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SUMMARY

Serine proteinases with trypsin-like (tryptase) and chymotrypsin-like (chymase) properties

are major constituents of mast cell granules. Several tetrameric tryptases with differing

specificities have been characterized in humans, but only a single chymase. In other species

there are larger families of chymases with distinct and narrow proteolytic specificities.

Expression of chymases and tryptases varies between tissues. Human pulmonary and

gastrointestinal mast cells express chymase at lower levels than tryptase, whereas rodent

and ruminant gastrointestinal mast cells express uniquely mucosa-specific chymases. Local

and systemic release of chymases and tryptases can be quantified by immunoassay, providing

highly specific markers of mast cell activation. The expression and constitutive extra-

cellular secretion of the mucosa-specific chymase, mouse mast cell proteinase-1 (mMCP-1), is

regulated by transforming growth factor-b1 (TGF-b1) in vitro, but it is not clear how the

differential expression of chymases and tryptases is regulated in other species. Few native

inhibitors have been identified for tryptases but the tetramers dissociate into inactive subunits

in the absence of heparin. Chymases are variably inhibited by plasma proteinase inhibitors

and by secretory leucocyte protease inhibitor (SLPI) that is expressed in the airways.

Tryptases and chymases promote vascular permeability via indirect and possibly direct

mechanisms. They contribute to tissue remodelling through selective proteolysis of matrix

proteins and through activation of proteinase-activated receptors and of matrix metallo-

proteinases. Chymase may modulate vascular tissues through its ability to process

angiotensin-I to angiotensin-II. Mucosa-specific chymases promote epithelial permeability

and are involved in the immune expulsion of intestinal nematodes. Importantly, granule

proteinases released extracellularly contribute to the recruitment of inflammatory cells and

may thus be involved in innate responses to infection.

INTRODUCTION

Mast cells are particularly rich in neutral serine endo-

peptidases that are stored in and released from the secretory

granules. At the time of writing this review, over 50 mast

cell-derived serine endopeptidases in 11 species have been

identified (see the SWISS-PROT and TrEMBL databases;

ref. 1). The vast majority of these enzymes have trypsin- or

chymotrypsin-like activities that are highly selective for

different target substrates. The purpose of this review is to

describe some recent developments in our understanding of

the functions of these abundant proteolytic enzymes and

how their expression is regulated, with particular emphasis

on mast cells at mucosal surfaces of the lung and gut.

For convenience, the mast cells found in the lamina

propria or within the epithelium of mucosal surfaces will be

referred to as mucosal mast cells (MMC).2 When compared

to serosal mast cells (SMC) or to connective tissue mast cells

(CTMC) in skin and skeletal muscle, MMC in rodents are

morphologically3 and functionally4 atypical, with distinctive

fixation and histochemical properties3 as well as a distinc-

tive content of granule proteinases.2 Although the pheno-

typic and functional differences between MMC and CTMC

are less distinct in humans, human mast cells are hetero-

geneous in their expression of granule proteinases in that

there is differential expression of tryptase (with trypsin-like
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activity) and chymase (with chymotrypsin-like activity) by

mast cells in different tissues.5 This heterogeneous expres-

sion of granule proteinases may be regulated by the

local environment in a ‘tissue-specific’ manner2,6,7 and by

differences in genetic background, as demonstrated between

inbred strains of mice.7,8

The tissue specificity of proteinase expression by mast

cell subsets6,9 suggests that specific inhibitors and target

substrates for the proteinases vary from tissue to tissue.

Thus, proteinases released by MMC located within gut

epithelium during nematode infection10 are initially likely to

encounter lower concentrations of plasma-derived pro-

teinase inhibitors such as a2-macroglobulin and serpins11

when compared with CTMC in the vicinity of small blood

vessels. Extravasation of plasma that is rich in inhibitors

would rapidly inactivate chymases released by CTMC, but

it may take longer for the inhibitors to diffuse into the

epithelium and to reach sequestered MMC. The in vivo,

extracellular functions of mast cell granule proteinases will

therefore be governed by:

’ the specificity of the proteinase;
’ the efficacy of inhibition and the ratio of proteinase to

inhibitor;
’ the solubility and stability of the proteinase itself; and
’ the accessibility of target substrates and their

susceptibility to proteolysis.

MMC play key roles in airway and gastrointestinal

pathologies,12 including atopic asthma13 nematode infec-

tions14 stress-induced enteropathies15 and reperfusion

injuries.16 MMC both infiltrate and migrate through

mucosal epithelia,17 which is consistent with data suggesting

that they are involved in the pathogenesis of inflammatory

changes within the epithelium itself.18 Such a notion is

supported by recent studies showing that targeted deletion

of the MMC-specific chymase, mouse mast cell proteinase-1

(mMCP-1),19 expressed by predominantly intraepithelial

mast cells, leads to delayed expulsion of the intestinal nem-

atode, Trichinella spiralis14 which is, itself, an intra-

epithelial parasite. Furthermore, the range of mast cell

granule serine proteases with distinct chymotryptic, tryptic

and dual tryptic/chymotryptic specificities (Table 1) suggest

that these cells have diverse and potentially significant

proteolytic functions.

VARIANT EXPRESSION OF GRANULE

PROTEINASES AND PROTEOGLYCANS

IN MAST CELLS

Classical histochemistry in the 1950s and 1960s established

that CTMC were rich in esterases,47 and rat mast cell

proteinase-1 (rMCP-1) was the first chymase to be isolated

from CTMC granules.48,49 A second, much more soluble rat

mast cell chymase, originally described as an intracellular

Table 1. Properties of selected mammalian mast cell granule serine proteinases

Species Proteinase Specificity SWISS-PROT MW* PI* Reference

Man Tryptase-aI T P15157 27 701 6.20 20

Tryptase-bI T Q15661 27 444 6.30 21,22

Tryptase-bII T P20231 27 458 6.46 22,23

Tryptase-cI T Q9NRR2 30 230 6.24 24,25

Chymase Ca P23946 25 030 9.60 26,27

Cathepsin G T/C P08311 25 441 (Ile21–Ser244) 11.51 (Ile21–Ser244) 28

Mouse MCP-1 C P11034 24 956 8.46 29

MCP-4 C P21812 25 146 9.67 30

MCP-5 Ca P21844 25 343 9.51 31,32

MCP-6 T P21845 27 483 6.21 33

MCP-7 T Q02844 27 411 5.69 34

Transmembrane

tryptase

T Q9QUL7 29 788 5.88 25

Rat MCP-1 C P09650 25 191 (Ile21–Asp247) 9.77 (Ile21–Asp247) 35

MCP-2 C P00770 25 044 8.70 36,37

MCP-6 T P50343 27 473 5.90 38

MCP-7 T P27435 27 432 5.89 39,40

Dog Tryptase T P15944 27 153 6.37 41

Chymase Ca P21842 25 461 9.93 42,43

Sheep Tryptase-1 T Q9XSM1 27 376 5.52 9

Tryptase-2 T Q9XSM2 27 494 5.68 9

MCP-1 T/C P80931 24 952 8.90 44

Cow Tryptase T Q29464 27 302 8.12 45

Duodenase{ T/C P80219 25 051 9.03 46

*For theoretical core protein.

{Detected in bovine intestinal mast cells (A. D. Pemberton & T. S. Zamolodchikova, unpublished).

Ca, a-chymase; C, other chymase; MCP, mast cell proteinase; MW, molecular weight; PI, isoelectric point; T, tryptase.
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‘group-specific’ protease and isolated from intestinal

mucosa,36 was subsequently shown to be of mast cell

origin50 and was categorized as rMCP-2. A wide variety of

mast cell granule chymases have now been identified and

in rodents they are numbered (Table 1) according to the

chronology with which they were discovered. Studies on

phylogeny from aligned amino acid sequences show that

rMCP-1 and -2 belong to the beta chymase group and are in

a different evolutionary branch from the family of mast cell

granule alpha chymases.51 The latter include human52 and

dog43 chymases, rat mast cell proteinase-5 (rMCP-5)40

and mouse mast cell proteinase-5 (mMCP-5);31,53 (see below

and Table 1).

A trypsin-like histochemical activity was also described

in mast cells48 and human tryptase was later purified from

pulmonary mast cells.54 This neutral proteinase is unusual

in that it functions as a tetramer (see below) that is stabilized

by granule heparin13 and is ubiquitously expressed in

human (<35 pg/cell), canine and ruminant mast cells,9,13,55

but is selectively expressed in subpopulations of mast cells in

rodents.56 Tryptases, like chymases, comprise a large family

of genes24,57 and there is increasing evidence of differ-

ent tryptase specificities as well as selective expression of

tryptase genes.24 Sequencing of human chromosome 16p

has revealed at least three functional tryptase genes, with

tryptases aI, aII and bI, bII and bIII, and cI, cII and

transmembrane tryptase, being apparent allelic variants

at these three loci.21,24,25 Other neutral proteinases in mast

cells include cathepsin G58 (Table 1) and a tryptase-like

monomer, dog MCP-3.59

Heterogeneous expression of granule proteinases by

mast cell subpopulations was initially described in rodent

mast cells where it was shown, using specific antibodies,

that rat MMC expressed the highly soluble beta chymase

rMCP-2, but lacked the insoluble and strongly basic beta

chymase, rMCP-1.60 Conversely, CTMC contain rMCP-1

and lack rMCP-260 and this was later confirmed through

analysis of mRNA transcripts61 and by immunohisto-

chemistry and two-dimensional sodium dodecyl sulphate–

polyacrylamide gel electrophoresis (SDS–PAGE) analysis

of isolated rat MMC.62 An homologous, soluble chymase,

mMCP-1,29 is uniquely expressed in mouse MMC that

are predominantly located within mucosal epithelia.63–66

Similarly, in normal sheep, sMCP-1, a dual-specific

chymase/tryptase (Table 1) is expressed by MMC in the

gut, but not by mast cells in the adjacent submucosa.9 Thus,

in rodents and sheep, intestinal MMC have a distinct

proteinase phenotype.

Levels of mMCP-1, rMCP-2 and sMCP-1 are substan-

tially increased in nematode parasite infections of the gut

where there is hyperplasia of MMC.67–69 Nematode infec-

tion is also associated with altered profiles of expression of

proteinases by MMC such that, in mouse, mMCP-4, -5, -6

and -9 are expressed to varying degrees at different time-

points after infection.70,71 Rat MMC may also express the

putative proteinases, rMCP-3, -4, -8, -9 and -10,40,72 and low

levels of the homologue of human chymase, rMCP-538 but

they apparently lack tryptase.38,56 An interesting subtext

to the concept of ‘tissue-specific’ expression of mast cell

proteinases, is evidence of strain-specific expression of

the putative chymase, mMCP-2,7,71 and this reflects the

probable differential expression of transcription factors in

different strains of mice.8

Analysis of mast cell granule proteinases in human

tissues indicated that while all mast cells expressed tryptase,

the majority of mast cells in the gut express relatively little

chymase73 and similar observations were reported for

canine enteric mast cells.74 However, more recent studies

suggest that the majority of human enteric mast cells do,

in fact, contain chymase.75,76 The degree of expression of

chymase relative to tryptase in the human gastrointestinal

tract may therefore be low, but there does not appear to be

a unique MMC-specific proteinase phenotype in human

intestine. Mast cells in the mucosae of human, rat, canine

and ruminant intestines, when compared with populations

in other tissues, are relatively numerous and in the dog this

is reflected by the higher concentrations of tryptase in

intestine than in any other organ.77 In contrast, mast cells in

normal mouse intestine are rare.78

Mast cells are also rare in pulmonary parenchyma and

airways in the mouse64 and are located predominantly

around the main-stem bronchi and have a CTMC-like

phenotype (Fig. 1).79 Thus, apart from the occasional

intraepithelial MMC expressing mMCP-1,64 granule pro-

teinases released in mouse lung will probably be from mast

cells around the major airways. This contrasts with larger

vertebrates, including primates, where mast cell density

in the peripheral bronchioles is substantially greater than

around the conducting airways (Fig. 1).80–82 In rats, sheep,

cattle and humans pulmonary mast cells all express

tryptase,9,38,56,83,84 but the expression of chymase is not

ubiquitous in human lung;85 a significant proportion (73%)

of mast cells close to glands contain chymase whereas, in

smooth muscle, this decreases to 14%.85 Chymase expres-

sion in rat and ovine lung is modified by nematode

infection86,87 and by allergic sensitization and challenge.88

In addition to the proteinase heterogeneity described

above, there is heterogeneity of granule glycosaminoglycans

(GAG).3 For example, rat MMC granules contain chon-

droitin sulphates E and di B, and dermatan sulphate,89,90

and human MMC apparently contain heparin with a lower

degree of sulphation than that of the granule heparin in

CTMC.3 The presence of proteoglycans, such as heparin,

in the granules is essential for the storage of chymases and

histamine, as demonstrated by the absence of these granule

constituents in heparin-deficient mice.91,92 Heparin is also

a key contributor to the stabilization of the tryptase tetra-

mer that, in the absence of heparin, dissociates into four

non-functional subunits (see below).

MMC are unaffected by the targeted deletion of the

heparin-synthesizing enzyme N-sulphotransferase, whereas

CTMC are unable to store mMCP-4 and -5.91 This is

consistent with modelling studies which suggest that the

negative charge of GAG side-chains on the proteoglycans

regulate the storage of those neutral serine proteinases with

positively charged domains.93 Thus, in terms of function,

the relationship between negatively charged proteoglycans

and positively charged residues on the proteinases are
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of critical importance.94 This was further confirmed

when, during immunoglobulin E (IgE)-mediated systemic

anaphylaxis, it was shown that mMCP-6, a tryptase with

a lysine/arginine-rich domain distant from its active site,

was retained in the vicinity of degranulated mast cells in

association with granule heparin.95 In contrast, the tryptase,

mMCP-7, that lacked this positively charged domain, was

released from the cells and was found in the bloodstream.95

The lack of heparin in rodent MMC may also account for

the high solubility of mMCP-1 and rMCP-2 and for the

rapid, concomitant release of rMCP-2 and GAGs into peri-

pheral blood during systemic anaphylaxis.96 The hetero-

geneity of the GAGs of mast cells at sites of inflammation,97

as well as the strong net positive charge of most chymases

(Table 1) and the positively charged domains on tryptases,

indicate therefore that patterns of storage and release of

these proteolytic enzymes will differ from tissue to tissue.

SYSTEMIC RELEASE OF MAST CELL GRANULE

PROTEINASES, MARKERS OF MAST CELL

ACTIVATION

The expression of rMCP-2 in the gastrointestinal tract and

the fact that it is such a soluble and abundant enzyme67

suggested that, when released from MMC granules during

intestinal allergic responses, it might be detectable system-

ically in peripheral blood. This was confirmed experi-

mentally in rats infected with enteric nematodes,98 and

enzyme-linked immunosorbent assays (ELISA) were devel-

oped to quantify rMCP-2, mMCP-1 and sMCP-1 in

peripheral blood and lymph10,99,100 and established the

involvement of MMCs in intestinal allergic responses101

in reperfusion injuries16 and in enteric neuroendocrine res-

ponses.102–104 Levels of mMCP-1 and rMCP-2 in the blood

of nematode-infected rodents can reach 5–10 mg/ml,10,99

and up to 1 mg of rMCP-2/ml of plasma has been detected

in rats during anaphylactic shock.101

Antibodies that permit the detection of a-tryptase were

initially used to quantify tryptase in plasma from allergic

patients105,106 and more recently it has proved possible,

using different monoclonal antibodies, to distinguish

between a- and b-tryptases.106 Elevated levels of tryptase

have been reported in bronchoalveolar lavage fluid,107,108

synovial fluid,106 tears109 and nasal secretions.110 These

levels are rarely >500 ng/ml as compared with the micro-

gram quantities of mMCP-1 and rMCP-2 in rodent plasma.

In some instances the locally detected release of tryptase

correlated well with other signs of allergic responses, such

as vascular permeability.110 The tryptase assay may be less

reliable in the retrospective diagnosis of systemic allergic

responses when compared with measurement of plasma

histamine levels,111 although systemic histamine levels may

indicate the participation of non-mast cell effector cells such

as basophils. However, the timing of tryptase measurement

may be crucial as reliable and repeatable increases in plasma

tryptase have been reported 1 hr after allergen inhala-

tion,112 and release of tryptase into the gut lumen appears to

be a reliable indicator of both cold pain stress and, in food-

allergic patients, response to antigen challenge.113 Because

tryptase is apparently unaffected by plasma proteinase

inhibitors,114 the tryptase assay can be used postmortem

although, again, other parameters seem more reliable for

retrospective diagnosis of anaphylactic deaths.115 Only low

levels of tryptase have been described in human basophils116

and it is clear that when tryptase is released into peripheral

blood, the source is mast cells.117

MECHANISMS GOVERNING THE VARIANT

EXPRESSION OF GRANULE PROTEINASES

The mechanisms underlying differential expression of

granule proteinases and the consequent heterogeneity of

mast cells in the intestine and connective tissues are not

fully understood. Kitamura and colleagues adoptively

Mouse Rat
Primates

Ruminants

Figure 1. Schematic representation of the distribution of mast cells in the lungs of mouse, rat, primates and ruminants. Note

that the larger mammals have a substantial proportion of mast cells in the lung parenchyma, whereas in the mouse, the mast

cells are located predominantly adjacent to the major airways. The proteinases that are predominantly expressed in the airways

are shown in the boxes below each diagram. mMCP, mouse mast cell proteinase; rMCP, rat mast cell proteinase.
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transferred SMC into the gastric wall of mast cell-deficient

W/WV mice and noted that phenotype was, to a large extent,

governed by the tissue in which mast cells were located.118,119

Histochemical analysis of the proteoglycan content of the

transferred cells suggested that SMC produced heparin

proteoglycan when transferred into connective tissues

such as the gastric submucosa, but switched production

to non-heparin proteoglycans when they entered the gastric

mucosa.

Subsequent studies examining the tissue- and strain-

specific expression of the chymases, mMCP-2 and -4, and

the tryptase, mMCP-6, suggested a more complex process.71

In essence, cultured mast cells derived from the bone

marrow of WBB6F1
+/+ mice and implanted into the gastric

wall of mast cell-deficient WBB6F1-W/Wv mice expressed

the granule chymase mMCP-2 when located in the mucosa,

but not in the muscularis. In contrast, implanted SMC

expressed mMCP-2, regardless of their location in the

stomach. Additional experiments, in which the numbers of

implanted SMC were varied, showed that differences in

chymase expression, including the expression of mMCP-1,

occurred when the cells proliferated after implantation.120

This result, supported by additional observations on the

expression of mMCP-4 and -6, provided convincing evidence

that extracellular factors regulated proteinase expres-

sion in vivo.71 These experiments71 also confirmed previ-

ous studies showing that the expression of mMCP-2 was

strain-dependent.7

Regulation of mast cell granule chymase expression by

extrinsic factors in vitro was reported when rat bone marrow

cells, cultured in T-cell conditioned medium, were found

to express abundant rMCP-2.121 Since then, a variety of

cytokine combinations have been used to investigate the

expression of mast cell granule proteinases in cultures of

rodent, human and ovine bone marrow cells.122–127 As yet

there are no obvious clues as to why human mast cells

express tryptase with variable expression of chymase.

Human mast cells derived by culturing adult bone marrow,

peripheral blood leucocytes or fetal cord blood cells vary

in the level of chymase and tryptase expression, depending

on the source of cells, on the growth factors added to the

culture medium128,129 and on inherent, clonally regulated

expression of chymase.130 Most studies show the absolute

requirement for stem cell factor (SCF) to initiate and

maintain mast cell growth from bone marrow or cord blood

cells, and the differentiating mast cells express tryptase after

several weeks.125,131 Supplementation with interleukin (IL)-6

enhances mast cell growth with concomitantly increased

expression of tryptase125 and there is a suggestion that

expression of tryptase precedes that of chymase,131 but the

addition of recombinant human IL-4 did not significantly

alter proteinase expression.131 Conditioned medium from

a human mast cell line did, however, upregulate chymase

expression and generated tryptase-negative/chymase-

positive cells.128 The mechanisms that might regulate the

in vivo expression of chymase and tryptase in human tissues

are not therefore readily resolved from these in vitro studies.

The expression of mMCP-1 by implanted SMC after

they have proliferated in the gastric mucosa120 is consistent

with the results of an in vitro study of cultured rat SMC

showing that IL-3 and SCF promote expression of the

MMC-specific chymase, rMCP-2, in a subpopulation of

proliferating SMC.121 In vivo analysis of MMC hyperplasia

during nematode infection in the mouse, showing that

mMCP-1 is expressed very early during differentiation,132 is

substantiated by recent in vitro studies on the expression of

mMCP-1 and its regulation by the multifunctional cytokine,

transforming growth factor-b1 (TGF-b1).133,134 The addi-

tion of recombinant TGF-b1 to mouse bone marrow mast

cells (mBMMC) promotes the expression of mMCP-1, and

kinetic analysis shows that, within 4 days of initiating

a bone marrow culture in the presence of SCF, IL-3, IL-9

and TGF-b1, < 40% of the cells are mMCP-1-expressing

mBMMC and, by day 7 of culture, >85% of the cells

are mMCP-1 positive.133 Supplementation with TGF-b1

promotes the extracellular release of mMCP-1 into the

culture supernatant in a dose-related response134 and this

observation is consistent with the concept of a non-IgE-

mediated systemic release of mMCP-1 during nematode

infection.2 In vitro, mMCP-1-positive mBMMC express the

integrins aeb7, the membrane tyrosine kinase receptor for

SCF, c-kit, and the high-affinity receptor for IgE.133 The

morphology of these mBMMC with their large, variably

shaped mMCP-1-positive granules, and the fact that they

express the integrin aE (Fig. 2), suggests that they are

true homologues of MMC.135,136 In this respect they are

very similar to the rat BMMC grown in the presence of

T-cell conditioned medium121 that are biochemically and

functionally identical to isolated rat MMC.62

The expression of mMCP-1 by intraepithelial mast cells

in parasitized mice64 indicates that TGF-b1 is probably a

differentiation factor for MMC sequestered in the epithe-

lium. As this cytokine is secreted by epithelium,137 the

question is how it is converted from the latent to the mature

and functionally active form in this location. One prob-

able mechanism is through the integrins avb6 that are

expressed by epithelia and that bind RGD motifs on

the latency-activated peptide (LAP) of TGF-b1.138,139 Once

binding of TGF-b1-LAP has occurred, sites on the b6 cyto-

plasmic domain become accessible for binding to the actin

cytoskeleton and this results in the activation of TGF-b1

and its presentation as a cell surface-bound cytokine that

will interact with cognate receptors on adjacent cells.139

Preliminary studies using b6 knockout mice139 infected with

the intestinal nematode, Nippostrongylus brasiliensis, sug-

gest that this integrin is essential both for the recruitment of

mast cells and for the expression of mMCP-1 (P.A. Knight

et al., unpublished). This preliminary finding supports the

concept that the activation of TGF-b1-LAP and its cell-

surface presentation via avb6 is a key event in the expression

of mMCP-1 (Fig. 3). This epithelially regulated mechanism

is also consistent with the expression of SCF and IL-9 by

epithelial cells140 (Fig. 3), but may be unique to the mouse

because, in other species, MMC hyperplasia occurs both in

the lamina propria and epithelium.2

An alternative mechanism of activation of TGF-b1-

LAP, which in the rat is stored in the granules of SMC, is

the cleavage of the latent form by rMCP-1 after both have
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been released from the granules following degranulation.141

Human chymase similarly will cleave the latent form of

TGF-b1.141 Activated TGF-b1, released during degranula-

tion, stimulated macrophages expressing the TGF-b1 recep-

tors, TGFR-I and -II, but not the SMC that lacked these

receptors.141 These results again demonstrate a probable

functional difference between SMC and MMC in rodents.

SPECIFICITIES OF MAST CELL GRANULE

PROTEINASES AND THEIR NATIVE INHIBITORS

Proteolytic specificities

Mast cell chymases, and some granzymes normally

expressed by T cells, belong to a group of evolutionarily

related serine proteinases with a characteristic ‘missing’

Cys191-Cys220 disulphide bond.28 Mutations in the

substrate-binding region of serine proteinases of this family

appear to have more profound effects on specificity than

in the trypsin model. Phylogenetic analysis51 shows the

evolution of chymases from an ancestral a-chymase with

conservation of the ability to convert angiotensin-I to

angiotensin-II. Examples of homologous a-chymases have

been demonstrated in primates142 dog143 and rodents32,40

However, in the b-chymase group of rodent proteinases (e.g.

rMCP-1 and -2; mMCP-1 and -4) that also evolved from

this ancestor, the angiotensin-converting specificity is not

mandatory.144 A related group of proteinases, typified by

the cytotoxic T-cell enzyme granzyme B,145 contains

members expressed by mast cells. By mutations at residue

226 (chymotrypsinogen numbering), these enzymes have

acquired a variety of different primary specificities, such as

the dual tryptase-chymase specificities of cathepsin G,

sMCP-1 and duodenase,44,146,147 and the putative granzyme

B-like activity of mMCP-8,148 i.e. cleavage C-terminal to

Asp residues.

The trypsin-like primary specificity of tryptases is

fixed owing to the invariant Asp residue at position 189

(chymotrypsinogen numbering) in the substrate-binding

pocket. The one exception to this is bovine tryptase, with

Asn-189 but still retaining trypsin-like activity.45 Therefore,

all cleavages occur C-terminal to Arg and Lys residues.

However, tryptases have a more developed substrate-

binding cleft than trypsin, being able to sample side-chains

of several amino acid residues on either side of the scissile

bond of the substrate.149 The ability of tryptases to cleave

substrates is further restricted by their natural association

(in most cases) as tetramers. The crystal structure of human

tryptase-bII tetramer149 shows the active sites angled

towards a central oval pore of diameter 50r30 Å. Tryptase

will probably function most efficiently with peptide sub-

strates, or as a processor of protrusions of larger proteins.

As tryptases occur as multigene families, the existence of

small differences in the substrate-binding region between

tryptase forms may result in differential affinities for

important substrates. For example, human tryptase-aI has

lost the ability to cleave fibrinogen owing to a GlypAsp

mutation at residue 215.150

Native inhibitors and substrates

Examples of native substrates and some of the known

inhibitor/inactivators are shown in Table 2. The activity

of MCPs may be controlled in vivo by plasma-derived

(a) (b)

Figure 2. Confocal image (a) of 14-day-old-mouse bone marrow cultures demonstrating the presence of mature mast cells

with abundant granules containing mouse mast cell proteinase-1 (green fluorescence) and expressing the integrin aE

(red fluorescence) on their surface membranes. A light micrograph (b) of the mouse bone marrow mast cells (mBMMC) stained

with Leishman’s shows that they are mature, heavily granulated cells. The cells were grown in medium containing recombinant

mouse interleukin (IL)-3, IL-9 and stem cell factor (SCF) supplemented with recombinant human transforming growth

factor-b1 (TGF-b1), as described in detail by Miller et al.134 (Horizontal bars represent 10 mm.)
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proteinase inhibitors such as the pan-specific 720 000-

molecular weight (MW) plasma proteinase inhibitor,

a2-macroglobulin,173 which inhibits chymase166 and

sMCP-1172 (Table 2). Another important plasma-derived

inhibitor is the serpin, a1-proteinase inhibitor (a1-PI, also

known as a1-antitrypsin). While the main target enzyme for

this inhibitor appears to be neutrophil elastase174 it is also

an effective inhibitor of human chymase.167 The serpin

a1-antichymotrypsin (a1-AC) inhibits chymase,167 and a1-PI

and a1-AC may serve as substrates for chymase, with

the cleavage :inhibition ratio being sensitive to pH.175

Related serpins in the rat and sheep inhibit rMCP-2170

and sMCP-1,172 respectively (Table 2).

Secretory leucocyte protease inhibitor (SLPI), an

11 700-MW inhibitor of neutrophil elastase176 secreted

onto mucosal surfaces, appears to be an important native

inhibitor of mast cell proteinases. It is an effective native

inhibitor of human chymase (Table 2),168 and, in the pre-

sence of heparin, a 10-fold increase in association rate is

observed. Mouse and rat SLPIs177 may have a selective

role in controlling the activity of b-chymases, as human

SLPI is a highly efficient inhibitor of rMCP-1, but not of

rMCP-2.171 It is important to note, however, that chymases

in association with heparin proteoglycan or granule rem-

nants, may be more resistant to inhibition than isolated

chymases.178 For example, human chymase is resistant to

a2-macroglobulin inhibition in the presence of heparin

proteoglycan.179 In contrast to chymases, mast cell tryptases

appear refractory to most native inhibitors. Human lung

tryptase is stable in the presence of high concentrations of

plasma proteinase inhibitors.180 However, rat (rMCP-6)

and bovine tryptases can be inhibited by aprotinin39,160

(Table 2). It appears that an important mechanism con-

trolling tryptase activity is the sequestration of heparin,

which stabilizes the tetramer at physiological salt con-

centrations.181 Lactoferrin and myeloperoxidase, released

from activated neutrophils, are highly efficient heparin

scavengers161,162 (Table 2). Following removal of heparin,

tryptase rapidly dissociates into inactive monomers.182

FUNCTIONS OF MAST CELL GRANULE

SERINE PROTEINASES

Vascular permeability

Tryptase may contribute to vascular permeability by the

direct or indirect generation of bradykinin from kininogens.

Figure 3. Diagrammatic representation of a mouse mucosal mast cell (mMMC) within the intestinal epithelium with the

postulated receptor–ligand interactions between the two cell types illustrated in boxes A and B. In Box A the epithelial cell-

specific integrins aVb6 are shown binding an activated transforming growth factor-b1 (TGF-b1) molecule and presenting it to its

receptor on the mast cell surface. The probable interaction between the integrins and actin fibres in the epithelial cytoskeleton is

also illustrated. We speculate that interleukin (IL)-9 is produced by the epithelium, as indicated by published studies,140 and

that it binds to its receptor on the mast cell surface. In box B the interaction between epithelially expressed stem cell factor

(SCF) and its tyrosine kinase receptor c-kit is shown together with the probable interaction between the integrins aEb7 on the

mast cell surface and epithelially expressed E-cadherin. The receptor–ligand interactions illustrated here are consistent with

in vitro studies showing that IL-9, SCF and TGF-b1 are important growth and differentiation factors. We speculate that the

constitutive secretion of mouse mast cell proteinase-1 (mMCP-1), induced by TGF-b1,134 exerts a modulatory effect on these

receptor–ligand interactions through, for example, the proteolytic degradation of ligands such as SCF or of the cytokines in

the intercellular milieu. This hypothesis might explain the augmented mast cell hyperplasia in mMCP-1x/x mice lacking this

proteinase.14,19
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Mast cell tryptase, originally shown to degrade high-

molecular-weight kininogen,152 may generate bradykinin

at low pH.153 It also activates the kininogen-processing

enzyme, kallikrein,154 and co-operative hydrolysis of

kininogen by tryptase and neutrophil elastase generates

bradykinin with a yield comparable to that obtained by

kallikrein.183 In support of their roles in increasing vascular

permeability, human and mouse tryptases (mMCP-7)

inactivate fibrinogen,155,184 preventing thrombin-induced

clot formation. Similarly, sMCP-1 degrades fibrinogen172

by rapidly and specifically cleaving a- and b-chains when

added to plasma. Cleavage of fibrinogen b-chain by both

sMCP-1 and human tryptase44,172,185 occurs C-terminal to,

and removes, the thrombin activation site. The a-chain

target of human tryptase is the RGD domain, thus

disrupting binding to cell-surface integrins.185 Another

mechanism by which tryptase promotes microvascular

permeability appears to involve direct activation of mast

cells. For example, induction of guinea-pig dermal

microvascular permeability by human tryptase is down-

regulated by histamine receptor antagonists, and tryptase

causes histamine release from dispersed skin and lung mast

cells in vitro, with tryptase apparently acting as an

amplification signal.186 Dermal microvascular permeability

to injected tryptase in the sheep is sensitive both to

histamine receptor antagonists and the synthetic tryptase

inhibitor APC 366.187 In contrast, human chymase

stimulates a histamine-independent and more prolonged

microvascular leakage in guinea-pig skin.188 Thus, the two

proteinases appear to promote vascular permeability via

two distinct mechanisms.

Tissue and vascular remodelling

Mechanisms of tissue remodelling may involve the direct

activity of granule proteinases, because tryptase cleaves

fibronectin,156,189 both tryptase and chymase degrade type

VI collagen microfibrils190 and chymase proteolytically

activates type I procollagen, initiating fibril formation.163

However, MCPs arguably contribute more to matrix turn-

over via activation of matrix metalloproteinases (MMPs).

MMP-1 (collagenase-1) is activated by human chy-

mase,164,191 although not directly by tryptase,191 but

indirectly via tryptase-mediated MMP-3 activation.158

Pro-MMP-9 is activated by canine chymase, but not

tryptase,165 whereas tryptase activates a 72 000-MW

gelatinase of fibroblast origin.156 Pro-stromelysin (MMP-3)

is activated by tryptase,158 chymase191 and the rat

b-chymases rMCP-1 and rMCP-2.169 Despite this poten-

tially wide range of in vitro tissue-remodelling activities

of mast cell neutral proteinases, the in vivo significance of

these findings has yet to be determined.

Tissue remodelling may also occur when tryptase

triggers proteinase-activated receptor-2157 (PAR-2) – a

G-protein coupled receptor with seven transmembrane

regions and an extracellular ‘tethered ligand’. Cleavage of

the ligand by tryptase or trypsin generates a new N-terminus

that binds to the receptor, initiating intracellular signalling

Table 2. Examples of native substrates and inhibitors for different classes of mast cell proteinases*

Enzyme type

Examples of native

substrates Reference

Known native

inhibitors/inactivators Reference

Tryptase VIP 151 SLPI 159

(e.g. human tryptase-bII) HMW kininogen 152, 153 Aprotinin 39,160

Pre-kallikrein (activation) 154 Lactoferrin 161

Fibrinogen 155 Myeloperoxidase 162

Fibronectin 156

PAR-2 (activation) 157

MMP-3 (activation) 158

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a-chymase Angiotensin-I 51 a2-macroglobulin 166

(e.g. human chymase) (conversion to angiotensin-II) a1-proteinase inhibitor 167

Pro-collagen-1 (activation) 163 a1-antichymotrypsin 167

VIP 151 SLPI 168

Substance P 151

MMP-1 (activation) 164

MMP-9 (activation) 165

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

b-chymase MMP-3 activation 169 a1-proteinase inhibitor 170

(e.g. rat MCP-1) SLPI 171

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

‘Janus-faced’ dual-specific

mast cell proteinase

Fibrinogen 172 a2-macroglobulin

a1-proteinase inhibitor

172

172

(e.g. sheep MCP-1) SLPI 171

*Note that these examples do not necessarily apply to all members of each proteinase class: see text for details.

HMW, high molecular weight; MCP-1, mast cell proteinase-1; MMP-3, matrix metalloproteinase-3; PAR-2, proteinase-activated receptor-2;

SLPI, secretory leucocyte protease inhibitor; VIP, vasoactive intestinal peptide.
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(Fig. 4).192 PAR-2 activation in airway smooth muscle

cells occurs through calcium mobilization and phopho-

lipase C-mediated activation of the inosital triphosphate

pathway193 with subsequent proliferation,194 and similarly,

tryptase-induced activation of lung fibroblasts proceeds via

PAR-2 activation.195 In contrast, dermal fibroblasts that

lack PAR-2 are activated by tryptase through an unknown

alternative mechanism196 and chymase degrades PAR-1, the

thrombin receptor, by inappropriate cleavage of the

tethered ligand (Fig. 4).196

Angiotensin conversion by a-chymases may modulate

not only blood pressure, but also vascular remodelling and

cardiac hypertrophy.197 Targeted overexpression in trans-

genic mice of a rat vascular chymase with angiotensin-

converting properties and 80% identity to rMCP-2, resulted

in hypertensive arteriopathy.198 This supports the view that

chymase represents a valid therapeutic target in treating

hypertension. Human chymase was an angiogenic factor in

a hamster sponge implant model, apparently acting via

angiotensin-II generation.199 The chymase mMCP-4 is also

implicated in angiogenesis at the invading fronts of

squamous carcinomas in mice.200

Allergic reactivity

Aerosolized tryptase causes bronchoconstriction in allergic

sheep lung, apparently via histamine release, which further

supports the concept that tryptase is amplifying reactivity

through mast cell activation.201 It is interesting that

Ascaris suum ‘sensitized’ sheep were used in this study201

where, presumably, increased airway permeability facili-

tated the access of tryptase to airway mast cells. Again,

using the Ascaris model of allergic lung disease, pretreat-

ment of allergic sheep with the tryptase inhibitor, APC 366,

significantly reduced late-phase and hypersensitivity

responses to inhaled allergen.202 A similar protective effect

was observed using aerosolized SLPI,159 although it should

be noted that SLPI might not only compete for tryptase-

associated heparin but also target sMCP-1,171 which is

expressed in sensitized lung.88 The recruitment of inflam-

matory cells is another important feature of allergic react-

ivity for which mast cell proteinase activity may be

responsible. For example, intraperitoneal injection of

the tryptase, mMCP-6,203 in mice generated a marked neu-

trophilia, as did human tryptase, where co-injection of

histamine induced a concomitant eosinophilia.204 Tryptase-

mediated neutrophilia is probably caused, at least in part,

by its ability to induce release of the chemokine IL-8 from

epithelial205 and endothelial203,206 cells. Human chymase

also recruited neutrophils and eosinophils when injected

into the skin of guinea-pigs.207

In the context of airway and gut allergic reactivity,

tryptase efficiently hydrolyses the neuropeptide vasoactive

intestinal peptide (VIP), but not substance P, whereas

chymase cleaves both peptides,151 raising the possibility that

mast cell proteinases can modulate neurogenic inflamma-

tory reponses. Another important feature of allergic disease

is altered epithelial permeability and this is well described,

for example, in nematode infections and involves MMC.2

Increased intestinal epithelial paracellular permeability

occurs in rat intestine within minutes of introducing

rMCP-2 into the perfusate during ex vivo perfusion of the

intestinal vasculature or following the anaphylactic release

of rMCP-2 by intestinal MMC.104 No gross pathology is

associated with this increased permeability and concomitant

translocation of rMCP-2 into the gut lumen.104 In vitro

studies suggest that rMCP-2 opens the epithelial barrier

by disrupting the tight juctional complex.208 Integrity of

epithelial tight junctions may be important therefore during

intestinal infection with the nematodes N. brasilensis and

T. spiralis in mMCP-1x/x mice. Infection is associated with

a more pronounced intraepithelial mast cell hyperplasia14,19

in mMCP-1x/x mice, together with delayed expulsion of

T. spiralis, when compared with mMCP-1+/+ controls.14 It

is possible that the egress of MMC into the gut lumen, as

described in detail in parasitized sheep,209,210 is compro-

mised by the absence of mMCP-1 in mMCP-1x/x mice with

relatively intact tight junctions. An alternative explanation

is that extracellular mMCP-1, released during infection,69

downregulates mast cell hyperplasia in mMCP-1+/+ mice

by degrading SCF, c-kit, or the TGF-R/TGF-b1/b6 complex

Figure 4. Schematic representation of human proteinase-activated

receptor-1 (PAR-1) and PAR-2. The N-terminus is extracellular,

the C-terminus is intracellular and transmembrane regions are

shown in green. Activation of PAR-1 by thrombin and PAR-2 by

tryptase or trypsin exposes the tethered ligand region (shown in

blue). This docks into the binding region of extracellular loop 2,

which can also be activated by a synthetic hexapeptide representing

the new N-terminus. The inactivation of PAR-1 by chymase is also

represented, which is presumed to be via cleavage C-terminal to the

tethered ligand region.
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(Fig. 3). In the absence of the proteinase there is unregulated

expansion of the MMC population.

Innate immunity

Serosal mast cells play a key role in maintaining peritoneal

integrity and are involved in the early recruitment of

neutrophils following experimental caecal ligation and

puncture in mice. This recruitment does not rely entirely

on the release of tumour necrosis factor-a (TNF-a)211 and

apparently protects the mice from fatal septicaemia. In a

similar context, recombinant human tryptase bI, but not

tryptase aI, induces airway neutrophilia when instilled into

mouse lung in a process that is apparently independent of

PAR-2 activation.212 Importantly, tryptase bI instilled into

the airways of mast cell-deficient W/Wv mice significantly

reduces pulmonary bacterial load following challenge

with Klebsiella pneumoniae.212 This process, where airway

reactivity is unaltered, suggests that tryptases can contri-

bute significantly to innate immunity against bacterial

infection.212 It is also possible that tryptases released by the

serosal mast cells are involved in neutrophil recruitment

and protection after caecal puncture.

CONCLUSIONS

Neutral proteinases are important contributors to mast cell-

related inflammatory responses in the lung and gut. Many

of the current concepts on the functions of chymases and

tryptases are being revised as new proteases are discovered

and analyses of proteolytic specificity reveal subtle, but

important, differences in function and, consequently, of

potential in vivo activities. For the future, mechanisms

governing heterogeneity of proteinase expression must be

linked to proteinase function in tissues where there may be

selective proteolysis of a limited range of target substrates,

including a family of protease-activated receptors, in the

presence of inhibitors or of other factors that regulate

proteolysis. Targeted, tissue-specific and inducible deletion

of proteinases and of their inhibitors will be necessary to

further dissect the complex, but potentially important,

in vivo functions of mast cell granule proteinases.
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