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EpsE is a cytoplasmic component of the type II secretion

system in Vibrio cholerae. Through ATP hydrolysis and an

interaction with the cytoplasmic membrane protein EpsL,

EpsE supports secretion of cholera toxin across the outer

membrane. In this study, we have determined the effect of

the cytoplasmic domain of EpsL (cyto-EpsL) and purified

phospholipids on the ATPase activity of EpsE. Acidic

phospholipids, specifically cardiolipin, bound the copur-

ified EpsE/cyto-EpsL complex and stimulated its ATPase

activity 30–130-fold, whereas the activity of EpsE alone

was unaffected. Removal of the last 11 residues (residues

243–253) from cyto-EpsL prevented cardiolipin binding as

well as stimulation of the ATPase activity of EpsE. Further

mutagenesis of the C-terminal region of the EpsL cyto-

plasmic domain adjacent to the predicted transmembrane

helix suggested that this region participates in fine tuning

the interaction of EpsE with the cytoplasmic membrane

and influences the oligomerization state of EpsE thereby

stimulating its ATPase activity and promoting extracellu-

lar secretion in V. cholerae.
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Introduction

The type II secretion (T2S) system exports toxins and degra-

dative enzymes across the outer membrane of Gram-negative

bacteria (Filloux, 2004; Cianciotto, 2005; Johnson et al,

2006). Components of this system are proposed to form a

large multiprotein complex spanning the entire cell envelope.

This complex is comprised of 15 gene products, 12 of which

are required for translocation of specific substrates, including

cholera toxin and hemagglutinin protease, across the outer

membrane in Vibrio cholerae (Sandkvist et al, 1997). This

system contains pseudopilins (EpsG,-H,-I, -J, and -K) that

may form a pilus to extrude substrates into the extracellular

space via a pore in the outer membrane (EpsD) using a

mechanism analogous to a piston (Sandkvist, 2001; Filloux,

2004). Energy likely comes from EpsE, a cytoplasmic ATPase

required for secretion in V. cholerae (Sandkvist et al, 1995;

Camberg and Sandkvist, 2005). Based on its structural simi-

larity with the type IV secretion ATPase HP0525 from

Helicobacter pylori, EpsE has been proposed to function as

a hexameric assembly at the cytoplasmic face of the inner

membrane, even though it predominantly purifies as a mono-

meric protein (Sandkvist et al, 1995; Robien et al, 2003;

Savvides et al, 2003; Camberg and Sandkvist, 2005). A recent

study demonstrated that the EpsE homolog XpsE from

Xanthomonas campestris also purifies as a monomer, but

oligomerizes in the presence of the ATP analog AMP-PNP

(Shiue et al, 2006). Communication between EpsE and the

secretion complex likely occurs through the bitopic inner

membrane protein EpsL (Sandkvist et al, 1995; Ball et al,

1999; Possot et al, 2000; Py et al, 2001). The cytoplasmic

domain of EpsL is structurally similar to members of the actin

family, such as FtsA (Abendroth et al, 2004), and has been

cocrystallized with the 96 N-terminal residues of EpsE

(Abendroth et al, 2005). Additionally, EpsL binds to another

component in the inner membrane, EpsM, which also has

a single membrane-spanning domain (Michel et al, 1998;

Sandkvist et al, 1999). EpsE, -L, and M form a trimolecular

complex at the cytoplasmic membrane and may serve as a

base for the secretion apparatus to transduce energy across

the periplasmic compartment through protein contacts

or participate in assembly or functional regulation of the

pseudopilus.

Previously we characterized EpsE as a weak ATPase com-

parable to those of related ATPases, such as XpsE from

X. campestris, PilT from the type IV pilus system, and PilQ

from the thin pilus biogenesis system of plasmid RP4 (Sakai

et al, 2001; Herdendorf et al, 2002; Camberg and Sandkvist,

2005; Shiue et al, 2006). Surprisingly, EpsE(K270A), which

contains a mutation in the conserved lysine residue of the

nucleotide-binding motif, retained approximately 30% of the

wild-type activity leading us to suggest that conditions may

exist that result in oligomerization and/or accentuate the

difference in activity between wild-type and mutant proteins

(Camberg and Sandkvist, 2005).

Here, we have copurified EpsE with the cytoplasmic do-

main of EpsL (cyto-EpsL) to test whether the ATPase activity

of EpsE can be modulated by EpsL. A similar recent investi-

gation conducted with XpsE demonstrated that its weak

ATPase activity was stimulated two-fold by a fusion protein

containing the cytoplasmic domain of XpsL (Shiue et al,

2006). In addition to examining the role of cyto-EpsL on the

ATP-hydrolyzing activity of EpsE, we have also assessed the

role of membrane phospholipids on this activity and found
Received: 29 March 2006; accepted: 6 November 2006; published
online: 7 December 2006

*Corresponding author. Department of Microbiology and Immunology,
University of Michigan, 1150 West Medical Center Drive, Ann Arbor,
MI 48109, USA. Tel.: þ 1 734 764 3552; Fax: þ 1 734 764 3562;
E-mail: mariasan@umich.edu
4Present address: Laboratory of Molecular Biology, National Cancer
Institute, National Institutes of Health, 37 Convent Drive, Bethesda,
MD 20892, USA

The EMBO Journal (2007) 26, 19–27 | & 2007 European Molecular Biology Organization | All Rights Reserved 0261-4189/07

www.embojournal.org

&2007 European Molecular Biology Organization The EMBO Journal VOL 26 | NO 1 | 2007

 

EMBO
 

THE

EMBO
JOURNAL

THE

EMBO
JOURNAL

19



that the acidic phospholipids phosphatidylglycerol and

cardiolipin, together with cyto-EpsL, synergistically stimu-

lated both the oligomerization and intrinsic ATPase activity of

EpsE. Deletion and modification of residues at the C-terminus

of cyto-EpsL interfered with the cardiolipin-stimulated

ATPase activity of EpsE. The results suggest that the mem-

brane proximal region of the cytoplasmic domain of EpsL

may participate in fine tuning the interaction of EpsE with

phospholipids and thereby regulate its oligomerization and

ATPase activity.

Results

Stimulation of EpsE ATPase activity by acidic

phospholipids and the cytoplasmic domain of EpsL

We previously demonstrated that monomeric EpsE displayed

weak ATPase activity and proposed that conditions may exist

which result in oligomerization and/or stimulate this basal

rate of ATP hydrolysis, such as the addition of cofactor

proteins or membrane phospholipids (Camberg and

Sandkvist, 2005). We therefore examined the rate of ATP

hydrolysis both in the presence of purified membrane phos-

pholipids and the cytoplasmic domain of EpsL. Two forms of

the EpsL cytoplasmic domain, EpsL(1–253) and EpsL(1–242),

were histidine-tagged, coexpressed, and copurified with full-

length EpsE. EpsL(1–253) was truncated immediately before

the predicted transmembrane domain, which constitutes

residues 254–271. Initially constructed for crystallization

purposes (Abendroth et al, 2004), EpsL(1–242) was lacking

an additional 11 C-terminal residues but included the rela-

tively well-conserved residues L233 to F238. Residues up to

and including K241 and S242 were also included in this EpsL

construct in order to end with a hydrophilic C-terminus and

to decrease the probability of protein aggregation via solvent-

exposed hydrophobic patches. Both EpsE/EpsL(1–253) and

EpsE/EpsL(1–242) protein complexes were monomeric and

consisted of one molecule each of EpsE and truncated EpsL

as indicated by size exclusion chromatography (data not

shown). Copurification of EpsE with EpsL(1–253) yielded

a modest two-fold increase in basal ATPase activity when

compared with monomeric EpsE alone (Figure 1A). These

results are in close agreement with a recent report which also

described a two-fold increase in the ATPase activity of the

EpsE homolog XpsE in the presence of a fusion protein

containing the N-terminal 215 residues of XpsL (Shiue et al,

2006). In contrast, the shorter variant, EpsL(1–242), con-

ferred no increase in ATPase activity. The EpsE active site

mutant EpsE(K270A), which has three-fold lower ATPase

activity than wild-type EpsE (Camberg and Sandkvist,

2005), displayed no enhancement in activity upon copurifica-

tion with EpsL(1–253).

To test the effect of membrane phospholipids on the rate of

ATP hydrolysis, we added purified Escherichia coli-derived

phosphatidylglycerol to the ATP hydrolysis assay.

Phosphatidylglycerol was chosen because it, as well as

other acidic phospholipids, has been shown to activate

ATPases such as SecA and FliI (Lill et al, 1990; Auvray

et al, 2002). While no stimulatory effect with phosphatidyl-

glycerol was observed for wild-type EpsE alone or for EpsE/

EpsL(1–242) complex, a 30-fold increase in specific activity

was observed for EpsE/EpsL(1–253) complex when com-

pared to the no phospholipid reaction (Figure 1A)

(1831.5 nmol/min/mmol and 60.5 nmol/min/mmol, respec-

tively). As predicted, the K270A mutation in EpsE prevented

stimulation of ATP hydrolysis by phosphatidylglycerol in the

presence of EpsL(1–253).

Over a range of concentrations, phosphatidylglycerol

stimulated the activity of EpsE/EpsL(1–253) and appeared

to level off at a concentration of 125 mM (Figure 1B).

Cardiolipin, another negatively charged phospholipid, dis-

played a clear maximal activation of the hydrolysis reaction

at 62.5 mM, which reached 8075 nmol/min/mmol, a greater

than 130-fold increase over the no phospholipid reaction. In

contrast to phosphatidylglycerol and cardiolipin, the neutral

phospholipid phosphatidylethanolamine did not stimulate

the ATPase activity of EpsE/EpsL(1–253) (Figure 1B).

Activation occurs through direct binding of EpsE/

EpsL(1–253) complex to acidic phospholipids

Since the activity of EpsE/EpsL(1–253) was stimulated by

acidic phospholipids, we questioned whether EpsE/EpsL(1–

253) was directly binding to phospholipids. To test this, we

incubated purified EpsE/EpsL(1–253), EpsE/EpsL(1–242),

and EpsE with individual phospholipids in the presence of

ATP and MgCl2, then subjected the samples to centrifugation

to pellet the phospholipids and phospholipid-bound protein
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Figure 1 Acidic phospholipids stimulate the ATPase activity
of EpsE in the presence of cyto-EpsL (residues 1–253). (A) EpsE
ATP hydrolysis was examined in the absence or presence of cyto-
EpsL (residues 1–242 or 1–253), phosphatidylglycerol, ATP, and
MgCl2. Gray bars represent the ATPase activity for the no-phos-
pholipid reactions, black bars correspond to the ATPase activity
for the reactions containing phosphatidylglycerol. The mutant
EpsE(K270A) copurified with EpsL(1–253) was also analyzed in
this assay. (B) ATP hydrolysis by EpsE/EpsL(1–253) was tested in
the presence of increasing concentrations (31.25, 62.5, 125, and
250mM) of cardiolipin (open diamonds), phosphatidylglycerol
(solid triangles), and phosphatidylethanolamine (solid circles) in
the presence of ATP and MgCl2.
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and analyzed supernatants and pellets by SDS–PAGE. In the

presence of either phosphatidylglycerol or cardiolipin, EpsE/

EpsL(1–253) fractionated in the pellet with the phospho-

lipids, whereas it remained free in the supernatant in either

the absence of phospholipids or in the presence of the neutral

phosphatidylethanolamine (Figure 2A). This suggests that

acidic phospholipids are specifically binding to EpsE/

EpsL(1–253). While greater than 92% of EpsE/EpsL(1–253)

pelleted with the acidic phospholipid cardiolipin, EpsE/

EpsL(1–242) and EpsE alone demonstrated a considerably

smaller proportion of protein in the cardiolipin pellet (40

and 52%, respectively). Neither EpsE nor EpsE/EpsL(1–242)

bound to phosphatidylethanolamine (data not shown).

Interestingly, when EpsE and EpsE/EpsL(1–242) were in-

cubated with cardiolipin in the absence of ATP, binding of

both EpsE forms was seen (Figure 2B). This was in contrast

to the EpsE/EpsL(1–253), which fully bound to cardiolipin

either with or without ATP, and suggests that EpsE undergoes

a conformational change in response to ATP binding whether

it is alone or in complex with EpsL(1–242). We were also able

to demonstrate that EpsE in complex with EpsL(1–253) like-

wise appears to undergo a conformational change in response

to ATP in a subsequent experiment by altering the order of

addition of ATP and cardiolipin in the ATP hydrolysis assay.

We found that pre-incubation of EpsE/EpsL(1–253) with

cardiolipin before addition of ATP abolished the synergistic

stimulation of ATP hydrolysis, whereas addition of ATP

before cardiolipin retained the stimulated rate of ATP hydro-

lysis (Figure 2C), consistent with the activity described in

Figure 1B. In addition to showing that EpsE in complex with

EpsL(1–253) responds differently to cardiolipin in the ab-

sence and presence of nucleotide, these data also suggest that

EpsE/EpsL(1–253) must be in a nucleotide-bound form in

order to bind to phospholipids in a conformation compatible

with stimulated hydrolysis.

To further detect conformational differences between

EpsE/EpsL(1–253) and EpsE/EpsL(1–242) complexes in the

presence of ATP and cardiolipin, we compared the protease

sensitivity patterns of both protein complexes by SDS–PAGE

and immunoblotting following limited proteolysis with tryp-

sin (Figure 3). EpsE/EpsL(1–253) and EpsE/EpsL(1–242)

were incubated with cardiolipin and ATP, digested with

trypsin, then centrifuged to separate phospholipid-bound

protein from non-bound protein. The majority of EpsE/

EpsL(1–253) localized to the cardiolipin pellet supporting

the result described in Figure 2A. According to SDS–PAGE,

treatment with increasing amounts of trypsin degraded and

released EpsE from the phospholipid vesicles, whereas

EpsL(1–253) remained phospholipid bound and was consid-

erably resistant to proteolysis. As full-length EpsE was

becoming less visible in the pellet fractions, a 50 kDa band

accumulated in the supernatant fractions that was reactive to

anti-EpsE antibody. Although most EpsL(1–253) was pellet-

associated, the small fraction in the supernatant was sensitive

to proteolysis at high trypsin concentrations and cleaved into

a slightly smaller form. The majority of EpsE/EpsL(1–242)

was not localized to the phospholipid pellet as previously

shown in Figure 2A. Immunoblotting for EpsE showed both

the full-length protein and the initial cleavage product

(50 kDa) in the supernatant fractions. Similarly, anti-EpsL

antibodies detected EpsL(1–242) in the supernatant at all

trypsin concentrations, and a slightly smaller cleavage pro-

duct accumulated as the trypsin concentration increased.

Although similar-sized proteolytic fragments were detected

for both EpsE/cyto-EpsL complexes, the dissimilarity in

accumulation of individual fragments and their phospholipid

associations suggest that there are substantial differences in

conformation between EpsL(1–253) and EpsL(1–242) in the

presence of cardiolipin, which, in turn, affects the interaction

of EpsE with phospholipids and its ability to hydrolyze ATP.

Copurification of EpsE and the cytoplasmic domain of

EpsL is required for stimulation of ATPase activity

EpsL(1–253) remained associated with cardiolipin (Figure 3)

under conditions in which EpsE was degraded, suggesting

that the interaction between EpsL(1–253) and phospholipids
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Stimulation of EpsE ATP hydrolysis
JL Camberg et al

&2007 European Molecular Biology Organization The EMBO Journal VOL 26 | NO 1 | 2007 21



can be maintained in the absence of the intact ATPase

component EpsE. To test this possibility, the binding of

purified EpsL(1–242) and EpsL(1–253) in the absence of

EpsE was tested in a cardiolipin pelleting assay and examined

by SDS–PAGE. As demonstrated in Figure 4A, both proteins

remained predominantly soluble without cardiolipin, but

became pellet-associated when cardiolipin was added to the

reaction. This result indicates that they are both capable of

binding to phospholipids, consistent with the results de-

scribed for the EpsE complexed forms of EpsL(1–242) and

EpsL(1–253) in the absence of ATP (Figure 2B). The binding

properties of the cyto-EpsL proteins, however, differ from

those of the EpsE/cyto-EpsL complexes when the latter

complexes are incubated with ATP (Figure 2A). This, there-

fore, suggests that not only does cyto-EpsL affect the inter-

action of EpsE with phospholipids, but reciprocally the

phospholipid binding properties of cyto-EpsL are influenced

by the nucleotide-bound form of EpsE.

We next asked whether we could add purified EpsL(1–253)

to EpsE and replicate the same pelleting behavior in the

presence of ATP as for the copurified EpsE/EpsL(1–253)

complex. Without phospholipids, both EpsE and EpsL(1–

253) were soluble, but when cardiolipin was added,

EpsL(1–253) became associated with the phospholipid pellet,

whereas only 55% of EpsE was localized to the pellet

(Figure 4B). This proportion of pellet associated EpsE is

similar to the 52% detected for EpsE alone (Figure 2A),

suggesting that the two Eps proteins did not form a complex

when they were purified separately.

As the addition of EpsL(1–253) did not promote further

cardiolipin binding of EpsE, we hypothesized that the addi-

tion of EpsL(1–253) would likewise not stimulate the ATPase

activity of EpsE in the presence of cardiolipin. The chart in

Figure 4C demonstrates that only the copurified EpsE/

EpsL(1–253) complex can be stimulated by cardiolipin. As

expected, the addition of exogenously purified EpsL(1–253)

to EpsE did not significantly change the rate of ATP hydro-

lysis. Taken together, these and earlier data suggest that EpsE

needs to be co-produced with the intact cytoplasmic domain

of EpsL in order to fold into a conformation that is responsive

to structural changes in the presence of acidic phospholipids

and that results in stimulation of ATPase activity.

Oligomerization of EpsE in the presence of cardiolipin

and EpsL(1–253)

One possible mechanism for the increased ATPase activity

of EpsE in the presence of EpsL(1–253) and acidic phospho-

lipids may involve oligomerization as EpsE has previously

been shown to form oligomers, although very inefficiently

(Camberg and Sandkvist, 2005). We subjected EpsE/EpsL
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(1–253) to the crosslinker dithiobis succinimidyl propionate

(DSP) at increasing concentrations in the presence of cardio-

lipin and ATP and visualized the presence of crosslinked

products by SDS–PAGE and immunoblot analysis with anti-

bodies to either EpsE or EpsL (Figure 5). The crosslinked

protein profile was compared with that of the nonstimulated

EpsE/EpsL(1–242) complex. While EpsE/EpsL(1–253) cross-

linked into larger molecular species recognized by both anti-

EpsE and anti-EpsL antibodies in a concentration-dependent

manner, the amount of crosslinked products did not appreci-

ably increase for EpsE/EpsL(1–242) as the crosslinker con-

centration increased.

Modification of the carboxy-terminal end of the EpsL

cytoplasmic domain interferes with cardiolipin-

stimulated activation of EpsE

Close examination of the residues at the C-terminus of

EpsL(1–253) reveals the presence of hydrophobic and posi-

tively charged residues at regular intervals. The presence

of hydrophobic and basic residues is also apparent in the

region proximal to the transmembrane helix in an alignment

comprised of EpsL homologs reported by Abendroth et al

(2004). The enrichment of these residues and the noticeable

lack of acidic amino acids may support the suggestion that

this region is directly responsible for interaction with acidic

phospholipids.

To test the requirement for hydrophobic and positively

charged residues in EpsL for their functioning in vivo, we

expressed different forms of full-length EpsL containing

amino-acid substitutions within the last 15 residues of its

cytoplasmic domain (Figure 6A). We tested for ability of the

EpsL mutant proteins to restore secretion of protease in an

epsL knockout mutant strain using a fluorescence-based

assay (Figure 6B). While expression of plasmid-encoded

wild-type epsL and several mutant epsL genes in the epsL

knockout mutant restored secretion of protease, expression of

epsL with K239A, K241A, W244E, and L245E substitutions

did not (Figure 6B). It is possible that these latter mutations

interfered with the phospholipid interaction, and as a con-

sequence the mutant EpsL proteins were made sensitive

to proteolysis as their steady-state level was reduced

(Figure 6C). The material that escaped proteolysis, however,

was found in the membrane pellet following subcellular

fractionation (not shown), indicating that membrane inser-

tion of these mutant proteins via their transmembrane

domains was not affected.

To determine the role of specific residues at the C-terminal

end of the EpsL cytoplasmic domain in stimulation of EpsE

ATP hydrolysis, the four mutations that prevented the func-

tion of EpsL in vivo were introduced into EpsE/EpsL(1–253).

Like the EpsE/EpsL(1–253) complex, each mutant protein

purified as a monomeric complex (not shown). When ana-

lyzed in the presence of cardiolipin, each mutant protein was

found to display a reduced rate of ATP hydrolysis compared

to the nonmutated EpsE/EpsL(1–253) (Figure 7A). The

ATPase activity for the most drastically affected mutant,

W244E, was reduced by 80%, whereas the other mutations

lowered the activity by 20–29%. When the EpsE/

EpsLW244E(1–253) complex was incubated with cardiolipin

in the presence of ATP, it pelleted slightly less efficiently than

EpsE/EpsL(1–253) (Figure 7B). The amount of EpsE/EpsL

W244E(1–253) in the cardiolipin pellet was reduced by 12%.

Discussion

In this study we report the synergistic stimulation of EpsE

ATP hydrolysis by acidic phospholipids and the cytoplasmic

domain of EpsL (residues 1–253). While phosphatidylglycerol

and cardiolipin had no stimulatory effect on the enzymatic

activity of EpsE alone, they increased the specific activity of

a protein complex composed of EpsE and EpsL(1–253) by

30- and 130-fold, respectively. In previous studies of EpsE, we

speculated that the active form of EpsE is hexameric (Robien

et al, 2003; Camberg and Sandkvist, 2005). Here we show by

limited trypsin digestion and chemical crosslinking that EpsE

in complex with EpsL(1–253) undergoes conformational

changes and oligomerizes in the presence of acidic phospho-

lipids; however, it is unknown whether the acidic phospho-

lipids specifically induce hexamerization. These findings,

along with the earlier discovery that EpsE is detected in
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both the cytoplasm and inner membrane following subcellu-

lar fractionation of V. cholerae cells (Sandkvist et al, 1995),

suggest that EpsE may transition between two conforma-

tional states, possibly a monomer with minimal catalytic

activity and an oligomer with increased ability to hydrolyze

ATP. The conversion between these two states may be

sensitive to the occupancy of the nucleotide-binding site,

and may be directed via the interaction between the cyto-

plasmic domain of EpsL and the N-terminal domain of EpsE

(Sandkvist et al, 1995; Abendroth et al, 2005).

Acidic phospholipids such as cardiolipin are essential for

function of many membrane-spanning proteins that partici-

pate in ATP synthesis, energy transduction, and protein

transport in both mitochondrial and bacterial membranes

(Mileykovskaya and Dowhan, 2005), and have been sug-

gested to promote assembly of protein complexes into larger

supercomplexes. Via their negatively charged surface, they

may adsorb and concentrate soluble proteins such as SecA

and other ATPases onto membrane surfaces (Lill et al, 1990).

This may, in fact, be a driving mechanism to localize ATP-

hydrolyzing enzymes to sites where ATP is generated. There

are also suggestions that acidic phospholipids may not be

uniformly distributed but are rather concentrated at distinct

sites within the cytoplasmic membrane (Mileykovskaya and

Dowhan, 2000; Kawai et al, 2004). As a consequence, pro-

teins with affinity for these phospholipids may also exhibit

similar localization patterns. Recently, it was suggested that a

cluster of positively charged residues on the surface of the

mechanosensitive channel protein MscL that is close to one

of the transmembrane helices produces a ‘hot spot’ for

anionic phospholipid binding (Powl et al, 2005). Inspection

of the sequence that precedes the transmembrane helix of

EpsL and the corresponding regions in EpsL homologs (see

alignment in Abendroth et al, 2004) reveals a conserved

enrichment of positively charged and hydrophobic residues,

which may similarly form a hot spot for binding to acidic

phospholipids. Replacement of two of these charged residues,

K239 and K241, to alanine in EpsL supports this suggestion as

it resulted in nonfunctional mutant proteins. When expressed

in the V. cholerae epsL mutant strain, neither EpsL-K239A nor

EpsL-K241A could restore extracellular secretion, and degra-

dation products accumulated, which were consistent with the

size of the cytoplasmic domain (Figure 6). Disruption of

normal positioning at the membrane due to these substitu-

tions may have exposed protease-sensitive sites. Two lines of

evidence suggest that these lysine residues may be required,

but are not sufficient for interaction with acidic phospholi-

pids and stimulation of EpsE ATP hydrolysis. First, both K239

and K241 are present in the EpsE/EpsL(1–242) complex that

could not be activated by phospholipids in the ATPase assay.

Second, when the K239A and K241A mutations were indivi-

dually introduced into the EpsE/EpsL(1–253) complex, they

only reduced the phospholipid-stimulated ATPase activity of

the purified proteins by 25 and 29%, respectively (Figure 7).

It is likely, therefore, that the lysine residues act in concert

with other residues in the C-terminal region of the cytoplas-

mic domain of EpsL to bind to phospholipids and stimulate

the ATPase activity of EpsE. This is supported by two addi-

tional mutant proteins, EpsL-W244E and EpsL-L245E, which

were also unable to complement the secretion defect in the

epsL mutant strain and which were likewise sensitive to

proteolysis, suggesting that hydrophobic residues are also

important for the correct localization of the cytoplasmic

domain with respect to the membrane. When the W244E

and L245A mutations were introduced into EpsL(1–253) and

the resulting mutant EpsL(1–253) proteins were copurified

with EpsE, they were also found to exhibit reduced ATPase

activity in the presence of acidic phospholipids. The W244E

mutant was most severely affected displaying an 80% re-

duced activity compared with the nonmutated form, whereas

the activity of the L245E mutant was reduced by 20%

(Figure 7). Although a negatively charged residue was not

tolerated at residue position 244, we found that there is not

an absolute requirement for tryptophan in the full-length

EpsL. Replacement of W244 with either phenylalanine or

alanine produces a functional protein and suggests that a

hydrophobic residue may be sufficient at this position in EpsL

to support protein secretion in V. cholerae.
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As EpsE and XpsE display similar ATPase activities (60

versus 20 nmol/min/mmol) and are equally two-fold stimu-

lated by the cytoplasmic domains of EpsL and XpsL, respec-

tively, it is likely that the activity of XpsE can be further

stimulated by phospholipids via a mechanism that may be

common to all T2S ATPases. The requirement for both

positively charged and hydrophobic residues suggests that

electrostatic as well as hydrophobic interactions between the

C-terminal end of the cytoplasmic domain of EpsL and the

phospholipid bilayer are a prerequisite for stimulation of

EpsE’s ATPase activity. We speculate that under normal

circumstances in vivo, once ATP binds to the EpsE–EpsL

complex, hydrophobic residues in the C-terminal end of the

cytoplasmic domain of EpsL may embed into the lipid bilayer,

while positively charged residues interact with the negatively

charged phospholipids on the surface of the membrane. This

may, in turn, bring ATP-bound EpsE within close proximity of

the membrane where it may oligomerize and become active.

Alternatively, the positively charged residues may interact

electrostatically with the negatively charged phospholipid

surface, while residues at positions 244 and 245 are in

hydrophobic contact with a hydrophobic patch on EpsL or

ATP-bound EpsE, thus inducing a conformational change in

EpsE that mediates oligomerization and stimulation of ATP

hydrolysis. A recent model for T2S in X. campestris suggests

that nucleotide binding induces oligomerization of XpsE and

precedes binding to membrane-bound XpsL (Shiue et al,

2006). In our system, occupancy of the nucleotide-binding

domain in EpsE is not a requirement for complex formation

with EpsL, however stimulation of ATP hydrolysis by cardio-

lipin requires pre-loading of the EpsE/EpsL(1–253) complex

with ATP. A key requirement for cardiolipin stimulation is the

membrane-proximal region of EpsL that responds to the

nucleotide occupancy state of EpsE. This region, which

maintains a peripheral interaction between the EpsE/

cytoEpsL complex and acidic phospholipids, may illustrate

a novel mechanism to control the activity of a protein or

protein complex that is already inserted in a membrane.

While the transmembrane helix is required for insertion

and maintenance of EpsL in the cytoplasmic membrane, the

hydrophobic and positively charged residues in the cytoplas-

mic domain may fine tune its interaction with the cytoplas-

mic membrane, thus activating EpsE, the energy-providing

component of the T2S apparatus.

Materials and methods

Cloning and expression
Plasmids pEpsE/EpsL(1–253)His6, pEpsE/EpsL(1–242)His6,
pEpsL(1–253)His6,and pEpsL(1–242)His6 containing the region
of epsL that encodes the cytoplasmic domain (residues 1–242 or
residues 1–253) were constructed with and without epsE using the
expression vector pET21d(þ ) (Abendroth et al, 2004, 2005)
(Supplementary Figure 1). A six-histidine tag was attached to the
carboxy-terminus of the EpsL fragments. A fragment of epsE
containing a lysine to alanine mutation in the Walker A motif
(Camberg and Sandkvist, 2005) was cloned into pEpsE/EpsL(1–
253)His6 by exchange of an NotI/BamHI fragment to create
pEpsE(K270A)/EpsL(1–253)His6. pEpsE/EpsL(1–253)His6 con-
structs with mutations (K239A, K241A, W244E, and L245E) in
EpsL(1–253) were also made. The epsL fragments with and without
epsE were coexpressed in E. coli BL21(DE3) cells and induced by the
addition of IPTG as described (Abendroth et al, 2005). EpsL proteins
and EpsE/EpsL complexes were purified using metal affinity
chromatography and gel filtration (Abendroth et al, 2004, 2005).
Monomeric EpsE was obtained following thrombin cleavage of a
GST-EpsE fusion protein expressed from pGST-EpsE, leaving a
glycine–serine overhang at the amino-terminus (Camberg and
Sandkvist, 2005).

For in vivo studies, substitution mutations in full-length epsL,
K239A, L240E, K241A, W244E, W244F, W244A, L245E, R246A,
R246E, Y247E, W248E, W251E, and R252A/K253A were created by
site-directed mutagenesis for expression in the V. cholerae epsL
mutant strain mut 8 (Sandkvist et al, 1997). For in vitro studies,
EpsE/EpsL(1–253) with either K239A, K241A, W244E, or L245E
substitutions were constructed, expressed in E. coli and purified as
described (Abendroth et al, 2005).

A

C

EpsL

WT

E
ps

LK
23

9A

E
ps

LL
24

5E

– E
ps

L

28

38

49

62

98

17

epsL mutant

E
ps

LW
24

4E

E
ps

LK
24

1A

239-KLKSSWLRYWQIWRK-253

A

AEA  EEAEE  EAA
F E 

*   *     * * 

40

35

30

25

20

15

10

5

0

S
ec

re
tio

n 
(u

/m
in

/O
D

60
0)

W
t T

R
H

70
00

ep
sL

m
ut

an
t

E
ps

L
E

ps
LK

23
9A

E
ps

LL
24

0E
E

ps
LK

24
1A

E
ps

LW
24

4A

E
ps

LW
24

4E

E
ps

LW
24

4F

E
ps

LL
24

5E

E
ps

LR
24

6A
E

ps
LR

24
6E

E
ps

LY
24

7E

E
ps

LW
24

8E

E
ps

LW
25

1E

E
ps

LR
25

2A
/

K
25

3A
epsL mutant

B

Figure 6 Mutations in the cytoplasmic domain of EpsL disrupt its
normal function. (A) Sequence containing the C-terminal portion of
the EpsL cytoplasmic domain depicts substitution mutations tested
in vivo. Asterisks indicate residues that affect function of EpsL when
mutated. (B) V. cholerae wild-type TRH7000 and epsL mutant strain
mut 8 expressing either wild-type or mutant EpsL proteins were
grown in LB at 371C overnight. Supernatants were separated from
cells and tested for the presence of extracellular protease using the
proteolytic substrate N-tert-butoxy-carbonyl-Gln-Ala-Arg-7-amido-
4-methyl-coumarin and compared with wild-type cells. (C) Wild-
type as well as epsL mutant V. cholerae strains expressing either
wild-type or mutant EpsL proteins were grown as described above.
Cells were pelleted, resuspended in SDS-sample buffer, and ana-
lyzed by SDS–PAGE and immunoblotting using antibodies to EpsL.
Arrow indicates the position of EpsL.
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Phospholipids
E. coli-derived membrane phospholipids phosphatidylethanol-
amine, phosphatidylglycerol, and cardiolipin (Avanti, Alabaster,
AL) were resuspended in 20 mM Tris pH 8.0, 150 mM NaCl, and
1 mM DTT. Large unilammellar vesicles (LUVs) were created by 10
cycles of vortexing for 2 min followed with five successive freeze–
thaw cycles by immersion in dry-ice/ethanol for 1 min and a 371C
water bath for 3 min.

Activity assays
ATPase activities of EpsE-containing complexes were measured
using a modified malachite green assay (Camberg and Sandkvist,
2005). End point assays containing 1mM protein, 5 mM ATP, and
5 mM MgCl2 in Buffer A (100 mM HEPES pH 8.5, 65 mM NaCl, 5%
glycerol) were incubated at 371C for 360 min. Where indicated,
phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin
(31.25, 62.5, 125, and 250mM) were added to ATPase reactions
containing 0.5mM protein and incubated for 60 min. Samples were
taken at the start and finish of every reaction and assayed for
inorganic phosphate in duplicate. Error is reported as standard
error, representative of three sample sets.

For studies involving pre-incubation of EpsE/EpsL(1–253) with
either cardiolipin or ATP, reactions containing 0.5mM EpsE/EpsL(1–
253) and 125mM cardiolipin, or 5 mM ATP with 5 mM MgCl2 were
mixed in Buffer A and incubated at 371C. After 10 min, the
remaining hydrolysis reaction components were added and the
rate of ATP hydrolysis was assayed.

Phospholipid-pelleting assays
EpsE, EpsE/EpsL(1–253), and EpsE/EpsL(1–242) (1 mM) were
incubated with purified phospholipids (250mM) in the absence
and presence of ATP (5 mM) and MgCl2 (5 mM) at 371C for 15 min
in 100 mM HEPES pH 8.5 and 65 mM NaCl. Before setting up the
reactions, proteins were pre-spun at 100 000 g for 20 min. After
incubation, reactions were centrifuged at 100 000 g for 1 h at 41C to
pellet phospholipids and phospholipid-bound protein. Supernatants
were aspirated and pellets were resuspended in an equal volume.
Supernatants and pellets were examined by SDS–PAGE using the
NuPAGE system (Invitrogen, Carlsbad, CA) and stained with
GelCode Blue (Pierce, Rockford, IL). ImageQuant software was
used to quantify the percentage of protein in the pellet. For
reactions containing EpsL(1–242) and EpsL(1–253), 5mM protein
was used in the pelleting assay and fractions were analyzed under
reducing conditions.

Protease-sensitivity assay
Reactions of EpsE/EpsL(1–253) and EpsE/EpsL(1–242) (1mM) that
contained cardiolipin (250 mM), ATP (5 mM), and MgCl2 (5 mM)
were incubated at 371C for 15 min in 100 mM HEPES buffer pH 8.5
with 65 mM NaCl and then digested with trypsin (0, 3, 10, 30, 100,
300mg/ml) at room temperature for 5 min. Following addition of
EDTA-free protease inhibitor cocktail (Roche, Indianapolis, IN), the
reactions were centrifuged for 20 min at 41C and 15 000 g, which
was sufficient to pellet cardiolipin LUVs. Supernatants and pellets
were collected and analyzed by SDS–PAGE and silver staining
(Invitrogen). Immunoblots were performed using antibodies to
EpsE and EpsL.

Chemical crosslinking
Reactions containing 1mM EpsE/EpsL(1–253) or EpsE/EpsL(1–242)
with 125 mM cardiolipin in Buffer A with 5 mM ATP and 5 mM MgCl2
were incubated for 15 min at 371C, then disthiobis succinimidyl
propionate (DSP) (Pierce) was added to a final concentration of 0,
10, 50, 100, or 200mM. After 30 min at 231C, 1ml of 1 M Tris, pH 8.5,
was added to the 20ml reaction to quench residual DSP. Reactions
were analyzed by SDS–PAGE and immunoblotting with anti-EpsE
and anti-EpsL antibodies.

Complementation of EpsL mutants
Mutant genes epsL(K239A), epsL(L240E), epsL(K241A), epsL(W244E),
epsL(W244F), epsL(W244A), epsL(L245E), epsL(R246A),
epsL(R246E), epsL(Y247E), epsL(W248E), epsL(W251E), and
epsL(R252A/K253A) were expressed in V. cholerae epsL mutant
strain mut 8 and tested for protease secretion using a modified
fluorescence-based assay (Sandkvist et al, 1997). Filtered super-
natants from overnight cultures grown in LB were assayed in 5 mM
HEPES pH 7.5 and 0.05 mM N-tert-butoxy-carbonyl-Gln-Ala-Arg-7-
amido-4-methyl-coumarin (Sigma) for 10 min at 371C using the
excitation and emission wavelengths 385 and 440 nm, respectively.
Error is reported as standard error, representative of three samples.

To detect the presence of EpsL, wild-type V. cholerae TRH7000
and epsL mutant strain mut 8 expressing epsL, epsL(K239A),
epsL(K241A), epsL(W244E), and epsL(L245E) were grown in LB
and cells were pelleted, resuspended in SDS sample buffer, and
subjected to SDS–PAGE. Proteins were immunoblotted using
antibodies to EpsL.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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