved by protein tagging
with fluorophores43. The potential for revealing different protein isoforms and specific protein
cleavage products in human plasma/serum also has been demonstrated49. The advantages
offered by intact protein analysis complements the “bottom-up” proteomic approaches, and
better integration of these two approaches may lead to more effective biomarker discovery.
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Targeted Proteomic Approaches
The majority of proteomic applications in the search for candidate biomarkers to date have
been focused on global proteome characterization focused on identifying multiple protein
differences (candidate biomarkers) that correlate with specific human diseases; however, as
discussed previously, there are many challenges associated with applying such a strategy to
the discovery of low abundance candidate marker proteins. An alternative strategy for
biomarker discovery that complements global profiling is the targeted proteomic approach that
involves quantitative MS to measure a hypothesis-generated list of candidates112. The targeted
proteomic strategy often provides greater sensitivity and allows for detection of low abundance
candidate proteins. Anderson et al. recently demonstrated the use of peptide multiple reaction
monitoring (MRM) for quantitative assaying of major plasma proteins113. Such MRM assays
provide great specificity for peptide/protein identifications and relatively good precision for
quantitation. Additionally, MRM can provide a rapid and specific platform for biomarker
validation, particularly when coupled with specific enrichment techniques such as the recently
published SISCAPA method for enriching target peptides using anti-peptide antibodies114.
Activity-based protein profiling is another strategy that uses chemical probes for tagging,
enriching, and isolating a specific subset of physiologically important proteins on the basis of
enzymatic activity115, 116. Coupling such strategies with LC-MS holds potential for
eliminating many issues related to the dynamic range of protein abundance.

A continuing issue for current LC-MS based profiling approaches is that many of the detected
species or features from LC-MS and LC-MS/MS analyses remain unidentified. Based on our
experience, ∼80% of MS/MS spectra on average are not confidently identified via database
searching, and more than 50% of LC-FTICR detected features remain unidentified by the AMT
tag approach. Present informatics tools and statistical algorithms have been able to utilize
intensity information of these unidentified features to identify “interesting” features as potential
biomarkers for specific diseases; effectively targeting these “interesting” features using data-
directed or targeted MS/MS approaches is of current interest. One of the informatics challenges
associated with identifying these features concerns different post-translational modifications.
Current commercial mass spectrometers such as the LTQ offer a targeted MS/MS capability
based on the selection of a list of m/z values. Developing an advanced targeted MS/MS
approach117 that incorporates “smart selection” of the targets and different, but
complementary fragmentation techniques will be an integral component for an effective LC-
MS profiling platform suitable for clinical applications.

Conclusions and Perspectives
The amount of effort placed into developments and applications for effective proteomic
profiling of serum/plasma and other clinical samples has increased tremendously over the last
several years. With the emergence of more effective LC-MS technologies and the variety of
fractionation approaches, the number of proteins detectable in human plasma by global
profiling has been greatly expanded (e.g., 889 proteins with >95% confidence reported in the
recent HUPO study and 1494 proteins with >99% confidence, including confident
identification of many low ng/mL level plasma proteins, in our recent study 59. Although this
level of detection is still falls short of the 10 orders of magnitude in dynamic range that
encompasses plasma protein abundances, it still offers significant potential for the discovery
of novel candidate biomarkers from clinical plasma/serum samples.

Currently, there is no single platform that represents the “best” technology for such discovery
applications, and integration of multiple technologies is often required for detection and
quantitation of low abundance proteins. The need for improved reproducibility, throughput,
dynamic range, and quantitation will continue to drive technology development and
improvement efforts. Importantly, several new technological developments such as fast LC
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separations, gas phase IMS separations, and high efficiency nanoESI interfaces look promising
for future discovery platforms and applications. With improvements in quantitation accuracy,
throughput, and robustness, the LC-MS protein profiling platform may eventually become a
powerful tool for clinical diagnostic testing that provides simultaneous measurements of a large
number of clinically relevant analytes.

An important component of any integrated profiling platform not previously discussed is the
informatics and statistical analysis. The development of more effective software packages will
be essential for processing the large number of LC-MS datasets, which may include peak (or
feature) detection, run-to-run feature alignment, intensity normalization, feature matching to
the database, and statistical analysis to generate a list of high confidence potential candidates.

Finally, due to the complexity of large scale clinical proteomic studies, collaborative efforts
from multiple laboratories with different platforms may be required for benchmarking and
better cross-validation of the discovery results and eliminating potential biases introduced into
any given platform. This implies that a common set of standards is needed so that platform
performance in different laboratories may be readily compared and large scale proteomic
datasets can be effectively exchanged and shared.
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Figure 1.
A component diagram of a LC-MS protein profiling platform.
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Figure 2.
A typical LC-FTICR analysis of an IgY-12 depleted human plasma sample. (A) The base peak
chromatogram. (B) A 2D-display of ∼2800 identified species at the mass and normalized
elution time (NET) space. The analysis was performed using a Bruker 9.4 Tesla FTICR
instrument coupled with an LC system equipped with a 150 μm i.d. and 65 cm long capillary
column operated at 5000 psi.
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Figure 3.
Schematic representation of a chemical fractionation strategy applied to the plasma proteome
characterization. High abundance proteins were firstly removed using immunoaffinity
subtraction. The resulting less-abundant proteins were split and subjected to solid-phase
cysteinyl peptide and N-glycoprotein captures, independently. Noncysteinyl peptides and non-
glycopeptides generated at the same time were also collected. All 4 different peptide
populations were then fractionated by SCX chromatography and each fraction was analyzed
by capillary LC-MS/MS.
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Figure 4.
Schematic diagram of a prototype ESI-IMS-QTOF instrumentation platform that uses
electrodynamic ion funnel interfaces at both ends of the IMS drift tube, and as a result, provides
very high sensitivity from high speed analyses.
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Figure 5.
Relative frequency of different peptides identified from the normal human protein database
(solid line) and the reversed human protein database (dashed line) at different Xcorr values.
Data shown are for the 2+ charge state fully tryptic peptides identified from human plasma and
filtered with ΔCn ≥ 0.1.
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Figure 6.
(A) Mass error histograms of features detected from a single LC-FTICR dataset of a human
plasma sample that matched to a human plasma AMT tag database using different levels of
normalized elution time (NET) constraints. The LC separation time is normalized to a 0-1 scale
in NET. (B) Mass error histograms for features from the same dataset matching to a normal
AMT tag database (magenta curve) and to a shifted AMT tag database (blue curve). Blue
squares represent random matches to the 11 Da shifted AMT tag database.
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Figure 7.
(A) A partial 2D display of the detected 18O/16O labeled peptide pairs from a LC-FTICR
analysis. The elution time is shown as a normalized scale between 0 and 1. Observed peaks
(represented by spots) correspond to various eluting peptides. The heavy and light isotope-
labeled pairs are easily visualized with a 4 Da mass difference. (B) Normalized fold changes
for the 429 quantified proteins following LPS administration. Abundance ratio for each protein
shown was normalized to zero (R – 1).118 For ratios smaller than 1, normalized inverted ratios
were calculated as [1 – (1/R)]. Error bar for each protein indicates the standard deviation for
the abundance ratios from multiple peptides. Proteins without error bars were identified with
single peptides.
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Figure 8.
Pearson correlation plot comparing peptide intensities of LC-FTICR analyses of plasma
samples. (A) Nine technical replicates for a pooled reference plasma sample from multiple
healthy subjects. (B) Nine human plasma samples from individual healthy subjects with ages
range from 18-26. (C) Nine mouse plasma samples isolated from individual C57BL6 mice.
Each sample including the technical replicate was separately processed by ProteomeLab™
IgY-12 (for human) or IgY-R7 (for mouse) depletion and the flow-through portions were
digested with trypsin prior to LC-MS analyses.
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Table 1
Challenges and limitations of current LC-MS based proteomic technologies applied to biomarker discovery.

Challenge Current techniques for addressing the challenge Limitations

Dynamic range of measurements immunoaffinity depletion and multidimensional
fractionation coupled with high resolution LC-MS or MS/
MS instrumentation

Low throughput
Require relatively large sample sizes

Sensitivity Small inner diameter LC column (50 μm or less) coupled
with nanoflow electrospray ionization and advanced MS
instrumentation (i.e., FTICR, LTQ-FT).

Issues in robustness and expense

Reproducibility and Quantitation Platform automation (including sample processing) Variations from multi-step sample
processing

“Label-free” direct quantitation and isotope labeling based
quantitation

Ionization suppression and
instrument variations
Labeling efficiencies

Throughput Automated fast LC and gas phase ion mobility separations Limited Dynamic range or coverage
False positive identifications Improved database searching algorithms and statistical

models
Lack of consensus
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Table 3
Comparison of peptide and protein identifications from a plasma proteome profiling dataset analyzed using
different criteria.

Filtering criteria Difference in stringency Peptides identified Proteins
identifieda

Multi-
peptide proteins

Avg.
peptides

per
protein

Estimated
false

positive
rateb

Reversed
database32

>95% confidence at the
unique peptide level
based on statistical
evaluation.

22267 3654 1494 (40.9%) 6.1 ∼4%

Only fully and partially
tryptic peptides are
considered.

HUPO Plasma
Proteome
Project77

Inclusion of partially
tryptic peptides with
relatively low cutoffs.

30524 7928 2850 (35.9%) 3.9 ∼25%

Hood et al.78 Inclusion of partially
tryptic and other
enzymatic cleaved
peptides, as well as
peptides without protease
constraints with relatively
low cutoffs.

66839 18958 11653 (61.5%) 3.5 ∼66%

a
Non-redundant protein identifications generated by Protein Prophet80.

b
False positive rate for each filtering criteria was calculated at unique peptide level based on reversed database evaluation32. The reversed protein database

was created by reversing the order of amino acid sequences for each protein (the carboxyl terminus becomes the amino terminus, and vice versa) in the
original protein database.
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