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SUMMARY

Mycoplasmas are known to enhance human immunodeficiency virus (HIV) replication, and

mycoplasma-derived lipid extracts have been reported to activate nuclear factor-jB (NF-jB)

through Toll-like receptors (TLRs). In this study, we examined the involvement of TLRs in the

activation of HIV long-terminal repeats (LTR) by mycoplasma and their active components

responsible for the TLR activation. Lipid-associated membrane proteins (LAMPs) from two

species of mycoplasma (Mycoplasma fermentans and M. penetrans) that are associated with

acquired immune-deficiency syndrome (AIDS), were found to activate HIV LTRs in a human

monocytic cell line, THP-1. NF-jB deletion from the LTR resulted in inhibition of the acti-

vation. The LTR activation by M. fermentans LAMPs was inhibited by a dominant negative

(DN) construct of TLR1 and TLR6, whereas HIV LTR activation by M. penetrans LAMPs

was inhibited by DN TLR1, but not by DN TLR6. These results indicate that the activation of

HIV LTRs by M. fermentans and M. penetrans LAMPs is dependent on NF-jB, and that the

activation of HIV LTR by M. fermentans LAMPs is mediated through TLR1, TLR2

and TLR6. In contrast, the LTR activation by M. penetrans LAMPs is carried out through

TLR1 and TLR2, but not TLR6. Subsequently, the active component of M. penetrans and

M. fermentans LAMPs was purified by reverse-phase high-performance liquid chromatography

(HPLC). Interestingly, the purified lipoprotein of M. penetrans LAMPs (LPMp) was able to

activate NF-jB through TLR1 and TLR2. On the other hand, the activation of NF-jB by

purified lipoprotein ofM. fermentans LAMPs (LPMf) was mediated through TLR2 and TLR6,

but not TLR1.
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INTRODUCTION

Human immunodeficiency virus (HIV) is recognized as the
aetiological agent of acquired immune-deficiency syndrome

(AIDS). However, the progression of AIDS is highly vari-
able in different individuals, and several factors, such as
viral strains or host factors, have been attributed as the

possible cause of such variations. Infectious agents, inclu-
ding various viruses, parasites and bacteria, are considered

to be cofactors in the progression of AIDS.1 Mycoplasmas
are wall-less parasitic Gram-positive bacteria, and the
smallest organisms capable of self-replication.2 Mycoplasma

fermentans and M. penetrans have been isolated from the
tissues and urine of patients with AIDS3–5 and were shown
to enhance the cytopathic effect of HIV-1 infection.6,7 In

addition, mycoplasmas and acholeplasmas have been
reported to enhance HIV-1 replication in vitro.8,9 Thus,
mycoplasmas might be reasonable cofactor candidates in the

progression of AIDS.
A nuclear transcription factor – nuclear factor-jB

(NF-jB) – is thought to play amajor role in the regulation of
HIV-1 gene expression.10 Although the HIV long-terminal

repeat (LTR) alone can serve as its own promoter, early
mRNA transcription appears to rely primarily on the
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binding of cellular transcription factors, including NF-jB,
to the LTR.11 The activation of cytoplasmic NF-jB by
various cytokines, including interleukin (IL)-2, IL-6 and
tumour necrosis factor-a (TNF-a), or after infection with

other viruses, induces HIV replication.12–17 These findings
indicate increased rates of HIV replication, probably
through NF-jB-mediated regulation of the HIV LTR.

TNF-a induced by mycoplasma had been thought to induce
NF-jB andHIV replication; however, anti-TNF-a immuno-
globulin failed to inhibit the enhancement of HIV replica-

tion by mycoplasma.18 Although activation of NF-jB has
been implicated in the mycoplasma-induced enhancement of
HIV replication, the receptor(s) and the pathways of signal

transduction via NF-jB have not been clearly defined.
Recently, it has been reported that Toll-like receptors

(TLRs) are pattern-recognition receptors in the innate
immune system and play important roles in early innate

recognition and inflammatory responses by the host to
microbial challenges.19 Among nine TLR family members
reported, TLR2, 4, 5 and 9 have been implicated in the

recognition of different bacterial components. Pepidoglycan,
lipoarabinomannan, zymosan and lipoproteins from various
micro-organisms are recognized by TLR2.20–28 On the other

hand, lipopolysaccharide (LPS), bacterial flagellin and bac-
terial DNA are recognized by TLR4, TLR5 and TLR9,
respectively.29–33 These TLR family members have been
shown to activate NF-jB via IL-1R-associated signal mole-

cules, including myeloid differentiation protein (MyD88),
IL-1R-activated kinase (IRAK), TNFR-associated factor 6
(TRAF6), and NF-jB-inducing kinase (NIK).34 However,

the precise mechanisms by which mycoplasma activate HIV
LTR have not been fully clarified.

In this study, we examined the involvement of TLRs in

the activation of HIV LTRs by mycoplasmas and their
active components responsible for the TLR activation. We
observed that lipid-associated membrane proteins (LAMPs)

from the AIDS-associated mycoplasmas, M. penetrans and
M. fermentans, activated the HIV LTR in a human mono-
cytic cell line (THP-1) through NF-jB. Activation of the
HIV LTR by LAMPs from M. fermentans (referred to as

M. fermentans LAMPs hereafter) was apparently dependent
on TLR1, TLR2 and TLR6. In contrast, activation of the
HIV LTR by LAMPs from M. penetrans (referred to as

M. penetrans LAMPs hereafter) was dependent on TLR1
and TLR2, but not on TLR6. Furthermore, the active
components of M. penetrans and M. fermentans LAMPs

were purified by reverse-phase HPLC. The activity of puri-
fied lipoprotein from M. penetrans LAMPs (LPMp) to
induce NF-jB was dependent on TLR1 and TLR2. On the
other hand, the activity of purified lipoprotein from

M. fermentans LAMPs (LPMf) was dependent on TLR2
and TLR6, but not on TLR1.

MATERIALS AND METHODS

Cells
Cells of a human monocytic cell line, THP-1, were cultured

in RPMI-1640 containing 10% fetal calf serum (FCS;
Mitsubishi Chemical, Tokyo, Japan), 2 mm l-glutamine,

100 U ⁄ml penicillin G and 100 lg ⁄ml streptomycin. Cells of
a human kidney cell line, 293T, were cultured in Dulbecco’s
modified Eagle’s minimal essential medium (DMEM) con-
taining 10% FCS, 2 mm l-glutamine, 100 U ⁄ml penicillin G

and 100 lg ⁄ml streptomycin.

Antibodies
The mouse anti-human TLR2 monoclonal antibodies
(mAbs) ABM-8320 and IMG-416 were obtained from
Cascade Bioscience (Winchester, MA) and Imgenex (San

Diego, CA).35 Normal mouse immunoglobulin G (IgG)2a
was purchased from PharMingen (San Diego, CA).

Pathogen-associated molecular patterns (PAMPs)
(S)-[2,3-Bis(palmitoyloxy)-(2-RS)-propyl]-N-palmitoyl-(R)-

Cys-(S)-Ser-(S)-Lys4-OH.3HCl (Pam3CSK4) was purchased
from Calbiochem (Darmstadt, Germany). M. fermentans
macrophage-activating lipopeptide 2 (MALP-2) was kindly
provided by Dr M. Matsumoto (Osaka Medical Center for

Cancer and Cardiovascular Diseases, Osaka, Japan).36,37

Preparation of LAMPs from M. fermentans and
M. penetrans
M. fermentans and M. penetrans were cultured in PPLO
medium and SP-4 medium, respectively, to the start of sta-

tionary phase, and then pelleted by centrifugation for
10 min at 12 000 g. Preparation of LAMPs was performed
as described previously by Feng et al.38,39 Briefly, a myco-

plasma pellet was suspended in Tris-buffered saline (TBS)
(50 mm Tris, 0Æ15 mNaCl, pH 8Æ0) containing 1 mm EDTA
(TBSE), solubilized by adding TX-114 to a final concen-

tration of 2% and incubated at 4� for 1 hr. The lysate was
incubated at 37� for 10 min prior to phase separation. After
centrifugation at 10 000 g for 20 min, the upper aqueous

phase was removed and replaced with the same volume of
TBSE. The procedure of phase separation was repeated
twice. The final TX-114 phase was resuspended in TBSE to
the original volume, 2Æ5 volumes of ethanol were added to

precipitate membrane components and the phase was incu-
bated at )20� overnight. After centrifugation, the pellet was
suspended in phosphate-buffered saline (PBS) followed by

sonication for 30 seconds at output 5 (Sonifier cell disruptor
200; Branson, Danbury, CT). The protein concentration
of the suspension was measured by using the Coomassie

Protein Assay Regent (Pierce, Rockford, IL).

Expression vectors

To prepare TLR1, TLR2 and TLR6 expression vectors
(pFLAG-TLR1, pFLAG-TLR2, and pFLAG-TLR6,
respectively), the coding regions of TLR1, TLR2 and

TLR6, minus the respective N-terminal signal sequences,
were amplified by polymerase chain reaction (PCR) from a
cDNA of THP-1 and cloned into the expression vector
pFLAG-CMV1 (Sigma, St Louis, MO), in which a

preprotrypsin leader precedes an N-terminal FLAG epi-
tope. Dominant negative (DN) TLR1 and TLR6 expression
vectors were constructed by subcloning TIR (Toll and

interleukin 1 receptor) homology domain-deleted TLR1
and TLR6 fragments into pFLAG-CMV1 (pFLAG-
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dTLR1 and pFLAG-dTLR6). pHIV-LTR-luc, a mutant
lacking the NF-jB-binding site (pHIV-LTRDjB-luc), a
mutant lacking the SP-1-binding site (pHIV-LTRDSP1-
luc), and a mutant lacking both NF-jB- and SP-1-binding

sites (pHIV-LTRDjBSP1-luc) were gifts from Dr Y.
Koyanagi (Tohoku University Graduate School of
Medicine, Sendai, Japan).40 The NF-jB Cis-Reporting

System, containing pNF-kB-luc, a plasmid in which the
luciferase reporter gene is fused to the NF-jB enhancer,
was purchased from Stratagene (La Jolla, CA).

Transfection and luciferase assay
Transient transfection was performed by using FuGENE6

(Roche, Basel, Switzerland), according to the manufac-
turer’s instructions. A total of 4 · 105 THP-1 cells, or
1 · 105 293 T cells, were transfected with 0Æ1 lg of pFLAG-

TLR2, 0Æ01 lg of pHIV-LTR-luc, 0Æ01 lg of the pRL-TK
internal control plasmid (Promega, Madison, WI), and
DN TLRs expressing plasmid, in 24-well plates. After

20 hr, transfected cells were stimulated with 1Æ0 lg ⁄ml
M. fermentans LAMPs or 0Æ5 lg ⁄ml M. penetrans LAMPs.
After a further 24 hr of incubation, cells were lysed and
assayed for luciferase activity using a Dual-Luciferase

Reporter Assay System (Promega). Both firefly and Renilla
luciferase activity were monitored using a Lumat LB9507
luminometer (Berthold, Wildbad, Germany). Normalized

reporter activity is expressed as the firefly luciferase value
divided by the Renilla luciferase value. Relative fold
induction is calculated as the normalized reporter activity of

the test samples divided by the unstimulated samples.

Reverse-phase high-performance liquid chromatography

(HPLC)
LAMPs were dissolved in 6 m guanidine hydrochloride, and
100 lg of LAMPs were applied on lBondasphere C18 300A

(Waters, Milford, MA). Elution was carried out using a 0–
100% linear water ⁄2-propanol gradient. The flow rate was
1Æ0 ml ⁄min. Each fraction was dried in vacuo at room tem-

perature and dissolved in 25 mm n-octyl-b-gulucopyrano-
side. Protein concentration was measured by using the
Coomassie Protein Assay Regent (Pierce).

Lipoprotein lipase treatment
Approxmately 100 ng ⁄ml LPMf and LPMp, separated from

M. fermentans andM. penetrans LAMPs, respectively, were
treated with 100 lg ⁄ml lipoprotein lipase (Sigma) at 37� for
2 hr. 293T cells transfected with 0Æ02 lg ⁄ml pNF-kB-luc
and 0Æ2 lg ⁄ml pFLAG-TLR2 were stimulated with

10 ng ⁄ml of the lipoprotein lipase-treated LPMf and LPMp.
Luciferase activity was measured as described above.

RESULTS

Activation of HIV LTR by LAMPs

LAMPs of M. penetrans have been reported to stimu-
late macrophages.38,39 We therefore initially examined

whether LAMPs from M. fermentans and M. penetrans can
enhance HIV replication in macrophages. To determine the

enhancement of HIV replication, THP-1 cells were first
transfected with a plasmid in which the luciferase reporter
gene was fused to HIV LTR (pHIV-LTR-luc) and then
were stimulated with M. fermentans and M. penetrans

LAMPs. The level of luciferase expression was enhanced by
M. fermentans or M. penetrans LAMPs in a dose-depend-
ent manner (Fig. 1a). When 0Æ5 lg ⁄ml M. penetrans

LAMPs was added, the luciferase expression was maximal
and » 12-fold higher than that of the unstimulated control.
In contrast, the expression of THP-1 cells was maximal

when stimulated with 1Æ0 lg ⁄ml M. fermentans LAMPs,
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Figure 1. Enhancement of long-terminal repeat (LTR) activation

by lipid-associated membrane proteins (LAMPs) through nuclear

factor-kappa B (NF-jB). (a) THP-1 cells were transfected with

0Æ1 lg ⁄ml pHIV-LTR-luc and 0Æ01 lg ⁄ml pRL-TK. The cells were

stimulated with the indicated concentrations of LAMPs. All values

represent the mean and standard deviation (SD) of three assays.

(b) THP-1 cells were transfected with 0Æ1 lg ⁄ml pHIV-LTR-luc

(LTR), pHIV-LTRDSP1-luc (DSP-1), pHIV-LTRDjB-luc (DNFjB)
or pHIV-LTRDjBSP1-luc (DSP-1DNF-jB) in combination with

0Æ01 lg ⁄ml pRL-TK. The cells were stimulated with 0Æ5 lg ⁄ml

Mycoplasma penetrans LAMPs and 1Æ0 lg ⁄ml M. fermentans

LAMPs. All values represent the mean and SD of three assays.
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being » 10-fold higher compared with the control. These
results indicate that LAMPs from M. fermentans and
M. penetrans can enhance HIV replication.

Activation of HIV LTR through NF-jB

HIV LTR contains various binding sites of cellular tran-
scription factors, including NF-jB, SP-1, AP2, TCF-1,

USF-1 and Ets; in particular, NF-jB and SP-1 are thought
to be major transcription factors.41 To examine the roles of
NF-jB and SP-1 in the activation of HIV LTR, pHIV-

LTRDjB-luc and pHIV-LTRDSP1-luc (in which the
NF-jB- and SP-1-binding sites, respectively, have been
deleted from pHIV-LTR-luc) were prepared (Fig. 1b).

When pHIV-LTRDjB-luc-transfected THP-1 cells were
stimulated with M. fermentans and M. penetrans LAMPs,
the level of luciferase expression was lower than that of the
control. In contrast, the level of luciferase expression was

almost constant when pHIV-LTRDSP1-luc was transfected.
Moreover, the deletion of both NF-jB- and SP-1-binding
sites (pHIV-LTRDjBSP1-luc) resulted in a decrease of the

expression level down to the level of the unstimulated
control. These results indicate that NF-jB may be a major
transcription factor induced by LAMPs.

Inhibition of LTR activation by anti-TLR2 mAb

It was reported that a lipopeptide of M. fermentans –
MALP-2 – can activate NF-jB through TLR2.28 We

therefore examined whether the enhancement of HIV LTR
activation with LAMPs is mediated through TLR2. Anti-
human TLR2 mAb (ABM-8320)-pretreated THP-1 cells

were transfected with pHIV-LTR-luc, followed by stimu-
lation with M. fermentans and M. penetrans LAMPs.
Pretreatment with anti-TLR2 mAb decreased the expres-

sion level of luciferase, and control antibody (mouse
IgG2a) had no effect on luciferase (Fig. 2a). These results
indicate that the activation of HIV LTR by LAMPs is

TLR2-mediated.

Activation of HIV LTR through TLR2

To confirm whether the activation of NF-jB by LAMPs is

mediated through TLR2, we constructed a TLR2 expres-
sion vector (pFLAG-TLR2). 293T cells were transfected
with both pFLAG-TLR2 and pHIV-LTRDSP1-luc. In

this experiment, we used pHIV-LTRDSP1-luc instead of
pHIV-LTR-luc, because the binding site for SP-1 on the
LTR resulted in a high level of luciferase activity (data

not shown). When 293T cells were transfected with a
high dose of pFLAG-TLR2 and then stimulated with
M. fermentans and M. penetrans LAMPs, the levels of

luciferase expression were augmented in a dose-dependent
manner (Fig. 2b). In contrast, the level of luciferase
expression was the same as that of the unstimulated
control when 293T cells were transfected with the empty

vector pFLAG-CMV1. This suggests that M. fermentans
and M. penetrans LAMPs activate HIV LTR through
TLR2.

Co-operation of TLR6 and TLR2 for LTR activation

Mouse TLR6 has been reported to recognize diacylated
lipopeptides, such as MALP-2, co-operatively with TLR2.42

To investigate whether M. fermentans and M. penetrans

LAMPs are also recognized by both TLR2 and TLR6 for
the activation of HIV LTR, we constructed a plasmid
encoding DN TLR6 (pFLAG-dTLR6). 293T cells were

transfected with pFLAG-TLR2, pHIV-LTRDSP1-luc and
various concentrations of pFLAG-dTLR6. Initially, the
effect of DN TLR6 on the expression of TLR2 was analysed

by flow cytometry. The level of TLR2 expression was
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Figure 2. Enhancement of long-terminal repeat (LTR) activation

through Toll-like receptor 2 (TLR2). (a) THP-1 cells were trans-

fected with 0Æ1 lg ⁄ml pHIV-LTR-luc and 0Æ01 lg ⁄ml pRL-TK.

The cells were treated with anti-TLR2 monoclonal antibody (mAb)

followed by stimulation with 0Æ5 lg ⁄ml Mycoplasma penetrans

lipid-associated membrane proteins (LAMPs) and 1Æ0 lg ⁄ml

M. fermentans LAMPs. All values represent the mean and stand-

ard deviation (SD) of three assays. (b) 293T cells were transfected

with the indicated concentrations of pFLAG-TLR2, 0Æ01 lg ⁄ml

pHIV-LTRDSP1-luc, and 0Æ01 lg ⁄ml pRL-TK. The cells were

stimulated with 0Æ5 lg ⁄ml M. penetrans LAMPs and 1Æ0 lg ⁄ml

M. fermentans LAMPs. All values represent the mean and SD of

three assays.
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almost constant, irrespective of the expression of DN TLR6
or of DN TLR1 (data not shown). When the transfected
cells were stimulated with M. fermentans LAMPs, the level
of luciferase expression decreased in a dose-dependent

manner (Fig. 3a). Upon transfection with 0Æ2 lg ⁄ml
pFLAG-dTLR6, the expression level decreased to a level
similar to that of the unstimulated control. In contrast, the

level of luciferase expression was almost constant when the
transfected 293T cells were stimulated with M. penetrans
LAMPs. These results suggest that the LTR activation by

M. fermentans LAMPs is dependent on TLR2 and TLR6,
but the activation byM. penetrans LAMPs is not dependent
on TLR6. To further examine whether TLR6 alone

can mediate the activation of LTR by LAMPs, 293T
cells were transfected with a TLR6 expression vector

(pFLAG-TLR6). Although the transfected cells were
stimulated with M. fermentans and M. penetrans LAMPs,
the level of luciferase expression was not augmented (data
not shown). These results indicate that both TLR2 and

TLR6 co-operatively mediate the LTR activation by
M. fermentans LAMPs, but not by M. penetrans LAMPs.

Co-operation of TLR1 and TLR2 for LTR activation

Triacylated bacterial lipopeptides, such as Pam3CSK4,
were reported to be recognized by murine TLR1, in

association with TLR2.43 The above results (Fig. 3a) sug-
gest that M. penetrans LAMPs might contain different
active components from M. fermentans LAMPs and, like

the triacylated lipopeptides, M. penetrans LAMPs might be
recognized by TLR1 and TLR2. We therefore next deter-
mined whether M. fermentans and M. penetrans LAMPs
are recognized by both TLR1 and TLR2 for the activation

of HIV LTR. To achieve this, we transfected a plasmid
encoding DN TLR1 (pFLAG-dTLR1) into 293T cells
containing both pFLAG-TLR2 and pHIV-LTRDSP1-luc.
When the transfected cells were stimulated with M. pene-
trans LAMPs, the level of luciferase expression was
decreased in a dose-dependent manner (Fig. 3b). Un-

expectedly, the level of luciferase expression of the cells
stimulated with M. fermentans LAMPs was also decreased.
Upon transfection with 0Æ2 lg ⁄ml pFLAG-dTLR1, the
level of expression in both cells decreased down to almost

control levels. These results suggest that the LTR activation
by M. fermentans and M. penetrans LAMPs is dependent
on both TLR1 and TLR2. To further examine whether

TLR1 alone can mediate the activation of LTR by LAMPs,
293T cells were transfected with a TLR1 expression vector
(pFLAG-TLR1). Like the TLR6 expression in 293T cells,

as mentioned previously, the level of luciferase expression
of the transfected cells was not augmented by stimulation
with M. fermentans and M. penetrans LAMPs (data not

shown). These results indicate that the co-operation of
TLR1 and TLR2 is required for the LTR activation with
M. fermentans and M. penetrans LAMPs.

Purification of active components of LAMPs

To purify the active components of LAMPs, M. penetrans
andM. fermentans LAMPs were fractionated using reverse-

phase HPLC with a linear gradient of isopropanol. To
measure the activity of fractions to induce NF-jB, each
fraction was added to 293T cells transfected with pFLAG-

TLR2 and pNF-jB-luc. As shown in Fig. 4(a), the active
component of M. penetrans LAMPs (LPMp) was eluted
by » 97% isopropanol, whereas the active component of

M. fermentans LAMPs (LPMf) was eluted by » 80%
isopropanol (Fig. 4b).

Analysis of active components of LAMPs

We next examined whether LPMp and LPMf separated
from LAMPs are recognized by TLR2 and TLR6, or TLR1
and TLR2. 293T cells transfected with pFLAG-TLR2,
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Figure 3. Cooperation of Toll-like receptor (TLR)1, TLR6 and

TLR2 for long-terminal repeat (LTR) activation by lipid-associ-

ated membrane proteins (LAMPs). 293T cells were transfected with

the indicated concentrations of pFLAG-dTLR6 (a) or pFLAG-

dTLR1 (b), 0Æ1 lg ⁄ml pFLAG-TLR2, 0Æ01 lg ⁄ml pHIV-

LTRDSP1-luc and 0Æ01 lg ⁄ml pRL-TK. The cells were stimulated

with 0Æ5 lg ⁄ml Mycoplasma penetrans LAMPs or 1Æ0 lg ⁄ml

M. fermentans LAMPs. All values represent the mean and stand-

ard deviation (SD) of three assays. DN, dominant negative.
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pNF-jB-luc and pFLAG-dTLR1 or pFLAG-dTLR6 were
stimulated with LPMp, LPMf, Pam3CSK4 or MALP-2. As
reported previously by Takeuchi et al.,42,43 both DN TLR1
and DN TLR6 suppressed the activity of Pam3CSK4 and

MALP-2, respectively, to induce NF-jB (Fig. 5). When the
cells were stimulated with LPMp, the relative luciferase
activity was reduced by the expression of DN TLR1

(Fig. 6), which is consistent with the results obtained using
M. penetrans LAMPs (Fig. 3b). In contrast, the 293T cells
stimulated with LPMf showed a relatively suppressed level

of the luciferase activity when DN TLR6, but not DN
TLR1, was expressed, inconsistent with the results that
M. fermentans LAMPs was recognized by TLR1, TLR2

and TLR6 (Figs 3a and 5).
To analyse the chemical components of LPMf and

LPMp, they were treated with lipoprotein lipase and pro-
teinase K. Treatment with proteinase K failed to decrease

the activity of LPMf and LPMp (data not shown), while
lipoprotein lipase treatment decreased the ability to induce

NF-jB (Fig. 6). These results suggest that lipid moiety, but
not protein moiety, is required for activity.

DISCUSSION

In this study, we demonstrated that LAMPs from M. fer-
mentans and M. penetrans activated the HIV LTR through

NF-jB. Activation of the LTR by M. fermentans LAMPs
was TLR1-, TLR2- and TLR6 dependent, while the acti-
vation by M. penetrans LAMPs was TLR1- and TLR2

dependent. The active components of M. fermentans and
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Figure 4. Isolation of active components of lipid-associated

membrane proteins (LAMPs). Mycoplasma penetrans (a) and

M. fermentans (b) LAMPS were dissolved in 6 m guanidine

hydrochloride, and 100 lg of LAMPs was separated by reverse-

phase high-performance liquid chromatography (HPLC). Elution

was performed using a 0–100% linear gradient of water ⁄2-propa-
nol. Each fraction was added to THP-1 cells transfected with

0Æ1 lg ⁄ml pFLAG-TLR2 and 0Æ1 lg ⁄ml pNF-jB-luc. These results
are representative examples of the three independent experiments.
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Figure 5. Toll-like receptor (TLR) usage of Mycoplasma penetrans

lipid-associated membrane proteins (LPMp) and M. fermentans

lipid-associated membrane proteins (LPMf). 293T cells transfected

with 0Æ01 lg ⁄ml pFLAG-TLR2, 0Æ01 lg ⁄ml pNF-jB-luc, and

0Æ2 lg ⁄ml pFLAG-dTLR1 or pFLAG-dTLR6, were stimulated

with 10 ng ⁄ml LPMp, 10 ng ⁄ml LPMf, 1 nmMALP-2, and 1 lg of
Pam3CSK4 (P3CSK). All values represent the mean and standard

deviation (SD) of three assays. DN, dominant negative.
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Figure 6. Lipoprotein lipase (LPL) treatment of Mycoplasma

penetrans lipid-associated membrane proteins (LPMp) and

M. fermentans lipid-associated membrane proteins (LPMf). One

microgram of LPMp and LPMf was treated with 100 lg ⁄ml LPL

at 37� for 2 hr. 293T cells transfected with 0Æ01 lg ⁄ml pNF-jB-luc
and 0Æ01 lg ⁄ml pFLAG-TLR2 were stimulated with 10 ng ⁄ml

LPL-treated LPMp and LPMf. All values represent the mean and

standard deviation (SD) of three assays. PBS, phosphate-buffered

saline.
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M. penetrans LAMPs were purified by reverse-phase
HPLC. The purified lipoprotein from M. penetrans LAMPs
(LPMp) was recognized by TLR1 and TLR2. Although the
recognition of M. fermentans LAMPs involved TLR1,

TLR2 and TLR6 (Fig. 3), the purified lipoprotein from
M. fermentans LAMPs (LPMf) was recognized only by
TLR2 and TLR6. These results indicate that M. fermentans

LAMPs may contain several active components, in which
one component is recognized by TLR2 and TLR6, and
other components might be recognized by TLR1 and

TLR2. Both LPMf and LPMp showed resistance to pro-
teinase K treatment, in agreement with the previous report
by Feng et al.39 In addition, the ability of LPMf and LPMp

to induce NF-jB was reduced by treatment with lipopro-
tein lipase. These results suggest that the active components
are attributable to lipid moieties. MALP-2 constitutes a
lipopeptide, isolated from M. fermentans, which has been

well documented as an activator of NF-jB.44,45 Sub-
sequently, a 44-kDa membrane-bound lipoprotein of
M. salivarium has been reported to induce TNF-a produc-

tion in THP-1.46 To our knowledge, there still seems to be
little information on the activity in innate immune
responses of lipoproteins derived from mycoplasmas such

as M. fermentans, M. penetrans and M. salivarium, alth-
ough a variety of mycoplasma strains have been shown to
exhibit diverse bioactivities in interaction with eukaryotic
cells.47, 48

In TLR-deficient mice, bacterial lipopeptides containing
three acyl chains were reported to be recognized by TLR1
and TLR2,43 whereas MALP-2, containing two acyl chains,

were recognized by TLR2 and TLR6.42 These findings, and
our results, suggest that LPMp might be similar to lipo-
protein(s) containing three acyl chains. In contrast, LPMf

separated from M. fermentans in this study may possess
components comparable to MALP-2, as MALP-2 is a
lipopeptide derived from M. fermentans.

In mycoplasmas, acylated proteins are abundant cell-
surface antigens, and many putative lipoprotein-encoding
genes have been identified in the sequenced mycoplasma
genomes.49,50 It is, at present, controversial as to whether or

not mycoplasmas have triacylated lipoprotein. Chemically
identified lipoproteins from M. fermentans,44 M. hyorhi-
nis,51 M. salivarium46 and M. gallisepticum52 are not

N-acylated, nor has an N-acyltransferase gene been found
in M. pneumoniae,53 M. genitalium54 or M. penetrans55

genomes. To date, the presence of proteins with N-acyl-

transferase activity has not been clearly established.
However, the study on the ratio of N-amide and O-ester
bonds in M. gallisepticum and M. mycoides may indicate
the presence of diacylated and triacylated lipoproteins.56

The resistance to Edoman degradation of proteins from
M. mycoides also indicates the presence of N-acylation.50

In this study, we found that the lipoprotein separated from

M. penetrans induced NF-jB through TLR1 and TLR2.
Triacylated lipoproteins, such as Pam3-CSK4, have been
reported to be recognized by TLR1 and TLR2,43 whereas

diacylated lipoproteins, such as MALP-2, have been shown
to be recognized by TLR2 and TLR6.42 Interestingly,
synthetically triacylated MALP-2, N-palamitoyl-MALP-2,

was not recognized by TLR6.57 These findings may indicate
the existence of triacylated lipoproteins in mycoplasma
species.

Our results indicate that the lipoproteins from M. fer-

mentans and M. penetrans can activate NF-jB in HIV
LTR, leading to the enhancement of HIV replication. The
activation of NF-jB was also observed following stimula-

tion with bacterial components, including LPS30 and
peptidoglycan.24 We have previously reported that gly-
colipids from Acholeplasma laidlawii, binding to both HIV

and macrophages, enhance HIV replication.58,59 In addi-
tion to the ability of lipoproteins to induce NF-jB, gly-
colipids from mycoplasma might, in concert, enhance the

replication of HIV. We assume that lipoproteins and gly-
colipids residing in the mycoplasma membrane can effi-
ciently attach to the surface of HIV-infected cells, as
mycoplasmas are completely wall-less bacteria.2 Moreover,

mycoplasmas contain various surface proteins that tend to
show high-frequency variation, suggesting that mycoplas-
mas can escape from immune surveillance and establish a

persistent infection.60 These findings suggest that myco-
plasma, rather than bacteria with cell walls, might play an
important role in the progression of HIV infection.

We previously reported that a variety of mycoplasma
strains can induce TNF-a production in mouse macro-
phages61 and THP-1 cells.62,63 M. penetrans LAMPs have
been reported to induce TNF-a production in mouse thio-

glycolate exudate peritoneal macrophage cells.39 Moreover,
TNF-a has been shown to activate HIV LTR through
NF-jB.64 These findings suggest that TNF-a produced by

macrophages may activate NF-jB. However, we observed
that anti-TNF-a mAb failed to inhibit the activation of
LTR by LAMPs (data not shown). It is therefore unlikely

that TNF-a produced by LAMPs-stimulated THP-1 cells
may directly contribute to the activation of NF-jB.

In summary, we demonstrated that lipoproteins from

the AIDS-associated mycoplasmas, M. fermentans and
M. penetrans, can enhance HIV LTR activity in THP-1
cells through NF-jB, and that this enhancement is
dependent on TLRs. The enhancement of the HIV LTR

activation induced by M. fermentans LAMPs was depend-
ent on TLR1, TLR2 and TLR6. Interestingly, LPMf sep-
arated from M. fermentans LAMPs activated NF-jB
through TLR2 and TLR6, but not TLR1. In contrast,
the enhancement of the NF-jB activation induced by
M. penetrans LAMPs, as well as LPMp separated from

M. penetrans LAMPs, was dependent on TLR1 and TLR2,
but not TLR6. Clarifying the mechanisms by which various
bacteria, including mycoplasma, enhance HIV replication
may have therapeutic values in preventing the progression

of AIDS during opportunistic infection.
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