
Antithetical effects of hemicellulase-treated Agaricus blazei
on the maturation of murine bone-marrow-derived dendritic cells

Introduction

Agaricus blazei Murill is a mushroom native to Brazil that

is consumed as food for its nutritional and medicinal

properties.1,2 There have been a number of studies

regarding its antitumour,3–10 antimutagenic,11–15 anti-

microbial16 and immunomodulatory17–20 activities. It has

been suggested that this basidiomycete might affect the

function of some immunocompetent cells21–23 but little is

known about its effects on dendritic cells (DCs). DCs play

a critical role in innate and adaptive immunity. They have

the ability to recognize a variety of microbial pathogens

through a limited repertoire of surface molecules, such as

Toll-like receptors (TLRs), as the first line of defence24

and are also the most potent antigen-presenting cells

known to prime naı̈ve T cells.25 Exposure to pathogens,

cytokine stimulation [e.g. tumour necrosis factor (TNF-a)

or interleukin-1b (IL-1b)], and CD40–CD40 ligand

interactions activate DCs.26,27 The activation of DCs is

termed ‘maturation’, in which DCs undergo morphologi-

cal and functional changes. Mature DCs have high levels

of surface expression of costimulatory molecules and

major histocompatibility complex (MHC) antigens for

efficient T-cell activation.28 In addition, they are able to

release large amounts of inflammatory mediators, such as

TNF-a or IL-12, which are involved in subsequent

immune responses.29,30 IL-12 is a T helper type 1 (Th1)-

promoting cytokine and stimulates cell-mediated immu-

nity;31 TNF-a plays a pivotal role in host defence.32,33

However, these molecules are also likely to be associated

with the pathogenesis of autoimmune diseases.34–37

The innate immune system responds to the constitu-

ents of microbial pathogens (cell wall components and

nucleic acids, etc.) as ‘danger signals’. Recent studies have
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Summary

We report the effects of hemicellulase-treated Agaricus blazei (ABH) on

the maturation of bone-marrow-derived dendritic cells (BMDCs). ABH

activated immature BMDCs, inducing up-regulation of surface molecules,

such as CD40, CD80 and major histocompatibility complex class I anti-

gens, as well as inducing allogeneic T-cell proliferation and T helper type

1 cell development. However, unlike lipopolysaccharide (LPS), ABH did

not stimulate the BMDCs to produce proinflammatory cytokines, such as

interleukin-12 (IL-12) p40, tumour necrosis factor-a, or IL-1b. In addi-

tion, ABH suppressed LPS-induced DC responses. Pretreatment of DCs

with ABH markedly reduced the levels of LPS-induced cytokine secretion,

while only slightly decreasing up-regulation of the surface molecules

involved in maturation. ABH also had a significant impact on peptido-

glycan-induced or CpG oligodeoxynucleotide-induced IL-12p40 produc-

tion in DCs. The inhibition of LPS-induced responses was not associated

with a cytotoxic effect of ABH nor with an anti-inflammatory effect of

IL-10. However, ABH decreased NF-jB-induced reporter gene expression

in LPS-stimulated J774.1 cells. Interestingly, DCs preincubated with ABH

and then stimulated with LPS augmented T helper type 1 responses in

culture with allogeneic T cells as compared to LPS-stimulated but

non-ABH-pretreated DCs. These observations suggest that ABH regulates

DC-mediated responses.

Keywords: dendritic cells; cytokines/interleukins; co-stimulation/costimu-

latory molecules; fungi
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demonstrated that it also recognizes fungal components

(reviewed in ref. 38). Although opportunistic fungal infec-

tion often becomes a serious problem in compromised

hosts, few fungi are professional pathogens. This raises

the question of whether non-pathogenic fungi, including

edible mushrooms, also serve as ‘danger signals’ in

healthy individuals and trigger unnecessary responses by

the host. Therefore, we investigated the effects of A. blazei

on DC maturation. It has been difficult to abstract an

essence from A. blazei because of its low aqueous solubil-

ity. Therefore, the A. blazei used here was digested with

hemicellulase to achieve solubility in water. Hemicellu-

lase-treated A. blazei (ABH) activated DCs, promoting

their maturation, but the activation was quite different

from bacterially induced DC maturation. ABH did not

stimulate DCs to produce proinflammatory cytokines.

Furthermore, ABH inhibited mature DC-mediated

responses; it strongly suppressed the production of cyto-

kines, particularly IL-12p40, and slightly down-regulated

the expression of costimulatory molecules and MHC anti-

gens in lipopolysaccharide (LPS)-treated DCs. However,

ABH-pretreated DCs enhanced Th1 responses in cultures

with allogeneic T cells. Our results indicate that ABH has

both stimulatory and inhibitory effects on DC matur-

ation. It activates DCs but might inhibit unnecessary or

excessive responses of DCs to ABH itself.

Materials and methods

Mice

BALB/c and C57BL/6 mice were purchased from Charles

River Japan, Inc. (Yokohama, Japan). C3H/HeN and

C3H/HeJ mice were purchased from Japan SLC, Inc.

(Hamamatsu, Japan). Experiments were carried out in

accordance with the Guide for Animal Experimentation,

University of Yamanashi.

Hemicellulase-treated Agaricus blazei

Hemicellulase-treated A. blazei (AB fraction H, ABH) is the

source material of the commercial product ‘Agaricus blazei

practical compound (ABPC�)’ supplied by Japan Applied

Microbiology Research Institute Ltd. (Yamanashi, Japan).

Mycelia of A. blazei Murill were digested with 0�1% hemi-

cellulase for 1 hr. After heat-inactivation of the enzyme, the

filtrate of the degradation product was lyophilized. ABH

comprises 63�3% carbohydrates, 30�9% proteins, 0�3%

lipids and other minor components. The freeze-dried sam-

ples were dissolved in distilled water at a concentration of

10% (w/v), and diluted with culture medium at final con-

centrations of 0�001–0�1%. The samples were examined for

endotoxin by a Limulus amoebocyte lysate assay (Seikagaku

Corp., Tokyo, Japan). The endotoxin contents of samples

used here were less than 0�02 EU per 1 mg of sample.

Reagents

The following reagents were purchased from Sigma-Aldrich

(St Louis, MO): LPS (from Escherichia coli O111:B4), pepti-

doglycan (PGN, from Staphylococcus aureus), 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide

(MTT), polymyxin B and a-methyl d-mannoside. Fluoresc-

ein-conjugated ovalbumin (OVA) was obtained from

Molecular Probes, Inc. (Eugene, OR). Curdlan, a linear

(1fi3)-b-d glucan, was obtained from Wako Pure Chem-

ical Industries, Ltd. (Osaka, Japan). CpG DNA was syn-

thesized by Sigma Genosys (Ishikari, Japan). The DNA

sequence was 50-TGACTGTGAACGTTCGAGATGA-30.39

Bone marrow-derived dendritic cells

Bone marrow-derived dendritic cells (BMDCs) were gen-

erated as described previously.40 Briefly, BM cells were

obtained from the tibiae and femurs of mice and seeded

into bacteriological Petri dishes (InaOptica Co., Ltd,

Osaka, Japan) at 2 · 106 cells/dish in 10 ml RPMI-1640

medium supplemented with 10% heat-inactivated fetal

bovine serum (HyClone, Logan, UT), 2 mm l-glutamine,

50 lm 2-mercaptoethanol, and 20 ng/ml murine granulo-

cyte–macrophage colony-stimulating factor (GM-CSF;

PeproTech EC Ltd, London, UK). On day 3, another

10 ml culture medium containing 20 ng/ml GM-CSF was

added to each dish. On day 6, half of the culture was col-

lected and centrifuged. The cell pellet was resuspended

in 10 ml fresh culture medium containing 20 ng/ml

GM-CSF and returned to the original dishes. On day 9,

non-adherent cells were harvested and cultured in the

presence or absence of various doses of test substances.

After 24 hr, non-adherent cells were used for fluores-

cence-activated cell sorter (FACS) analyses, T-cell activa-

tion, MTT assay and RNA isolation as described below.

Supernatants from cultures with 4 · 105 DCs in 24-well

plates (BD Labware, Franklin Lakes, NJ) were collected for

cytokine and prostaglandin E2 (PGE2) measurements. In

one experiment, DCs were preincubated with 100 lg/ml

anti-CD11b (Clone M1/70, Chemicon International,

Temecula, CA) or 100 mm a-methyl d-mannoside.

FACS analyses

BMDCs (5 · 105) were washed and resuspended in phos-

phate-buffered saline. After blocking Fc receptors on the

cell surface with Fc BlockTM (PharMingen, San Diego,

CA), the cells were stained for 30 min on ice with satur-

ating amounts of antibodies. As a control, isotype-matched

antibodis with irrelevant specificity were used. Cells were

washed twice and analysed using FACSCaliburTM and

CELLQuestTM software (BD Biosciences, San Jose, CA).

The following antibodies were used in this study (all pur-

chased from PharMingen): Fluorescein isothiocyanate
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(FITC)- or phycoerythrin (PE)-conjugated anti-CD11c

(clone HL3), anti-CD40 (clone 3/23), anti-CD80 (clone

16-10A1), anti-CD86 (clone GL1), anti-H-2Kd (clone

SF1-1.1), and anti-I-A/I-E (clone M5/114.15.2). For the

uptake of OVA, BMDCs (5 · 105) were pulsed with fluo-

rescein-conjugated OVA (100 lg/ml) for 1 hr at either 4�
or 37�. Uptake was stopped by washing the cells with

ice-cold PBS, followed by staining with PE-conjugated

anti-CD11c on ice. The fluorescent signals of DCs were

measured by FACS. The value remaining after deducting

the mean fluorescence at 4� from that at 37� was divided

by the mean fluorescence at 4�. This calculated value was

defined as the uptake index.

Allogeneic T-cell activation

Spleen cells were obtained from C57BL/6 mice and incu-

bated with the following antibodies (all purchased from

PharMingen): anti-Ly-6G (clone RB6-8C5), anti-Ly-76

(clone TER-119), anti-B220 (clone RA3-6B2), and anti-

I-A/I-E (clone M5/114.15.2). After washing twice, the cells

were incubated with bead-coupled secondary antibody

(Dynal, Oslo, Norway). CD3+ T cells (H-2b) were enriched

from these cells by magnetic negative depletion according

to the manufacturer’s instructions (> 90% CD3+ T cells).

Triplicate cultures of 2 · 105 enriched T cells were cul-

tured in round-bottomed 96-well plates (BD Labware)

with titrated numbers of BMDCs (H-2d), which had been

cultivated under various conditions for 24 hr, washed and

irradiated (15 Gy). After a 3-day incubation, the cultures

were pulsed with 1 lCi/well [3H]thymidine (Amersham

Biosciences, Piscataway, NJ) for the final 16 hr. Incorpor-

ation of radioactivity was determined using a microplate

scintillation counter (Packard, Meriden, CT). For meas-

urement of cytokines, 4 · 106 enriched T cells were seeded

into 24-well plates with 4 · 105 BMDCs. After 3 days, the

supernatants were harvested and used for enzyme-linked

immunosorbent assay (ELISA).

Determination of cytokines and PGE2

Culture supernatants were examined by ELISA for

IL-12p40, TNF-a, IL-1b (BD Biosciences), interferon-c
(IFN-c), IL-4, IL-10 (BioSource International, Inc.,

Camarillo, CA), and PGE2 (R & D Systems Inc., Minnea-

polis, MN). The limits of detection were 10, 5, 10, 1, 5,

13 and 8 pg/ml, respectively. Assays were performed

according to the manufacturers’ instructions.

RNA isolation and reverse transcription-polymerase
chain reaction (RT-PCR)

Total RNA was isolated from DCs with TRIzol� Reagent

(Invitrogen Corp., Carlsbad, CA) according to the manu-

facturer’s instructions. Aliquots of 1 lg total RNA were

reverse transcribed into cDNA, and the RT-generated

DNA was amplified by PCR for IL-12p40 and b-actin

using a ThermoScriptTM RT-PCR System (Invitrogen

Corp.). Reverse transcription-untreated RNA samples

were also used to detect samples laced with genomic

DNA. The primers used were as follows: IL-12p40 sense,

50-CCCATTCCTACTTCTCCCTCAA-30 and antisense,

50-GAGGAACGCACCTTTCTGGTTA-30 (designed using

Primer ExpressTM software from Applied Biosystems);

b-actin sense, 50-ACCCACACTGTGCCCATCTA-30 and

antisense, 50-CGGAACCGCTCATTGCC-30.41 The expec-

ted sizes of PCR products were 100 base pairs (bp) for

IL-12p40 and 289 bp for b-actin. Thermal cycling profiles

consisted of preincubation at 94� for 2 min followed by

25 cycles (IL-12p40) or 20 cycles (b-actin) of 94� for

1 min, 50� for 1 min, and 72� for 1 min. The PCR prod-

ucts were electrophoresed in 1�5% agarose gels and visual-

ized by ethidium bromide staining.

NF-jB reporter assay

Murine macrophage J774.1 cells were supplied by the Cell

Resource Center for Biochemical Research, Institute of

Development, Aging and Cancer, Tohoku University

(Sendai, Japan). The cells were seeded into 100-mm

dishes at 2 · 106 cells/dish 2 days before transfection.

The cells were then transfected with a plasmid containing

four copies of the NF-jB consensus sequence fused to a

TATA-like promoter and secreted alkaline phosphatase

(SEAP) gene, pNFjB-SEAP (BD Biosciences) in the pres-

ence of PolyFect� transfection reagent (QIAGEN GmbH,

Hilden, Germany). After 8 hr, the cells were harvested,

washed once, and cultured with or without ABH and LPS

in 24-well plates at 5 · 105 cells/well for 12 hr. The cul-

ture supernatants were then heat-inactivated and SEAP

levels were examined using a chemiluminescent detection

kit (Roche Diagnostics GmbH, Mannheim, Germany).

The light signals were measured using a Luminescencer

JNR (ATTO Corp., Tokyo, Japan).

Cell viability

DCs (2 · 105/ml) or J774.1 cells (5 · 105/ml) were cul-

tured in 96-well plates in a final volume of 200 ll. After

overnight culture, 20 ll of MTT (5 mg/ml) was added,

followed by a further 4-hr incubation. After removing

100 ll of the supernatant from each well, the formazan

formed in the cells was dissolved by addition of 100 ll of

acidic isopropanol to each well. The optical density was

measured at 570 nm.

Statistical analyses

Statistical analyses of data were performed by analysis of

variance (anova) followed by Newman–Keuls test.
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Results

ABH induced up-regulation of surface molecules
on BMDCs

DCs used in this study were generated by culturing bone

marrow precursors in the presence of GM-CSF for

10 days. Non-adherent cells were harvested from the cul-

tures and stained with antibodies against the surface mol-

ecules involved in the maturation of DCs and with the

appropriate isotype controls. FACS analysis showed that

> 80% of these cells were CD11c+. LPS or TNF-a induced

up-regulation of costimulatory molecules (CD40, CD80

and CD86) and MHC antigens (H-2Kd and I-Ad/I-Ed) on

the cells, that is, generated fully mature DCs (data not

shown). We used BMDCs generated in vitro to investigate

the effects of ABH on DC maturation. The maturation of

DCs was characterized by up-regulation of costimulatory

molecules and MHC antigens, cytokine production, and

loss of the capability to capture antigens. Therefore,

instead of LPS and TNF-a, ABH was added to the cul-

tures at final concentrations of 0�001–0�1% for the last

24 hr. The mean fluorescence intensities (MFIs) of CD40,

CD80 and H-2Kd staining on CD11c+ DCs were increased

in an ABH dose-dependent manner (Fig. 1a). When cul-

tured in the presence of 0�1% ABH (optimal stimulation),

they increased by 3�8-, 2�5- and 2�6-fold, respectively, as

compared to medium-only controls. However, they were

lower than those of DCs with optimal LPS stimulation

(1 lg/ml). The MFIs of these molecules on LPS-treated

DCs were 17�7-, 13�3- and 6�5-fold, respectively, of med-

ium-only control values (Fig. 1b). Inactivated hemicellu-

lase without A. blazei had little influence on CD40

expression of DCs at concentrations of 0�001–0�1% (0�9–

1�3-fold that of medium-only control).

ABH-mediated DC maturation is not the result
of endotoxin contamination of ABH preparation

The maximum endotoxin levels of cultures containing

ABH were less than 0�02 EU/ml (equivalent to 8 pg/ml

LPS) in the present study. To eliminate the possibility

that the up-regulation of surface molecules on ABH-trea-

ted DCs might have been caused by endotoxin contamin-

ation, test substances were treated with polymyxin B, an

inhibitor of LPS, 1 hr before addition to DC cultures

(Fig. 2a). Pretreatment of LPS (30 ng/ml) with polymyxin

B (0�5 lg/ml) significantly decreased LPS-induced up-

regulation of CD40, as a representative marker for DC

maturation, on DCs (1�8-fold that of medium only con-

trol), and LPS (30 ng/ml) treated previously with poly-

myxin B (5 lg/ml) induced no maturation of DCs. In

contrast, polymyxin B did not inhibit 0�1% ABH-medi-

ated up-regulation of CD40 (2�7-, 2�9- and 2�7-fold at

polymyxin B concentrations of 0, 0�5 and 5 lg/ml,

respectively). Polymyxin B had no effect on DC matur-

ation by itself, because CD40 expression on untreated or

TNF-a-treated DCs remained the same regardless of
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Figure 1. Effects of ABH on surface molecule expression on DCs. (a) BMDCs were prepared from BALB/c mice and treated with or without

0�001–0�1% ABH for the last 24 hr. FACS analyses determined the expression of CD40, CD80 and H-2Kd on CD11c+ DCs. Data show MFIs of

surface molecule staining relative to medium-only controls (set as 100%). Data are means ± SD of five separate experiments. MFI values of

CD40, CD80 and H-2Kd on untreated DCs were 65, 249 and 395, respectively. **P < 0�01, compared with Medium (untreated DCs). (b) BMDCs

were untreated (open histogram, black line), or were treated with 1 lg/ml LPS (closed histogram), or 0�1% ABH (open histogram, grey line).

Data are representative of five separate experiments.
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polymyxin B treatment (data not shown). Furthermore,

BMDCs generated from C3H/HeN and C3H/HeJ mice,

which are sensitive and hyposensitive to LPS, respectively,

were cultivated with LPS or ABH for 24 hr, and the

expression of CD40 on the DCs was compared (Fig. 2b).

DCs from C3H/HeN were fully matured by LPS stimula-

tion (3 ng/ml), whereas those from C3H/HeJ showed

reduced responsiveness to the same LPS stimulation.

However, there was no difference in the up-regulation of

CD40 between ABH-treated DCs generated from C3H/

HeN and C3H/HeJ (3�3- and 3�4-fold, respectively, as

compared to controls).

ABH-treated DCs enhanced allogeneic T-cell
proliferation and Th1-cell development

DCs that had been treated with 0�001–0�1% ABH for

24 hr and washed were cultured with allogeneic T cells

for a further 3 days, and T-cell proliferation and cytokine

levels in the culture supernatants were measured. DCs

that had received no treatment were also cultured with

allogeneic T cells. T cells showed no activation without

DCs. Consistent with the up-regulation of surface mole-

cules on ABH-treated DCs, the DCs activated allogeneic

T cells in an ABH dose-dependent manner (Fig. 3a,b). In

addition, culture of T cells with 0�1% ABH-treated DCs

increased IFN-c (Fig. 3c) but not IL-4 (data not shown)

release as compared with the culture of T cells with
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(a,b) BMDCs were incubated with or without 0�001–0�1% ABH for

24 hr. DCs were harvested, washed and irradiated. Purified allogeneic

T cells were cultured with titrated numbers of untreated (a) or

ABH-treated (b) DCs for 3 days. The cultures were pulsed with

[3H]thymidine for the final 16 hr, and incorporation of radioactivity

was determined. Data are the mean c.p.m. ± SD of triplicate cul-

tures. (a) and (b) show the results of an experiment carried out at

the same time. Similar results were obtained in three separate experi-

ments. *P < 0�05 and **P < 0�01 compared with T cells + untreated

DCs. (c) IFN-c release of T-cell cultures with DCs. Purified allo-

geneic T cells were cultured alone (T cells only) or with untreated
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untreated DCs. ABH did not stimulate IFN-c production

in DC-only cultures (data not shown).

ABH-treated DCs decreased antigen uptake

DCs lose the capability to capture antigens with maturity.

To further confirm maturation of ABH-treated DCs, they

were incubated with FITC-OVA at either 4� or 37� for

1 hr (Fig. 4). DCs that had received no treatment showed

uptake of OVA at 37�, while those treated with 1 lg/ml

LPS showed little uptake of OVA at 37�. DCs treated with

0�1% ABH also showed considerably decreased uptake of

OVA, but a subpopulation still possessed a high capacity

to capture antigen.

ABH did not stimulate DCs to produce
proinflammatory cytokines

After incubation of DCs with LPS or ABH for 24 hr, the

culture supernatants were examined for cytokine levels.

Curiously, although LPS stimulation (1 lg/ml) markedly

increased the release of IL-12p40, TNF-a and IL-1b, ABH

had no effect, even at a concentration of 0�1% (Fig. 5).

IL-10, a potent inhibitor of these cytokines, was also

undetectable in DC cultures treated with 0�001–0�1%

ABH (data not shown).

ABH-pretreated DCs decreased LPS-induced
cytokine secretion

To examine whether ABH has inhibitory effects on DC

maturation, DCs were cultured with a combination of

LPS and ABH. To clarify the effects of ABH, DCs were

stimulated with a low dose of LPS (1 ng/ml). DCs were

pretreated with or without 0�1% ABH for 1 hr and then

stimulated with 1 ng/ml LPS for a further 24 hr. Culture

supernatants were examined for cytokine levels. As the

cytokine levels varied from experiment to experiment,

cytokine levels in LPS-stimulated DC cultures that had not

received ABH pretreatment were set as 100%. As shown

in Fig. 6, pretreatment of DCs with 0�1% ABH reduced

LPS-induced IL-12p40, TNF-a and IL-1b secretion to 4�7,
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a reference (dotted line) Data are representa-

tive of three separate experiments. (b) Uptake

index was defined as described in the Materials

and methods section. Data are means ± SD of

three separate experiments. **P < 0�01, com-

pared with Medium (untreated DCs).
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54�3 and 29�9%, respectively. In contrast to the case

of ABH, curdlan, a linear, (1fi3)-b-d-glucan, did not

show inhibition of LPS-induced IL-12p40 release (data

not shown). As ABH had a much greater impact on LPS-

induced IL-12p40 production, further examinations were

carried out with regard to IL-12p40 inhibition. DCs were

pretreated with 0�001–0�1% ABH for 1 hr, followed by

the addition of 1 ng/ml LPS (abbreviated to ABH/LPS).

Pretreatment of DCs with ABH inhibited LPS-induced

IL-12p40 production in an ABH dose-dependent manner

(Fig. 7a). However, this inhibition was not the result of a

cytotoxic effect of ABH, as ABH showed no impairment

of cell viability under the same conditions (Fig. 7b). IL-10

was undetectable from cultures with ABH/LPS-treated

DCs (data not shown). Inactivated hemicellulase without

A. blazei also had no effect on LPS-induced IL-12p40

release (data not shown). On the other hand, DCs that

had been stimulated with 1 ng/ml LPS for 1 hr followed

by the addition of 0�1% ABH (abbreviated to LPS/ABH)

released IL-12p40, as observed with control DCs. The

effects of ABH/LPS and LPS/ABH on IL-12p40 release

were also confirmed at the transcriptional level (Fig. 7c).

ABH/LPS but not LPS/ABH inhibited IL-12p40 mRNA

expression. This inhibition was not specific for LPS-medi-

ated responses as it was also observed in PGN- or CpG

DNA-induced IL-12p40 release (Fig. 7d).
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ABH-pretreated macrophages reduced LPS-induced
NF-jB activity

Next, we investigated NF-jB activity in ABH-treated

J774.1 cells. As DCs were seriously damaged during trans-

fection with a plasmid containing the NF-jB-driven SEAP

reporter gene, we used a murine macrophage cell line

instead of DCs. As was the case with DCs, LPS induced

IL-12p40 production in J774.1 cells. In addition, ABH

inhibited LPS-induced IL-12p40 production (Fig. 8a), but

did not impair the viability of J774.1 cells (data not

shown). Consequently, the cells were treated with or

without ABH, LPS, or ABH/LPS after transfection, and

SEAP levels in the culture supernatants were determined

(Fig. 8b). SEAP activity in LPS-stimulated cell culture was

set at 100%. ABH-treated cells expressed SEAP at higher

levels than untreated cells (23�2% versus 11�0%, respect-

ively). In contrast, ABH/LPS-treated cells showed a reduc-

tion of SEAP expression to 53�4% of that in control

cultures.

ABH-pretreated DCs slightly inhibited LPS-induced
up-regulation of surface molecules and also
suppressed allogeneic T-cell proliferation but not
Th1-cell development

To further examine the inhibitory effects of ABH on DC

maturation, the expression of surface molecules was

investigated on DCs cultivated with ABH and LPS for

24 hr. As shown in Fig. 9(a), CD40 expression on ABH/

LPS-treated DCs was down-regulated at ABH concentra-

tions of 0�001–0�1%. However, ABH had a very slight

impact on the expression of surface molecules as com-

pared to IL-12p40 production, as 0�1% ABH/LPS-treated

DCs showed decreases in CD40, CD80, CD86, H-2Kd and

I-A/I-E expression to only 86, 89, 85, 96 and 96%,

respectively, of those of LPS-treated DCs. ABH/LPS-

treated DCs expressed these molecules at far higher levels

than untreated DCs or those treated with 0�1% ABH. On

the other hand, LPS/ABH-treated DCs expressed CD40

similarly to those treated with LPS. ABH/LPS-treated DCs

suppressed allogeneic T-cell proliferation, and LPS/ABH

showed little impairment of this proliferation (Fig. 9b,c).

However, it was interesting to note that culture of T cells

with ABH/LPS-treated DCs released larger amounts of

IFN-c than culture with LPS- or LPS/ABH-treated DCs

(Fig. 9d). ABH/LPS did not stimulate IFN-c production

in DC-only cultures (data not shown).

PGE2 and complement receptor 3 (CR3, CD11b/CD18)
were not involved in the inhibitory effects of ABH on
LPS-induced IL-12p40 production

We attempted to find mediators that play important roles

in the effects of ABH on LPS-induced IL-12p40 produc-

tion. First, we focused on PGE2, which has been shown to

inhibit IL-12 production in LPS-stimulated DCs.42,43 The

supernatants of untreated cultures and of those treated

with 0�1% ABH, 1 ng/ml LPS, or ABH/LPS were exam-

ined for endogenous PGE2 (Fig. 10a). In addition, culture

medium containing 0�1% ABH was also examined for

exogenous PGE2. DCs that had received no treatment

released small amounts of PGE2 (mean of three separate

experiments; 28�6 pg/ml). ABH-treated DCs released

slightly larger amounts of PGE2 than untreated controls,

while LPS-treated DCs produced large amounts of PGE2

(mean of three separate experiments; 204�6 pg/ml). How-

ever, pretreatment of DCs with ABH reduced LPS-

induced PGE2 production. PGE2 was not detected in
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Figure 8. Effects of ABH on IL-12p40 secretion and NF-jB activity

in a macrophage cell line. (a) J774.1 cells were pretreated with or

without 0�1% ABH for 1 hr, and then stimulated with the indicated

concentrations of LPS for 24 hr. IL-12p40 levels in culture super-

natants were then determined. Data are means ± SD of two separate

experiments. **P < 0�01, compared with non-ABH-pretreated cells

(ABH-) at each concentration of LPS. (b) J774.1 cells were trans-

fected with a plasmid containing the NF-jB-driven SEAP reporter

gene. The cells were pretreated with or without 0�1% ABH for 1 hr,

and then stimulated with or without 100 ng/ml LPS for 12 hr. SEAP

levels in culture supernatants were then determined. SEAP activity in

LPS-stimulated cell culture was set as 100%. Data are means ± SD of

three separate experiments. The light signal was 5427 ± 918 relative

light units (mean ± SD) in LPS-stimulated cell culture supernatants.

**P < 0�01, compared with LPS (LPS-treated J774.1 cells).
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culture medium containing ABH. Next, DCs were pre-

incubated with an antibody specific for the I-domain of

CD11b or a-methyl d-mannoside (aMM), which are

known to inhibit the binding of soluble zymosan to the

lectin domain of macrophage CR3,44 or control immuno-

globulin G, followed by treatment with LPS or ABH/LPS

for 24 hr. Culture supernatants were examined for

IL-12p40 levels (Fig. 10b). Although anti-CD11b mono-

clonal antibody suppressed LPS-induced IL-12p40 secre-

tion to some extent, as described previously,45 aMM did

not show such suppression. The inhibitory effects of ABH

on IL-12p40 secretion remained intact in ABH/LPS-trea-

ted DC cultures with anti-CD11b or aMM.

Discussion

We investigated the effects of ABH on DCs in the present

study. DCs are key players in innate and adaptive immu-

nity. On the other hand, the ABH used here consists

mainly of polysaccharides. There have been many studies

of fungal polysaccharides that interact with DCs (reviewed

in ref. 46). In particular, pathogenic fungal polysaccha-

rides (and their derivatives) are thought to serve as

pathogen-associated molecular patterns (PAMPs) for

recognition by the host innate immune system. For exam-

ple, cell wall polysaccharides of Candida albicans are

recognized by TLRs and induce host immune

responses.47–50 Kikuchi et al. demonstrated that soluble

b-glucan derived from Candida induced maturation of

BMDC and IL-12 production.51 We are interested in whe-

ther edible mushrooms belonging to the non-pathogenic

fungi are also involved in DC maturation. If they also

activate DCs as strongly as C. albicans, they may be

unsuitable for use in humans because of safety concerns.

However, A. blazei has been eaten for many years because

of its beneficial medical effects. Based on our observa-

tions, we assumed that it has a regulatory effect on the

immune system.

In the present study, ABH stimulated immature

BMDCs to up-regulate the surface molecules involved in

maturation. This activation of ABH-treated DCs resulted

in an increase of its capacity to induce proliferation of

allogeneic T cells and enhanced IFN-c responses in cul-

ture with T cells. However, the responses to optimal ABH

stimulus were far weaker than those to optimal LPS

stimulus. In addition, although DCs produced IL-12p40,
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TNF-a and IL-1b in response to LPS, they showed no

increases in release of these proinflammatory cytokines in

response to ABH. This indicated that ABH interacted

with DCs in a manner different to bacterial constituents,

such as LPS. Therefore, we considered two possibilities.

First, the mechanism by which ABH induces up-regula-

tion of the surface molecules may not be associated with

cytokine production. Second, ABH may have inhibitory

as well as stimulatory effects on DC maturation, and the

inhibitory effects may interrupt DC activation by the

stimulatory effects. If the second hypothesis is correct,

ABH may inhibit LPS-mediated responses as well as its

own stimulatory effects. To confirm this, DCs were cul-

tured with a combination of ABH and LPS. As expected,

DCs pretreated with ABH reduced LPS-induced cytokine

secretion and up-regulation of surface molecules on DCs.

However, the degrees of inhibition differed among the

responses. ABH strongly inhibited LPS-induced cytokine

production, in particular, that of IL-12p40, and this inhi-

bition was also observed in PGN- or CpG DNA-induced

IL-12p40 production, while ABH showed only slight inhi-

bition of LPS-induced up-regulation of costimulatory

molecules and MHC antigens on DCs. The DCs expressed

them at far higher levels than untreated DCs. Neither the

cytotoxic effect nor IL-10 was associated with these

effects. However, ABH was shown to reduce LPS-induced

NF-jB activity in a macrophage cell line. Strangely, ABH/

LPS-treated DCs augmented the Th1 response in culture

with allogeneic T cells. IL-12 is widely recognized as a

major inducer of Th1 cell development. Th1 cells charac-

teristically produce IFN-c.52 Kawakami et al. demonstra-

ted that Cryptococcus neoformans, a fungus that causes

opportunistic infection, suppressed macrophage IL-12p40

production, and that IL-10 was not involved in this sup-

pression.53 Several investigators have also reported the

suppression of macrophage IL-12 production by other

infectious pathogens.54,55 This suppression of IL-12 pro-

duction is considered to be a mechanism by which patho-

gens evade host defences, as the Th1 response plays a

critical role in the elimination of these pathogens from

the host.56–58 ABH may have a suppressive effect on the

Th1 response. However, it may also have other effects

that enhance it, as ABH treatment enhanced IFN-c release

in allogeneic mixed lymphocyte reaction. Our observa-

tions indicated that ABH induced weak maturation of

DCs but also strongly inhibited the DC response in pro-

inflammatory cytokine production. Although the physio-

logical relevance of these observations remains to be

determined, ABH resulted in enhancement of Th1-cell

development. This suggested that ABH might affect T-cell

differentiation without the involvement of proinflamma-

tory mediators. An acute inflammatory reaction must

not be caused by ingestion of edible mushrooms, unlike

infection by pathogens. The properties of ABH may be

advantageous in avoiding the inappropriate effects of

proinflammatory cytokines.

We attempted to find mediators involved in inhibition

of IL-12p40 production in ABH/LPS-treated DCs. Several

studies have shown that PGE2 has some effects on DC

maturation. While PGE2 promotes DC maturation in

concert with proinflammatory cytokines, such as TNF-a,

IL-1b and IL-6,42,59 it has been shown to inhibit the pro-

duction of TNF-a, IL-6 and IL-12 in LPS-stimulated

DCs.43,60,61 In addition, PGE2 is involved in DC migra-

tion and T-cell differentiation by DCs.62,63 As some of

these effects are similar to those of ABH, the culture
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or ABH/LPS were collected for PGE2 measurement. PGE2 levels

in untreated (Medium) or LPS-treated (LPS) DC cultures were

set as 100%. Data are means ± SD of three separate experiments.

Supernatants of untreated or LPS-treated DCs contained 28�6 ±

17�2 pg/ml, or 204�6 ± 91�2 pg/ml PGE2 (mean ± SD), respectively.

**P < 0�01, compared with Medium (untreated DCs); *P < 0�05,

compared with LPS (LPS-treated DCs). (b) BMDCs were preincubat-

ed with anti-CR3 (100 lg/ml), a-methyl d-mannoside (aMM,

100 mm), or control IgG, followed by treatment with 1 ng/ml LPS or

0�1% ABH/LPS for 24 hr. Culture supernatants were examined for

IL-12p40 levels. IL-12p40 levels in LPS-stimulated DC cultures with

control IgG set as 100%. Data are means ± SD of two separate experi-

ments. Supernatants of control DCs contained 22�8 ± 4�1 ng/ml

IL-12p40 (mean ± SD).
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supernatants were examined to determine whether DCs

overproduced PGE2 in response to ABH. However, ABH

also decreased LPS-induced PGE2 release similarly to that

of proinflammatory cytokines. This result suggested that

ABH/LPS-treated DCs did not release the large amounts

of PGE2 that inhibit LPS-induced IL-12p40 production.

Next, a previous study demonstrated that DCs reduced

the levels of mRNA and secretion of proinflammatory

cytokines, such as IL-1a, IL-1b, IL-6, IL-12p70 and TNF-a
after internalization of circulating apoptotic cells in per-

ipheral tissues.64 This inhibition was at least partially

mediated through iC3b–CR3 interaction, and was consid-

ered to contribute to induce/maintain tolerance to self-

antigens. Furthermore, Marth and Kelsall reported that

CR3 signalling regulated IL-12 production.45 CR3 is also

one of the receptors for b-glucans, which constitute a large

part of ABH-derived polysaccharides. Therefore, we prein-

cubated DCs with an antibody to CR3 or a-methylmanno-

side, inhibitors of the lectin domain of CR3. However, the

inhibitory effects of ABH on IL-12p40 remained intact

under these conditions.

As other cases of the regulation of proinflammatory

cytokine production by DCs, a recent study demonstrated

a novel function of complement C1q.65 C1q suppressed

the myeloid differentiation factor 88 (MyD88)-dependent

pathway, resulting in reduction of NF-jB activity, which

is responsible for TLR-mediated responses including pro-

inflammatory cytokine production. C1q showed strong

inhibition of IL-12p40 secretion and weak inhibition

of TNF-a secretion in LPS- or CpG DNA-stimulated

BMDCs. However, C1q did not suppress LPS-induced

up-regulation of costimulatory molecules (CD40, CD86)

in Myd88-deficient DCs, indicating that the inhibitory

effects of C1q may have little influence on the Myd88-

independent pathway in TLR-mediated signals. Although

we did not investigate TLR-signalling pathways in ABH-

treated DCs, except for NF-jB activity, the results of this

previous study and those reported here have some com-

mon features. In the present study, we hypothesized that

ABH might have both stimulatory and inhibitory effects

on DC maturation, and that these effects might interact

with each other. However, we only demonstrated inhibi-

tory effects of ABH against bacteria-mediated stimuli on

DC maturation, and the two independent effects were not

necessarily confirmed directly. Further studies to search

for the essential components in ABH and their mecha-

nisms of action are currently in progress.

In conclusion, ABH stimulated immature DCs to

up-regulate the expression of costimulatory molecules and

MHC antigen, but did not increase the production of

inflammation-inducible cytokines. ABH-pretreated DCs

inhibited some bacteria-mediated DC responses. However,

ABH-mediated DCs enhanced the Th1 response in allo-

geneic mixed lymphocyte reaction. The antithetical effects

of ABH may help to maintain immunological homeostasis.
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