
Intratumoral immunotherapy: using the tumour against itself

When would intratumoral immunotherapy
be clinically applicable?

The majority of human tumours grow in an immuno-

competent host and elicit minimal, if any, clinically rele-

vant antitumour immune responses at the point at which

they present. However, various tumour-associated anti-

gens that are recognized by specific immune cells are

identifiable in patients with cancer, indicating that the

immune system is capable of recognizing tumours.1–6 Evi-

dence in animal models suggests that tumour formation

occurs at a higher frequency in immunodeficient mice.7

Animals that have a deficiency in T cells or in the inter-

feron (IFN) pathway have a higher incidence of tumour

formation when compared to controls.8 Furthermore,

those tumours that develop in immunodeficient animals

are highly immunogenic when transplanted into immuno-

competent hosts, suggesting that immune shaping of the

tumour phenotype has not occurred in these tumours.7,8

Circumstantial evidence that similar immune selection

occurs in spontaneous human tumours, comes from stud-

ies demonstrating reduced major histocompatibility com-

plex (MHC) class I expression,9 deficiencies in antigen

processing and presentation machinery10 and, import-

antly, selection against mutations that occur in MHC-

binding epitopes.11

Any intratumoral therapy requires access to the tumour

site. Initial studies will be further limited to accessible

sites in appropriate clinical scenarios. The accessibility of

primary melanomas, and the standard use of surgical

excision, provide interesting examples. New chemotherapy

drug combinations and radiation therapy doses are begin-

ning to show some promise.12–18 Nonetheless, the low

efficacy of traditional treatment modalities has resulted in

many alternative immunotherapeutic treatment modalities

being tested.19 The most promising immunotherapeutic

approach, high-dose IFN-a, is now approved by the Food

and Drug Administration (FDA) for high-risk melanoma,

including both thick (> 4 mm) node-negative patients

and node-positive patients (AJCC Stage II and Stage III,

respectively). However, high dose IFN-a is not without

its risks: in one study it was associated with grade III tox-

icity in 67% of patients; 9% of patients experienced life-

threatening toxicity and two patients died from hepato-

toxicity.20 While a disease-free survival benefit was shown

in studies of high-dose IFN, the initial overall survival

benefit reported in the ECOG 1684 trial appears to be lost

with longer follow-up. Given the conflicting data, as well

as the high toxicity, there is controversy among investiga-

tors as to whether high-dose IFN should be the standard

of care. In Europe, high-dose IFN is not the accepted

adjuvant treatment for patients with Stage II and Stage III
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Summary

Diverse immunotherapy approaches have achieved success in controlling

individual aspects of immune responses in animal models. Transfer of

such immunotherapies to clinical trials has obtained some success in

patients, with clinical responses observed or effective antigen specific

immune responses achieved, but has had limited impact on patient survi-

val. Key elements required to generate de novo cell-mediated antitumour

immune responses in vivo include recruitment of antigen-presenting cells

to the tumour site, loading these cells with antigen, and their migration

and maturation to full antigen-presenting function. In addition, it is

essential for antigen-specific T cells to locate the tumour to mediate cyto-

toxicity, emphasizing the need for local inflammation to target effector

cell recruitment. We review those therapies that involve the tumour site

as a target and source of antigen for the initiation of immune responses,

and discuss strategies to generate and co-ordinate an optimal cell-medi-

ated immune response to control tumours locally.
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disease, and among investigators, both in Europe and

elsewhere, other adjuvant approaches, such as vaccines

and non-toxic long-term IFN schedules, are being

explored. In addition to such non-specific approaches, a

number of immunodominant and commonly shared mel-

anoma tumour antigens have been identified. Vaccine

approaches using either autologous tumours or allogeneic

tumour cells expressing shared antigens, or alternatively

using purified defined tumour antigens or epitopes, has

shown some promise in small trials.21–24 The use of

ex vivo cultured autologous tumour cells, which should

include multiple target antigens, is highly labour-intensive

and such cells are not always successfully grown from the

primary tumour material. Use of defined tumour-associ-

ated antigen has been associated with a loss of specific

antigen expression in tumours following repeated treat-

ment.25 However, for the purpose of this review, one rele-

vant criticism of the majority of vaccine-based approaches

is that they are performed at sites distant from the

tumour. Antigen-directed vaccination therapies generally

result in an accumulation of specific cells at the vaccin-

ation site.26–28 Thus, intratumoral approaches are appeal-

ing because they may direct antigen-specific responses

back to the tumour site, and also exploit the presence of

multiple undefined tumour antigens present in the

endogenous tumour. Furthermore, the local aspect of the

immune reaction within the tumour would be expected

to reduce systemic toxicity, analogous to the use of isola-

ted limb perfusion compared to systemic drug delivery.29

As the standard of care for grading and staging in mel-

anoma requires surgical removal of the primary lesion,

typically with tumour-free margins, intratumoral therapy

is currently only practical in patients with local recurrence

or surgically accessible metastases. Eventually, for those

therapies that look promising, it may be possible to use a

neoadjuvant approach and treat the primary lesion prior

to surgical excision. As systemic gene therapy improves, it

may also be possible reach metastases or primary tumours

that are not accessible for direct injection. We will argue

that such neoadjuvant therapies would provide broadly

tumour reactive, immune-mediated control of emerging

tumours in patients.

Life cycle of the optimal cell-mediated immune
response

From the wealth of published literature on those immune

responses that are most capable of controlling tumour

growth in vivo, we hypothesize that there are certain fea-

tures that must be incorporated to initiate effective cell-

mediated antitumour immunity. We also believe that there

must be local provision of antigen, in a form highly access-

ible to immature dendritic cells.30 This antigen must be

provided in conjunction with molecules capable of activa-

ting these dendritic cells plus resident immune-modulating

cells, such as macrophages.31–37 These criteria are hardly

new, and are shown in Fig. 1. Almost any effective vaccin-

ation strategy of the previous 200 years incorporates anti-

gen in some form of vehicle and accompanied by classical

adjuvants, whether non-specific bacterial DNA and cell-

wall products or the inherent properties of an attenuated

viral vector.38 However, one critical difference between

the goals of infectious disease vaccination and tumour

immunotherapy is that the former is intended to protect

systemically against a subsequent potentially pathogenic

challenge, whereas the latter aims to redirect immune

responses to an existing tumour in a specific location, or

locations, within the host. Pathogenic challenge with an

infectious agent requires local immune activation, even in

vaccinated hosts, to identify the infection site.39,40 The

location specificity of vaccinations is clear, particularly in

classical models such as the delayed-type hypersensitivity

response, where potent responses occur solely at the anti-

gen site.26 For these reasons we will discuss immunothera-

peutic approaches that act in concert with current

understanding of effective cellular immune responses, and

consider the spatial regulation required of therapies to both

initiate and maintain immune activity against tumours.

Lessons from tactics applied in existing
tumour immunotherapies

Attracting dendritic cells to tumours

Dendritic cells have critical importance in priming effect-

ive, antigen-specific T-cell activation within the secondary

Figure 1. Life cycle of the optimal cell-mediated antitumour

immune response. Local attraction of immature dendritic cells

(DCs), which can subsequently be loaded with tumour antigens via

cytotoxic therapy and activated to emigrate to regional lymph nodes,

effectively prime antitumour effector cells and return to the tumour

site for further tumour destruction.

12 � 2005 Blackwell Publishing Ltd, Immunology, 114, 11–22

M. R. Crittenden et al.



lymphoid organs.30 Therefore, the first step towards an

optimal initiation of antigen-specific antitumour responses

involves the attraction of dendritic cells to the tumour.

Several studies have documented the presence and prog-

nostic significance of dendritic cells within various human

tumours.41–43 These observations support the notion that

increasing the number of dendritic cells at a tumour site

could have desirable antitumour effects for a host.

Distinct from the systemic and distant vaccination

applications of ex vivo-derived dendritic cells to initiate

antigen-specific immune responses, various studies have

applied such dendritic cells directly to the tumour site

(Fig. 2). Table 1 lists the advantages and disadvantages of

such an approach. Direct intratumoral application is par-

ticularly relevant in view of evidence demonstrating that

few dendritic cells administered at vaccination sites reach

the draining lymph node,44,45 and the dendritic cells accu-

mulate antigen-specific T cells at the site of vaccination at

the expense of peripheral circulating T-cell numbers.28

Intratumoral injection of syngeneic dendritic cells into

malignant gliomas in rats led to infiltration of the tumour

by CD4 and CD8 cells, and ultimately a prolongation in

survival and immunity to subsequent tumour rechal-

lenge.46 In a murine colorectal tumour model, mice

receiving primary tumour challenges followed by excision

and rechallenge were better protected against rechallenge

when the primary tumour was co-administered with

syngeneic immature dendritic cells.47 Significant protec-

tion against rechallenge was also observed in this model

where the dendritic cells were injected into established

tumours.47 In a preliminary clinical study, a small cohort

of patients with metastatic dermal or subcutaneous breast

and melanoma tumours received autologous dendritic

cells intratumorally. Regression of injected tumours was

observed in six out of 10 patients, and biopsies of the

regressing tumours showed the presence of dendritic

cells.48 To enhance the efficacy of intratumoral dendritic

cells, these dendritic cells have also been engineered to

express proinflammatory cytokines.49–51 The data relating

to dendritic cell transfer requires careful interpretation

because it is unclear in such models whether the trans-

ferred dendritic cells are behaving exactly as anticipated.

It has been shown that ex vivo-derived dendritic cells have

poor viability in vivo, and that host dendritic cells are

required for the therapeutic effect.52 The mechanism of

antigen transfer to host dendritic cells is at present

unclear, and it is not understood whether the death of

trafficking dendritic cells is a normal process in the drain-

ing lymph node.

An alternative approach to the ex vivo generation of

dendritic cells is to exploit the endogenous precursor

population, via the chemokine-orchestrated migratory

and homing properties of dendritic cells, to increase the

number of endogenous dendritic cells at a tumour

site.53,54 Several options have been tested to attract endo-

genous dendritic cells to tumours, including the genetic

modification of tumour cells and direct intratumoral

injection of recombinant proteins.55–59 Dendritic cell

attraction has been proposed as a critical component of

the widely studied expression of granulocyte–macrophage

colony-stimulating factor (GM-CSF) in tumours.55,56,60–65

However, it is important to note that GM-CSF is not a

chemoattractive cytokine, but does induce secretion of

chemokines from resident macrophages that are chemo-

attractive for dendritic cells.66–68 Thus, a more direct

approach is to similarly provide appropriate chemokines

at the tumour site. Based on chemokine receptor expres-

sion data, it is possible to identify chemokines that will

be chemoattractive for immature dendritic cells.53,69–74

Immature dendritic cells express the chemokine receptors

CCR1, CCR5 and CCR6, which bind, amongst other mol-

ecules, the important inflammatory chemokines CCL3,

CCL5 and CCL20. Injection of recombinant chemokine

has been shown to cause infiltration of cells into the

injection site,75,76 while constitutive expression of CCL3

has been shown to abrogate the tumorigenicity of an

immunogenic tumour established subcutaneously.77 How-

ever, in the less immunogenic B16 melanoma model, the

growth of subcutaneous tumours expressing CCL3 was

unaffected.77,78 Interestingly, cells injected intravenously

(i.v.) to form lung metastasis did not grow where CCL3

was expressed, suggesting that location plays a large role

Table 1. Advantages and disadvantages of intratumoral immuno-

therapy

Using the tumour as a site of vaccination

Advantages Disadvantages

No need to identify

antigens or MHC

Limited accessibility of tumours

Ability to manipulate

environment

Tolerogenic tumour environment

Identification of tumour

site for effector cells

Acceptability of delay before

tumour excision

MHC, major histocompatibility complex.

Figure 2. Example of intratumoral immunotherapy in a neoadjuvant

setting.
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in the efficacy of chemoattraction.78 A slow-release for-

mulation of the chemokine CCL20 using polymer rods

was shown to cause accumulation of Langerhans’ cells at

the subcutaneous implantation site,79 and these cells

could subsequently be antigen loaded and activated to

enhance antigen-specific immunity.79 As with CCL3, des-

cribed above, Crittenden et al.77 demonstrated that mice

challenged with immunogenic colorectal tumours, which

had been genetically modified to secrete CCL20, failed to

develop tumours compared with non-chemokine-expres-

sing controls, and that expression of CCL20 was associ-

ated with a significant increase in dendritic cells at the

site of tumour inoculation. Similarly, intratumoral injec-

tion of adenovirus-expressing CCL20 resulted in sig-

nificant inhibition of tumour growth.57 Intratumoral

injection of recombinant CCL21 resulted in the accumu-

lation of dendritic cells, along with T cells,80 and

inhibited growth of lung carcinoma and melanoma in a

T-cell-dependent manner.59,80 Intratumoral injection of

herpes simplex virus (HSV) amplicons expressing CCL21

into established A20 and CT-26 tumours in mice caused

significant infiltration of T cells and dendritic cells and

resulted in CD8-dependent antitumour immunity.58

Based on these data, we hypothesize that the attraction

of dendritic cells to a tumour site can be a vital first step

in priming effective antitumour responses in vivo, and that

chemokine gene expression can be an effective technique

for using to recruit endogenous cells to the tumour with-

out the need for ex vivo manipulations. However, a num-

ber of growing human tumours has been characterized to

constitutively express chemokines that are chemoattractive

to dendritic cells.81–83 Similarly, in less immunogenic

tumour models, expression of chemokines in tumours is

insufficient to cause tumour rejection.77 It is possible

that the cells attracted to tumours by such chemokines

do not take up antigen, or remain immature and function

as tolerogenic antigen-presenting cells (APC).84–87 The

tumour-type dependence of the presence and prognosis of

infiltrating dendritic cells probably relates to environmen-

tal factors within the tumour that regulate antigen loading

and maturation of dendritic cells. For this reason we will

directly address strategies to enhance these key features of

the initiation of immune responses.

Antigen loading of dendritic cells in tumours

Dendritic cells, as professional APC, must obtain tumour

antigen in order to initiate de novo antigen-specific

immune responses. An extremely varied range of strat-

egies has been applied to provide antigen to dendritic

cells. The major distinction in dendritic cell loading with

antigen is between in vitro and in vivo provision of anti-

gen. For those strategies involving adoptive transfer of

in vitro-differentiated dendritic cells, it is extremely easy

to provide antigen in a suitable form in vitro prior to

dendritic cell transfer. Antigen-presentation strategies,

such as peptide antigen loading, have only a very short

duration of efficacy, with epitopes rapidly lost from MHC

on the dendritic cell surface and associated loss of T-cell

stimulatory activity.88 Ex vivo loading has been improved

by conjugating exogenous protein antigen to molecules

that direct it into appropriate cross-presentation path-

ways, such as heat shock proteins,89 complement90,91 and

antibody.92–94 These data translate well to in vivo models,

where similar conjugation of antigen prior to in vivo

administration dramatically enhances the generation of

antigen-specific immune responses.89,91,93,94 Dendritic

cells efficiently present antigens coded in tumour-derived

RNA,95,96 and more stable expression of tumour antigens

via infection with viral vectors generates dendritic cells

capable of inducing transgene-encoded antigen-specific

immunity.97–99 In addition, dendritic cells actively phago-

cytose apoptotic tumour cells, and can cross-present

apoptotic tumour-derived antigen on MHC class I.100,101

Dendritic cells do not readily take up and present antigen

from live cells. However, there is a growing body of lit-

erature reporting that dendritic cells can take up and pre-

sent antigens incorporated in vesicular structures (called

exosomes) released by live tumour cells.102–104

Each of these strategies has been applied via in vitro

loading to prime immune responses in vivo via vaccin-

ation at distant sites. Using the tumour as the site of vac-

cination ensures that antigen is locally available and that

the target antigens need not be defined. Nevertheless, it

still remains to transfer tumour-associated antigens, whe-

ther antigen-encoding DNA or RNA, or translated pro-

teins or digested peptides, from the tumour cell to the

dendritic cell within the tumour in vivo. A very applicable

strategy to provide endogenous tumour antigens to dend-

ritic cells is the combination of intratumoral dendritic

cells with systemic cytotoxic therapies. A number of

recent reports describe the use of systemic chemothera-

peutics that cause tumour cell death, combined with

intratumoral dendritic cells.105–107 In these models, the

combination was significantly more effective than either

agent alone105–107 and also caused regression of distant

uninjected tumours.106 Similarly, intratumoral injection

of dendritic cells was more effective in a breast tumour

model when combined with agents that enhance levels of

cell death in the tumour.108 For these reasons, we believe

that it is unnecessary to prepare and load dendritic cells

ex vivo, in circumstances where dendritic cells can be effi-

ciently loaded with relevant antigens within the tumour

by combining local attraction of immature dendritic cells

with tumour cytotoxicity.

Activating dendritic cells loaded with tumour antigens

Dendritic cells are highly responsive to inflammatory

stimuli, such as ligands of the tumour necrosis factor
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(TNF) family30,109–111 and ligands activating Toll-like

receptors on dendritic cells.31–35 However, the uptake of

cell-associated antigen can directly influence dendritic cell

maturation to full T-cell priming potential. For example,

apoptotic cells efficiently load dendritic cells with tumour

antigen and do not cause dendritic cell matur-

ation.85,112,113 In contrast, antigen from non-apoptotic

cells also loads dendritic cells, but causes dendritic cells

to mature and up-regulate costimulatory molecules.35,37

In vivo the immunostimulatory effects of antigen formu-

lation is further confused by the presence of many other

cell types. For example, macrophages are commonly pre-

sent in tumours at higher levels than dendritic cells, and

continuing the example from above, macrophages also

actively phagocytose apoptotic cells. However, following

the phagocytosis of apoptotic cells, macrophages secrete a

range of anti-inflammatory cytokines, including inter-

leukin-10 (IL-10) and transforming growth factor-b
(TGF-b).114–117 In contrast, macrophages respond to non-

apoptotic cells with limited phagocytosis and the secre-

tion of pro-inflammatory cytokines, including TNF-a and

interleukin-1b (IL-1b).114–116

Therefore, the data on apoptotic cell vaccination must

be interpreted carefully depending on whether the dend-

ritic cells are loaded in vitro alone vs. in vivo in the cellu-

lar milieu. Similarly, it is important to distinguish

between modes of death that occur in vitro vs. in vivo.

Apoptotic cells that have not been efficiently phagocyto-

sed may proceed to secondary necrosis;118 therefore, at

increased doses of apoptotic cells, where phagocytes may

be overwhelmed, apoptotic cells begin to vaccinate mice

against associated antigens.119 In mice bearing mutations

resulting in the defective phagocytosis of apoptotic cells,

there is an enhanced tendency to develop autoimmu-

nity.120,121 Complement components have recently been

described as important opsonins for clearance of apop-

totic cells,122,123 and there is a direct correlation between

deficiency in certain complement components and the

development of autoimmunity.124 Thus, in these models

it is likely that apoptotic cells which are not phagocytosed

can proceed to secondary necrosis, leading to antigen

presentation by, and activation of, dendritic cells. Cells

that undergo a physiological non-apoptotic death, i.e.

one where cells are fated to die but are not able to acti-

vate apoptotic pathways,104,125,126 are highly immuno-

genic.104,116,125,127,128

Therefore, an interesting strategy to activate dendritic

cells concomitantly with uptake of tumour antigens

would involve blocking the phagocytosis of apoptotic

cells, or blocking the inhibitory effects of cytokines pro-

duced following phagocytosis. Thus, it has been shown

that apoptotic cells are significantly more immunogenic

in mice treated with carageenan to block phagocyte func-

tion.119 The in vivo tolerance that can be induced by

dendritic cell uptake of apoptotic cells85,129,130 may relate

to cytokines secreted by dendritic cells in response to

phagocytosis of apoptotic cells,131 particularly IL-10119

and TGF-b.117 TGF-b secreted by tumour cells, or within

the tumour microenvironment, has been postulated as

one of the mechanisms by which tumours evade immune

control, as TGF-b inhibits both dendritic cell maturation

and T-cell effector function. Based on these data, we

hypothesize that if tumour antigen is provided via con-

ventional intratumoral apoptotic death,105–107 there would

be a significant therapeutic advantage generated by block-

ing the phagocytosis of apoptotic cells, or alternatively

blocking IL-10 and/or TGF-b within the tumour environ-

ment. Thus, we maintain that in developing intratumoral

therapies, dendritic cells attracted to the tumour site

should be loaded with antigen via cytotoxic therapies that

concomitantly activate the dendritic cell.

One interesting local therapeutic approach that is

being actively pursued in the treatment of both basal cell

carcinoma and melanoma involves topical application of

members of the imidazoquinoline family, particularly

Imiquimod. Topical treatment with Imiquimod causes

the maturation of local Langerhans’ cells,132 and injection

of immature dendritic cells into Imiquimod-treated skin

results in the maturation of dendritic cells in situ.133

Moreover, Imiquimod-mediated maturation of injected

immature dendritic cells generated antitumour immune

responses that were superior to similar injection of

mature dendritic cells.133 These data suggest that in addi-

tion to the phenotypic maturation status of the dendritic

cell, the inflammatory status of the local environment

plays an important role in the activation of cell-mediated

immune responses. Topical treatment with Imiquimod

has shown significant therapy in basal cell carcinoma134

and cutaneous melanoma.135 These data demonstrate that

such local immunotherapies can provide significant bene-

fit with minimal systemic risk in patients with normal

immune status.136 Topical immune adjuvants, such as the

imidazoquinolines, could be widely applied to enhance

immune responses at accessible sites.

Attraction of primed effector cells to the tumour site

The degree of lymphocyte infiltrate into the tumour is an

independent prognostic marker for improved survival in

specific classes of melanoma patients.137,138 However,

there is much discussion as to the functionality of those

lymphocytes found within many tumour types.139,140 Effi-

cient priming of effector cells does not necessarily mean

that antigen-specific cells can proceed to clear tumours.

In a transgenic T-cell model, where the specific antigen

was simultaneously expressed by normal liver cells,

endogenous T cells did not cause liver pathology, even

following antigen-specific vaccination in vivo.141 In this

model, administration of a liver pathogen was required to

initiate T-cell-mediated autoimmune liver destruction.141
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Similarly, multiple strategies have been demonstrated

to generate measurable cytotoxic T-lymphocyte (CTL)

responses in patients, without significant correlation to

clinical responses.142–144 The presence of large numbers of

transgenic or in vitro-expanded tumour antigen-specific

T cells does not consistently cause regression of tumours

in animals or patients.145–147

One explanation for these data may lie in the traffick-

ing properties of activated T cells, and in the tumour

environment. Naı̈ve T cells have ‘central’ trafficking prop-

erties.53,148–153 In contrast, subpopulations of activated

cells lose expression of CD62L and CCR7, gaining adhe-

sion molecules such as CD44 and the chemokine recep-

tor, CCR5, that enable adherence to the peripheral

basement membrane hyaluronate145,154,155 and trafficking

towards inflammatory chemokines such as CCL3 and

CCL5.156–158 Such effector cells are much more capable of

trafficking to peripheral sites that are the source of ongo-

ing infections.157,159,160 These data support the hypothesis

that modulation of the tumour site will be critical to

enhance the efficacy of tumour immunotherapies, partic-

ularly during the effector phase.

The tumour site is not a site of inflammation. Despite

expression of a range of chemokines, and even expression

of cytokines such as TNF-a,161–163 simultaneous expres-

sion of counteractive cytokines, such as IL-10 and TGF-b,
means that activated T cells are poorly attracted to the

tumour site. T cells that are unresponsive to TGF-b
are significantly more effective in adoptive transfer mod-

els than T cells that are inhibited by TGF-b expressed by

tumours.164 In vivo, radiolabelled antigen-specific T cells

showed limited additional tumour-specific trafficking

when compared to non-specific cells.165 One innovative

solution to this problem has been genetic modification

of the T cells to express a receptor for a chemokine

expressed by tumours.166 Transfer of this receptor signifi-

cantly increased T-cell trafficking to tumours and the

antitumour efficacy of adoptively transferred T cells.

Therefore, it could be possible to design vaccination strat-

egies that generate T cells with a more appropriate traf-

ficking capacity. However, using intratumoral therapies, it

may be possible to incorporate features that directly mod-

ify the tumour site to increase the efficacy of effector

T-cell trafficking.

A number of groups have engineered tumours to

express chemokines that are known to attract effector T

cells. For example, modification of tumours to express

CCL3 and CCL20 has generated effective antitumour

immune responses.57–59,77,78,80 However, these chemokines

are pleotropic and their receptors are also expressed on

other critical cells, in this case immature dendritic cells,

which were the intended target of the therapies. Thus,

few experiments have assessed the effect of modified

tumours specifically on the effector-cell stage of the anti-

tumour immune response. Emigration of effector cells to

the tumour site is dependent on the presence of IFN-c,167

which causes local expression of chemokines capable of

attracting further effector cells.40,168 Adoptively trans-

ferred effector cells require such chemokine-mediated sig-

nals in order to generate antitumour immune responses,

as treatment of such cells with pertussis toxin prevented

systemic therapy.169 This observation has implications for

therapy, as intratumoral injection of adenovirus expres-

sing the chemokine CXCL10, the receptor for which is

found on activated T cells, synergistically enhanced the

efficacy of adoptive T-cell therapy.170 Similarly, intra-

tumoral injection of adenovirus expressing the T-cell-

responsive chemokine XCL1 also synergistically enhanced

the efficacy of adoptive T-cell therapy.171 In addition, we

have demonstrated that expression of CCL3 in tumours

significantly enhances antitumour responses when com-

bined with the adoptive transfer of activated T cells (M. J.

Gough et al., submitted). We hypothesize that along with

intratumoral therapies that efficiently prime antitumour

T-cell responses, strategies should be incorporated to

identify the tumour site for effector cell trafficking, and

that the combination will greatly improve their efficacy of

intratumoral immunotherapy.

Co-ordination of an effective intratumoral
immunotherapy

Many of the strategies advocated above to attract imma-

ture dendritic cells to the tumour site, and to mature the

dendritic cells at the tumour site, would also attract any

effector cells generated back to the tumour. Thus, the

apparently pleotropic effects of chemokines and the com-

mon features of trafficking mechanisms, may underlie

organization and cohesions in immune responses. For this

reason it is likely that modification of the tumour site

is critical for the initiation, execution and promotion of

effective immune responses. Examining the mechanics of

effective immune responses, and taking into account the

results from current immunotherapies applied in animal

tumour models and human clinical trials, does provide

information for further research. Recruitment or provi-

sion of the appropriate APCs, and their loading with

tumour antigen, is a critical target of therapies and thera-

peutic strategies. Comparatively neglected are strategies

that target the effector arm of the immune response to

the tumour site. Clearly, the generation of sufficient effec-

tor cells is a basic requirement for subsequent tumour

elimination. Yet, as discussed above, the generation of

large quantities of effector cells, as determined by adop-

tively transferred in vitro-generated cells, or in vivo vac-

cination procedures, does not necessarily result in tumour

elimination. We hypothesize that performing the vaccin-

ation procedure within the tumour site will increase the

efficacy of the antitumour therapy by simultaneously

attracting any effectors generated to the site. Moreover,
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we hypothesize that designing therapeutic strategies which

utilize antigens present endogenously within tumour cells,

through the attraction of immature dendritic cells and

immunogenic tumour cell death, will provide site-targeted

therapeutic immunity.

Nevertheless, difficulties will probably persist. The evo-

lution of immune evasion during tumorigenesis compli-

cates a number of these processes. Cytokines such as

TGF-b and IL-10, within the tumour, limit dendritic cell

maturation along with effector T-cell generation and

function. Moreover, immune responses seem designed to

be short-lived. Chronic immune activation seen in dis-

eases such as rheumatoid arthritis is the result of ongo-

ing responses that do not occur in tumour tissues. How

these environments differ may again relate to the

immunosuppressive cytokine environment, but sustaining

a response will be critical to long-term tumour elimin-

ation by immunotherapies. Finally, access to the tumour

site will be critical. We have provided an example, in

this review, of melanoma, a tumour type with typically

accessible primary tumours. However, distant metastasis

in this tumour type will remain a difficult target for

location-dependent therapies. Systemic delivery approa-

ches will be required to reach these distant sites,

and may yet be found in the developing field of gene

therapy.

We have summarized tumour immunotherapies that

target the tumour site and target the key features of opti-

mal immune responses. We hypothesize that co-ordina-

tion of an effective immune response within tumours will

provide tumour responses superior to those generated via

ex vivo or distant vaccination strategies.
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