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SUMMARY

There is now considerable evidence suggesting that the plasma membrane of mammalian cells is

compartmentalized by functional lipid raft microdomains. These structures are assemblies of

specialized lipids and proteins and have been implicated in diverse biological functions. Analysis

of their protein content using proteomics and other methods revealed enrichment of signalling

proteins, suggesting a role for these domains in intracellular signalling. In T lymphocytes,

structure/function experiments and complementary pharmacological studies have shown that

raft microdomains control the localization and function of proteins which are components of

signalling pathways regulated by the T-cell antigen receptor (TCR). Based on these studies, a

model for TCR phosphorylation in lipid rafts is presented. However, despite substantial progress

in the field, critical questions remain. For example, it is unclear if membrane rafts represent a

homogeneous population and if their structure is modified upon TCR stimulation. In the future,

proteomics and the parallel development of complementary analytical methods will undoubtedly

contribute in further delineating the role of lipid rafts in signal transduction mechanisms.
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THE T-CELL ANTIGEN RECEPTOR

T lymphocytes recognize antigenic determinants through
their T-cell receptor (TCR), a multicomponent structure

expressed on their cell surface. The TCR is composed of a
highly polymorphic heterodimer (a ⁄b or c ⁄d) which detects
antigen presented on the surface of antigen-presenting cells

(APCs) in the context of appropriate major histocompati-
bility complex (MHC) proteins.1,2 The a ⁄b (or c ⁄d) chains
have a very small cytoplasmic tail and are unable to com-

municate signals generated by antigen binding. Instead,
they are non-covalently associated with the non-polymor-
phic transmembrane proteins CD3c, CD3d and CD3e (CD
refers to cluster of differentiation) and a zeta homodimer
(TCRf). The stoichiometry of proteins in the complete
TCR complex is an a ⁄b (or c ⁄d) dimer associated with two

CD3e, one of each of CD3c and CD3d, and a TCRf
homodimer.3–5 The CD3 and TCRf components of the
receptor are responsible for transmitting the signal into the

cell interior via a structurally conserved amino acid motif
present in their cytoplasmic domains. This motif contains
paired tyrosine residues and is known as immunoreceptor

tyrosine-based activation motif (ITAM).6–8 Other immune
receptors, such as the B-cell receptor (BCR) and the Fcc
immunoglobulin receptor, also use ITAMs to signal.9

The consensus amino acid sequence of this motif is
YXX(L ⁄I)X6)8YXX(L ⁄I) (where Y is tyrosine, L is leucine,
and X any amino acid). The TCRf chain contains three

ITAMs in tandem while each of the CD3 chains have one,
resulting in 10 ITAMs per single receptor complex. Most
likely, the large number of ITAMs present in the TCR has a
quantitative role in signal amplification rather than a

qualitative role whereby different signals originate from
different ITAMs.10,11 Signalling by the TCR is also facili-
tated by the CD4 and CD8 coreceptors, which interact with

MHC molecules expressed on APCs during antigen pres-
entation (12 and references within).

Productive stimulation of the TCR leads to the activa-

tion of a number of signalling pathways that involves
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generation of second messengers, increased transcriptional
activity and production of new proteins that mediate
effector functions of activated T cells.13,14 Inherent or
environmentally imposed changes in the activity of signal-

ling pathways in T cells can lead to pathological conditions
such as autoimmunity or alternatively immunodeficiency.
Therefore, it is important that signalling homeostasis is

maintained precisely. At the plasma membrane, as part of
such regulation, is the compartmentalization of signalling
proteins and receptors into distinct domains. It is now well

documented that initiation and propagation of the TCR-
generated signal is critically dependent on the transient
assembly and spatial reorganization of such proteins.

TYROSINE KINASES PROXIMAL TO THE TCR

Upon receptor stimulation, the first detectable biochemical
event is phosphorylation of the tyrosine residues present

within ITAMs. The Src-family kinases Lck and Fyn have
been implicated in this phosphorylation.14–16 Genetic evi-
dence has suggested a more critical role for Lck, as was

demonstrated in Lck-deficient cell lines where TCR stimu-
lation failed to trigger ITAM phosphorylation and down-
stream signalling17,18 while in Lck– ⁄– mutant mice, T-cell

development was blocked at an early stage (CD4– CD8–)
during thymocyte development.19 Expression of an indu-
cible Lck transgene in the Lck– ⁄– background revealed that
when expression of the transgene was switched off in the

peripheral T-cell pool the long-term survival of naı̈ve T cells
was not affected but their homeostatic proliferation was
compromised.20 Lck interacts with the cytoplasmic tail of

the CD4 and CD8 coreceptors. These receptors bind to
MHC molecules on APCs during antigen presentation,
bringing Lck in proximity to the TCR and thus facilitating

ITAM phosphorylation.21–23

In contrast to Lck, Fyn seems to plays a more specialized
role during TCR signalling since fyn-null mice exhibit a

defect that is restricted to certain stages of T-cell develop-
ment.24,25 Fyn may regulate aspects of T-cell activation by
phosphorylating key adapter molecules such as ADAP
(adhesion and degranulation promoting adapter protein,

also known as FYB (Fyn T-binding protein) or SLAP (SLP-
76-associated protein), and SKAP55 (Src kinase-associated
phosphoprotein of 55 000 MW).26–28 These molecular

scaffolds form multiprotein complexes during T-cell acti-
vation that regulate integrin clustering and adhesion.29–31

Interestingly, upon TCR stimulation, SKAP55 translocates

to lipid rafts where it interacts with Fyn implicating these
membrane domains in integrin-mediated adhesion.32

Phosphorylated ITAMs form docking sites for the tan-

dem Src homology (SH) 2 domains of the cytosolic tyrosine
kinase ZAP-70.33 Upon recruitment to the TCR, ZAP-70 is
phosphorylated, most likely by Lck, and activated.16,34–36

In humans, absence of ZAP-70 protein, as seen in certain

patients, leads to severe immunodeficiency characterized by
lack of CD8+ cells while mature CD4+ cells are unres-
ponsive to TCR stimulation.37–39 In mice, ZAP-70-null

mutants reveal a role for this kinase in both positive and
negative selection of thymocytes.40 A substrate for ZAP-70

activity is the adapter molecule LAT (linker for activation
of T cells).41 It contains multiple tyrosine residues in its
cytoplasmic domain and when phosphorylated it nucleates
multiprotein signalling complexes at the plasma mem-

brane.41–44 Studies with LAT-negative cell lines showed
that while initial tyrosine phosphorylation, including
phosphorylation of ITAMs, remained intact downstream

signalling events were blocked.45 Also, thymocyte devel-
opment was blocked within the double negative stage
(CD4– CD8–) in lat-null mutant mice.46 Proteins that

directly bind phospho-LAT include phospholipase Cc1
(PLCc1), and the adapter molecules Grb2 and Gads.41,47

The Tec-family tyrosine kinases Itk ⁄Emt and Txk ⁄Rlk are

also involved in PLCc1 regulation following TCR stimu-
lation.48,49 Another adapter molecule that participates in
these ‘signalosomes’ through its interaction with Gads is
SLP-76, which is also critical in linking early to distal TCR

signalling events.50 Formation of such signalling complexes
directs downstream events such as mobilization of intra-
cellular Ca2+ and stimulation of the Ras ⁄MAP (mitogen-

activated protein) kinase pathway.51,52 The co-ordinated
action of enzymes, adapter molecules and second messen-
gers leads to increased activity of transcription factors like

nuclear factor (NF)-AT, AP-1 and NF-jB and expression
of new proteins such as CD69, CD25 and interleukin-2
(IL-2).13 A schematic representation of major participants
during TCR signalling is illustrated in Fig. 1.

REGULATION OF LCK

The Src-family of kinases have a conserved structure

characterized by distinct functional domains (reviewed
in,53,54). It includes an amino terminal (N-terminal) motif
containing signals for attachment of lipid moieties,55–57

which in the case of Lck are a myristic acid added
cotranslationally to glycine at position 2, and palmytic acid
attached to juxtapositioned cysteine residues 3 and 5.58–65

This dual acylation is sufficient for membrane localization
of the protein.66,67 Following the membrane-targeting motif
is a region unique to individual members, which may have
specific functions, although such functions remain unclear

at present. In the case of Lck, serine and threonine phos-
phorylation sites have been identified in the unique domain.
In particular phosphorylation of serine 59, catalysed by the

extracellular regulated kinase (ERK) MAP kinase (MAPK)
cascade, is shown to have a role in determining binding of
Lck to protein partners.68–73 Downstream of the unique

region is an SH3 domain followed by an SH2 domain.
These are involved in protein–protein interactions, with the
SH3 domain interacting with sequences containing the core

P-X-X-P motif (where P is proline and X any amino acid)
while SH2 binds to phosphorylated tyrosine residues
(reviewed in 74). Through a linker sequence, the SH2
domain is connected to the catalytic (SH1) region. Two

tyrosine (Y) residues one within the ‘activation loop’ of the
catalytic domain and the other at the carboxy-terminus
(C-terminus) of the protein play critical regulatory roles

(Y394 and Y505 in murine Lck protein).75–78 When phos-
phorylated the C-terminal tyrosine interacts with the SH2

� 2004 Blackwell Publishing Ltd, Immunology, 113, 413–426

414 T. M. Razzaq et al.



domain in the same molecule promoting the folding of the
enzyme into a low activity state (‘tail-bite’ structure,
Fig. 2).79,80 In this configuration the SH3 domain of the
protein interacts with the linker segment connecting the

SH2 and SH1 modules, thus stabilizing the ‘closed’ struc-
ture.78 In contrast, autophosphorylation of the tyrosine
residue within the ‘activation loop’ induces the molecule to

adopt an ‘open’ conformation which has significantly ele-
vated enzymatic activity.76,81

The interconversion of Lck, and of other Src-family

members, is dependent on the enzymatic activity of other
proteins. Thus the cytosolic tyrosine kinase Csk can phos-
phorylate Y505 and down-regulate Lck (and other

Src-family members) activity by inducing the ‘tail-bite’
structure (Fig. 2).82–86 In contrast, the receptor-type tyro-
sine phosphatase CD45 is the principal phosphatase in
T cells able to disrupt the SH2–pY505 intramolecular

interaction and to cleave the phosphate group on Y505
(Fig. 2).87–90 Interestingly, in addition to its positive
role, CD45 can also downregulate the activity of Lck by

dephosphorylating Y394 and possibly downstream sub-
strates of Lck.91,92 It is unclear how the positive and neg-
ative actions of CD45 are balanced during the early stages

of TCR signalling. It is possible that the kinetics of Y505
dephosphorylation is faster providing a time window for
activated Lck to phosphorylate protein substrates. Alter-
natively, Y505 could be more accessible to CD45 than

Y394, in which case fewer phosphatase molecules located in
proximity could dephosphorylate Y505 and activate Lck,
while at high local concentrations of CD45 this advantage

may be lost resulting in signal inhibition.

LIPID RAFT DOMAINS

Attachment of myristate and palmitate groups at the
N-terminus not only promotes membrane anchorage of Lck
but also governs its partitioning into lipid rafts.58,60,63 Lipid

rafts are considered as specialized microdomains within the
plane of the plasma membrane with a lipid composition
that is different from the glycerophospholipid-rich bilayer
of the surrounding membrane. They are instead rich in

glycosphingolipids, sphingomyelin and cholesterol.93–97

One of their properties, widely used for purification pur-
poses, is their insolubility during extraction of cells with

cold non-ionic detergents, albeit different detergents may
vary in their ability to solubilise lipid raft membranes.98
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Figure 1. Signalling cascades stimulated by the TCR. Schematic depiction of key protein components of major signalling

cascades that are stimulated following recognition of antigen by the TCR. Differential colouring identifies biochemical events

and proteins with distinct function.
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Because of this property and their distinct lipid composi-
tion, other names given to these insoluble membranous

preparations are detergent-resistant membranes (DRMs),
glycosphingolipid-enriched membranes (GEMs), and
detergent-insoluble glycolipid-enriched membranes (DIGs).

Raft formation (or disassembly) in cell membranes could,
in part, be regulated by the type and concentration of lipids
present in the bilayer and in a manner similar to raft for-
mation seen in model membranes where sphingolipids

assemble to form distinct areas that are resistant to non-
ionic detergent extraction.99 Inclusion of cholesterol in
these artificial lipid bilayers stabilizes the sphingolipid-

formed structures.99 Similarly, in living cells, pharmaco-
logical extraction of cholesterol from the plasma membrane
results in disruption of lipid rafts, indicating that choles-

terol is a critical structural component.100–102 In the past
few years, sophisticated techniques such as fluorescence
resonance energy transfer (FRET),103 fluorescence recovery

after photobleaching (FRAP),104 single particle tracking
(SPT)105,106 and chemical cross-linking,107,108 among oth-
ers, have provided support for the existence of plasma
membrane domains in unperturbed cells. These techniques,

by providing resolution at the nanometre scale, have sug-
gested that lipid raft domains could be rather small struc-
tures, possibly up to 25 nm in diameter, a size much smaller

from what was initially measured in detergent-insoluble
preparations.105 Therefore, detergent extraction almost
certainly induces coalescence of rafts into bigger conglom-

erates. In addition, in intact cells it is generally assumed

that lipid raft domains are not rigid structures but instead
they are dynamic with lipid molecules rapidly exchanging

between raft and non-raft membrane. It is unknown if
de novo formation of lipid rafts takes place at the plasma
membrane by the spontaneous assembly of resident lipids.

In mammalian cells, the study of proteins which are known
to target to lipid rafts revealed that incorporation of newly
synthesized proteins into DRMs is first visible in the Golgi.
Raft-containing vesicles subsequently move to the plasma

membrane,109 a process which may involve the actin cyto-
skeleton.110 One report suggests that in T cells, lipid raft
domains could be constitutively assembled by the actin

cytoskeleton into larger patches, which can function as
carriers for ferrying molecules to the T-cell ⁄APC contact
site during antigen presentation.111

Detergent insolubility and low buoyancy, which allows
flotation on dense gradients, have been exploited in order to
purify DRMs and to study their protein content in a variety

of cell types including T lymphocytes. Initial limited analysis
of proteins copurifying with the low-density, detergent-
insoluble fraction indicated enrichment of signalling pro-
teins particularly those modified by addition of lipids. Such

proteins were members of the Src-family of kinases,
heterotrimeric GTP-binding proteins and small GTPases,
and glycosylphosphatidylinositol (GPI)-anchored recep-

tors.93,96 Lately, it has become apparent that a new group of
signalling proteins also localises to membrane rafts. These
are transmembrane adapters, which form signalling com-

plexes at the plasma membrane. They contain two cysteine
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residues as part of a C-X-X-C motif (C is cysteine and X any
amino acid) that immediately follows the transmembrane
segment. These membrane-proximal cysteines become pal-
mitylated and are critical for targeting the protein to lipid

rafts. Members of this group identified so far include
LAT,112 PAG ⁄Cbp (protein associated with GEMs ⁄Csk
binding protein),113,114 NTAL ⁄LAB (non-T-cell activation

linker ⁄ linker for activation of B cells)115,116 and LIME (Lck-
interacting molecule).117,118 In the case of LAT, struc-
ture ⁄function experiments have documented the importance

of the C-X-X-C motif since a LAT mutant, where the two
membrane-proximal cysteines were substituted, did not
partition into DRMs and failed to support downstream

signalling in response to TCR stimulation.112,119

In recent studies, proteomic analysis of purified DRM
fractions was employed to produce a map of protein com-
ponents associated with these domains. In the most detailed

study so far published by Foster et al.120 quantitative pro-
teomics was used to specifically identify proteins whose
association with the DRM from HeLa cells was sensitive to

cholesterol-depleting agents. Because depletion of choles-
terol disrupts lipid rafts, the authors reasoned that in con-
trast to contaminants resulting from the purification

protocol, association of authentic raft components would
be susceptible to treatment of cells with cholesterol
extracting agents. Using this methodology, they identified
241 polypeptides, the majority of which were signalling

proteins, but a number of structural proteins were found as
well. Association of cytoskeletal proteins was also detected
in detergent-insoluble rafts isolated from neutrophils.121

Thus, this analysis supports the supposition made by earlier
studies that lipid rafts may preferentially concentrate sig-
nalling molecules.

Since a functional role for lipid rafts during TCR sig-
nalling has been suggested (see section below), groups
including our own have sought to identify proteins resi-

dent in DRM preparations from T cells (Fig. 3 and
Table 1).122,123 For this purpose, low density, detergent-
resistant preparations from the human leukaemic T-cell line
Jurkat, were resolved by one- or two-dimensional (D) gel

electrophoresis and individual protein bands (or spots in
the case of 2D-gels) were analysed by mass spectrometry.
We resolved detergent-resistant lipid rafts isolated from

50 · 106 Jurkat cells by 2D-gel electrophoresis and proteins
were visualized by silver staining (Fig. 3). Individual spots,
indicated by arrows, were excised, digested with trypsin,

and analysed by mass spectrometry. A list of protein spots
identified by their peptide ‘fingerprint’ is shown in Table 1.
Taken together, the results from the above studies on Jur-
kat lipid rafts (122,123 and our own results) reveal an

enrichment of signalling and cytoskeletal proteins in these
preparations. However, the presence of mitochondrial and
nuclear proteins shows that unrelated polypeptides can

copurify with this method of raft preparation as there is no
evidence today that nuclear and mitochondrial membranes
contain microdomains. Therefore, caution should be exer-

cised when proteins are assigned as raft-associated. On the
other hand, while proteins with high affinity for raft
domains are resistant to detergent extraction, molecules

that are loosely associated with these domains may be
sensitive to detergent extraction and therefore lost during
purification. An example of weakly associated proteins
whose partition to lipid rafts under certain conditions is

sensitive to detergent extraction could be the TCR (see
discussion below). Therefore, although detergent insolu-
bility has been, and will continue to be, a valuable tool to

study rafts and their content, more sophisticated method-
ologies for raft purification must be developed for the field
to move forward.

Another question addressed by Bini et al. in their study
using 2D-gel analysis was how the protein composition of
DRMs changed following stimulation of the TCR. Com-

parison of 2D-gel protein maps corresponding to different
time points of stimulation up to 15 min, showed that
TCR stimulation induces substantial changes in their pro-
tein composition.122 Intensity of some protein spots was

reduced over the stimulation period, possibly indicating
their exit from lipid rafts, while the silver stain signal of
another group of proteins intensified indicating an increase

in their affinity for raft domains.122 These changes could
reflect biological processes initiated by the stimulated TCR,
which take place in membrane microdomains.

LIPID RAFTS AND TCR SIGNALLING

As mentioned above the tyrosine kinase Lck and the
adapter molecule LAT constitutively reside in raft domains,

a process that requires S-acylation of two membrane-
proximal cysteines.58,60,124 Mutant versions of the proteins
that lack these cysteines but which remain attached to the

membrane, in the case of Lck by fusion to a transmembrane
domain, fail to partition into DRMs and lose their capacity
to couple the TCR to downstream signalling cascades

indicating that lipid raft localization is crucial for the sig-
nalling function of Lck and LAT.63,112 Also, recently it has
been suggested that following TCR stimulation Lck-

containing microdomains125 and LAT-containing micro-
domains126 are recruited to the site of TCR engagement.

An ever-growing list of signalling molecules, apart from
Lck and LAT, are shown to transiently translocate

to membrane microdomains after stimulation of the
TCR.127–134 The CD4 coreceptor is targeted to lipid rafts
through its interaction with Lck and its palmitylation on

two membrane-proximal cysteine residues.135,136 CD4 sti-
mulation is shown to induce lipid raft aggregation and to
enhance TCR signalling partly through the induction of

molecular clustering at the immunological synapse.136,137

The affinity of the TCR itself for lipid rafts seems to
increase following its stimulation, as components of the

TCR complex such as the f and e chains and their phos-
phorylated ⁄activated forms copurify with DRM fractions
isolated from stimulated cells.128,138 Recently, it was shown
that T-cell activation by super-antigens is mediated by

signalling events occurring in membrane microdomains.139

In addition, confocal microscopy has revealed colocaliza-
tion of TCR molecules with GPI-anchored receptors or

with the ganglioside GM1, both of which are used as
markers of membrane rafts.140 GM1 is the target of cholera
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toxin B subunit (CTB) and has been extensively used in
visualizing rafts and their potential colocalization with

surface molecules using microscopy. However, in a recent
report the authors using FRET analysis of GPI-linked
proteins and CTB in Jurkat T cells were unable to detect

accumulation of lipid rafts in the area of stimulated TCR
complexes.141 Furthermore, it is possible that polarization
of lipid rafts during activation is T-cell subset specific since
unlike CD4+ T cells, primary human CD8+ cells did not

show polarization of lipid rafts when stimulated via their
TCR and CD28 receptors.142 How the affinity of the TCR
for lipid raft domains increases upon its stimulation

remains enigmatic and as of today there is no direct evi-

dence linking induction of signalling pathways with
increased affinity of the TCR for detergent-insoluble lipid

rafts. Some experiments have suggested that the TCR could
constitutively associate with raft domains albeit with
reduced affinity. This interaction is sensitive to extraction

with strong non-ionic detergents like Triton-X-100 but more
resistant to mild detergents such as Brij 98.128,140,143 Cross-
linking may result in the TCR becoming more resistant to
detergent extraction by increasing its affinity for lipid rafts.

The cell cytoskeleton could be involved in this process.144

The importance of lipid rafts in TCR signalling has been
suggested from experiments where T cells were treated with

cholesterol-depleting agents such as methyl-b-cyclodextrin
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(MbCD). Such agents disrupt raft domains and although
initial reports showed inhibition of all TCR-generated sig-

nals in treated cells138 more detailed studies subsequently
revealed that such agents have more complex effects on cells
by inhibiting certain signalling pathways but stimulating

others.102 Furthermore, recent work indicated that MbCD
depletes intracellular Ca2+ stores independently of its effects
on lipid raft integrity.145 Therefore, results obtained using
cholesterol-depleting agents should not be the sole sup-

portive evidence when arguing for a role for lipid raft do-
mains in a particular biological process.146

Other molecules known to participate in TCR signalling,

that are transiently recruited to lipid rafts after stimulation,
are ZAP-70128,138,140 and PLCc1.128,138,147 Interestingly,
phosphatidyl inositol 4,5 bisphosphate (PIP2), the substrate

for PLC, is enriched in DRMs suggesting that these

microdomains may represent the major sites of PLC
action.148,149 Activation of PLCc1 in lipid rafts may be

facilitated by the recruitment of SLP-76150 another adapter
molecule shown to have a critical role in the regulation of
downstream signalling cascades.151 Grb2 and SOS proteins

which regulate Ras activity are also recruited45 as is the
theta isoform of protein kinase C (PKCh), which plays a
critical role in T-cell activation by stimulating the NF-jB
pathway.152,153 A role for lipid rafts during costimulation

has been demonstrated in T cells where CD28 engagement
resulted in the redistribution of rafts to the site of TCR
engagement thus amplifying and ⁄or prolonging the TCR-

generated signal.154,155 Based on these results a model of
activation has been proposed where TCR stimulation
induces aggregation of rafts and phosphorylation of the

receptor by resident Lck molecules, consequentially leading

Table 1. Proteins copurifying with detergent-insoluble membranes from T cells

Spot no. Identified protein

MW

(’000) pI

Swiss-Prot ⁄TrEMBL

identification no.

1 Rho GDP dissociation inhibitor 2 (Rho-GDI beta) 23 5Æ1 P52566

2 Lymphocyte specific protein LSP1 37 4Æ7 P33241

5 ZAP-70 kinase (fragment) 70 7Æ8 P43403

6 Enolase 1a 47 7 P06733

7 Flotillin 2 42 5Æ2 Q14254

8 Protein disulphide isomerase ER60 57 5Æ9 P30101

9 Sorbin & SH3 containing protein (fragment) 100 7 Q9BX64

10 Heat-shock protein 60 (HSP60) 60 5Æ5 P10809

11 Transformation up-regulated nuclear protein 51 5Æ2 Q07244-2

12 Similar to ATP synthase, H+ transporting

mitochondrial F1 complex

56 5Æ3 P06576

14 Actin 44 5Æ7 P02570

15 UV excision repair protein RAD23 homologue B 43 4Æ8 P54727

17 ATP synthase b chain mitochondrial precursor 56 5Æ4 P06576

18 Dynactin 2 44 5Æ1 Q13561

19 Heterogenous nuclear ribonucleoprotein F 46 5Æ4 P52597

20 Heterogeneous nuclear ribonucleoprotein F 46 5Æ4 P52597

21 Capping protein 33 5Æ4 P47756

22 Nucleophosmin 32 4Æ7 P06748

23 Urokinase-type plasminogen activator receptor 32 5Æ8 Q03405

24 F1F0-type ATP synthase D chain 18 5Æ2 O75947

25 Similar to protease (prosome, macropain) 26S subunit 25 5Æ4 Q81V79

26 Heat shock protein (HSP60) (fragment) 60 5Æ5 P10809

27 Ribosomal protein S14 12 11 P06366

30 Endoplasmic reticulum lumenal protein ERp29 29 6Æ8 P30040

31 Telomerase reverse transcriptase (fragment) 42 5Æ3 Q8NG38

34 Triose phosphate isomerase 27 6Æ5 Q8WWDO

35 Triose phosphate isomerase 27 6Æ5 Q8WWDO

36 Cyclophilin B 18 8Æ2 P23284

37 Heterogeneous nuclear ribonucleoprotein A1 34 9Æ2 AAH02355

38 Cyclophilin A 18 7Æ7 P05092

41 Glyceraldehyde-3-phasphate dehydrogenase 36 8Æ3 P00354

42 Nebulette protein 82 8Æ5 O76041

45 C2H2 type zinc finger protein 68 8Æ8 O75820

48 P32 ⁄ inhibitor of growth family member 1 like 33 5Æ1 O95698

50 Tropomyosin 30 5Æ1 P09493

51 Chloride intracellular channel protein 1 27 5Æ1 O00299

53 Aldehyde dehydrogenase 1 31 5Æ5 P00352

54 Haematopoietic lineage-specific protein HS1 54 4Æ7 P14317

55 Glucose regulated protein 72 5Æ1 P38646
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to the assembly of functional ‘signalosomes’. In addition to
their role in costimulation, lipid raft function is regulated
by the expression of negative regulators of TCR signalling,
as shown for the cytotoxic T lymphocyte antigen-4

(CTLA-4) receptor. Coligation of CTLA-4 strongly inhib-
ited the upregulation in lipid raft expression following sti-
mulation of cells via the TCR and CD28 receptors.155

Furthermore, a pool of CTLA-4 expressed on the surface of
activated T cells is concentrated in DRM preparations
where it was found to associate with the TCRf chain,

suggesting that CTLA-4 possibly functions by controlling
TCR accumulation ⁄retention in raft domains.156,157 Col-
lectively, these results suggest that negative regulators may

limit T-cell activation by, at least in part, modifying lipid
raft function. Interestingly, LAT was found to selectively
associate with the open form of Lck in lipid rafts, an
interaction that might have functional consequences during

TCR signal transduction.158

Exclusion of CD45 from lipid rafts may favour tyro-
sine phosphorylation of protein substrates in these

domains.130,159 However, some reports have suggested that a
small fraction of the phosphatase is present in DRMs and
that the ectodomain of themolecule has a role in determining
its membrane distribution.160,161 Therefore, the levels of

CD45 present in raft microdomains, and possibly its redis-
tribution in and out of these domains during T-cell activa-
tion, may regulate the strength of the TCR signal by

determining the levels of active Lck. Interestingly, studies on
peripheral blood T cells isolated from patients with the
autoimmune disease systemic lupus erythematosus, revealed

that a higher proportion of CD45 associates with GM1-
containing raft domains in these cells, whichmay be linked to
their ‘hyperactive’ phenotype.162–164 On the other hand,

strong accumulation of CD45 in lipid rafts, as achieved
experimentally by expressionof a raft-targetedmutant, could
have the opposite effect by inhibiting TCR signalling.165

Partitioning of PAG ⁄Cbp (and possibly of LIME) to

raft domains could maintain the raft-associated Lck pool
in a folded inactive state in unstimulated cells (Figs 2
and 4).102,113,158,166,167 The adapter protein PAG ⁄Cbp is
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Figure 4. A two-step model for activation of the TCR in lipid rafts. In resting T cells, the TCR has low affinity for lipid raft

membrane and Lck in lipid rafts is in its folded-inactive conformation due the action of the PAG ⁄Cbp-Csk molecular

complex. Antigenic stimulation of the TCR may increase its affinity for lipid rafts, a step which by itself may not be sufficient

to initiate signalling. A second step may be required in which the activity of Lck in lipid rafts is transiently elevated, possibly

after dephosphorylation of PAG ⁄Cbp and dissociation of Csk, and ⁄or dephosphorylation of Lck by a tyrosine phosphatase.

Active Lck would then be able to phosphorylate the ITAMs and initiate signal transmission. Lck may also rephosphorylate

PAG ⁄Cbp leading to new recruitment of Csk and termination of the signalling cycle.
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tyrosine phosphorylated in unstimulated T cells and
recruits the cytosolic kinase Csk, a negative regulator of
Src-family kinase activity (Fig. 2).113,114 PAG ⁄Cbp phos-
phorylation is most likely caused by the action of Fyn,168

which is active in lipid rafts102 and of Lck molecules that
first enter raft domains from the surrounding membrane.158

Therefore, TCR phosphorylation in lipid rafts may not

only require raft aggregation but also a transient increase
in the activity of raft-associated Lck. In this scenario,
a tyrosine phosphatase must be involved capable of

de-phosphorylating PAG ⁄Cbp and shedding Csk from
lipid rafts, and ⁄or dephosphorylation of the inhibitory
C-terminal tyrosine of Lck. Identifying this phosphatase

will undoubtedly shed new light into the mechanisms of
TCR signalling. Rephosphorylation of PAG ⁄Cbp by active
Lck may cause reattachment of Csk and termination of
signal transduction (Fig. 4). In support of this hypothesis, it

was shown that in human T cells stimulation of the TCR
induces the transient dephosphorylation of PAG ⁄Cbp
and exit of Csk from raft domains.113,169 Also, TCRf
phosphorylation and NF-AT production was increased
in Jurkat T cells expressing dominant-negative Csk
mutants.169,170 Interestingly, in murine CD4+ T cells, it was

shown that cross-linking of the TCR with CD4 rapidly
induces the activity and subsequent translocation of a small
fraction of Lck from detergent-soluble to detergent-resist-
ant membrane. This was followed by an increase in the

activity of Fyn residing in DRMs, suggesting cross-regu-
lation of these two kinases in raft domains.171,172 This
transient increase of Src activity in raft membrane could

facilitate activation of the TCR but in addition, increased
Fyn activity may assist in reformation of the PAG ⁄Cbp-
Csk inhibitory complex.

CONCLUSIONS AND FUTURE

CONSIDERATIONS

In the past few years, membrane microdomains have
become a popular subject of study across many disci-
plines. A substantial volume of work, which includes
functional experiments and proteomics analysis, points to

an important role for these domains as regulators of
signal transduction pathways in lymphocytes. Their
importance in signalling most likely reflects their ability to

compartmentalise proteins at the plasma membrane and
upon receptor stimulation to facilitate the assembly of
signalling complexes (‘signalosomes’). However, despite

the substantial progress made so far, critical questions
remain unanswered. Hence, the structure of lipid rafts
remains elusive, as is potential changes in their size and

protein ⁄ lipid composition during stimulation or through
the different stages of cell differentiation. One approach
that can potentially provide useful information could be
the systematic analysis of detergent-resistant membrane

preparations using proteomics. Such an analysis could
reveal which proteins and when move in and out of rafts
during receptor signalling, and in the case of T cells

during TCR stimulation. Also, such analysis could
potentially identify post-translational modifications

(i.e. phosphorylation, lipidation, ubiquitination) of DRM-
associated proteins induced by receptor stimulation, which
in certain cases may be indicative of the signalling activity
of the protein. Information assimilated from the proteo-

mics analysis can form the basis for constructing a ‘map
of events’ taking place in lipid rafts after TCR
stimulation.

It is also unknown if lipid rafts represent a homogeneous
population or whether different types of rafts exist, poten-
tially performing distinct tasks. Studies in leucocytes sug-

gest that structurally and functionally diverse membrane
domains may exist with a role in determining rear-front
polarity during cell movement.173–176 Further progress in

this area will critically depend upon the development of new
methods, as well as in the identification of specific raft
markers which will allow us to visualize and track lipid rafts
in living cells and possibly discriminate between different

subtypes of microdomains. Understanding in detail how
lipid rafts operate in T cells will not only refine our cur-
rent theories of how TCR transduces signals, but will

undoubtedly have implications in other fields of biology as
well.
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