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INTRODUCTION

Tumour immunology and immunotherapy is a highly active

field, a clinical testing ground for cutting edge immuno-

logical techniques and concepts. But this is after many

years of fundamental advances in basic immunology. In

this article we suggest that immunotherapy for brain

tumours cannot be rationally advanced as rapidly as that

for tumours in other sites. Our understanding of anti-

tumour immune responses in the brain is sketchy and

frequently extrapolated from other tissues having little

in common with the central nervous system (CNS). The

result is that current clinical trials are built upon shakier

foundations, with the somewhat naive optimism that what

is looking hopeful for other tumours will also be applica-

ble to cerebral malignancies. But of course it is easy to

criticise such well-meaning attempts to treat currently

incurable cancers. In the basic and preclinical domain,

brain tumour models that are readily applicable to the

design of future immunotherapies are only in their infancy.

The ideal transplantable tumour that reiterates the key

features of a malignant primary astrocytoma (poorly

immunogenic, infiltrative but non-metastatic, expressing

multiple mechanisms mediating immune escape) has yet

to be discovered. In the meantime, we must use individual

model tumours and limit the scope of the conclusions that

we make from each system. Moreover, we must over-

come the significant technical difficulties encountered as we

strive to preserve brain integrity, whilst implanting tumours

in this unique site. Or we can look to genetic models,

in which there is the development of ‘spontaneous’ brain

tumours (in some cases aided by the intracerebral delivery

of a viral vector) incorporating many of the genetic features

and heterogeneity typical of spontaneous human cancer.1

However, these models have generally been constructed

to address genetic and pathological issues and they present

a significant challenge for interpretable immunological

studies.

With these difficulties in mind, perhaps we need to

accept that brain tumour models and clinical immuno-

therapies are currently in their first generation. To progress

to a more successful second generation of therapies, there

is a need to abandon the idea that an automatic one-way

progression exists from rodent models to the clinic. We need

better models to make better therapies, but how to choose

and design the models can be greatly guided by data from

clinical trials, if the trial design actually permits the

generation of useful biological data. To date, most brain

tumour immunotherapies have borrowed technologies and

approaches already explored for tumours in other sites,

principally melanoma. Thus, most of the now ‘classical’

tumour immunology approaches have been explored for

brain tumour immunotherapy: cytokine immune enhance-

ment, whole tumour cell vaccines, cytokine-modified

tumour cell vaccines, gene therapies with immune bystander

effects, dendritic cell therapies (reviewed in refs. 2–4). A

few notable and exciting novel approaches unique to the

CNS should not be passed aside, for example, exploiting

the migratory properties of neural stem cells to deliver

immunoactive molecules efficiently to the tumour site.5 The

overall conclusions from these studies are that, depending

upon the stringency of the models utilized, tumours that

are pre-established in the brain are generally more difficult

to eliminate than those in other sites, and may require

different effector mechanisms. For example, studies in

which multiple cytokines have been tested as modulators

of immune responses gave different results according to the

tumour model (SMA-560, B16) and site of implantation.6,7

Other attempts to create a cellular vaccine by overexpres-

sion of intercellular adhesion molecule-1 on a glioma cell

line, resulted in growth inhibition of glioma cells implanted

subcutaneously, but not in the CNS.8 Another recent study

using a recombinant Listeria monocytogenes tumour vaccine

revealed more stringent T-cell subset requirements for

protection against an intracerebral challenge compared with

the same tumour implanted by the subcutaneous route.9

These examples, together with the fact that no convincingly

successful clinical brain tumour immunotherapy has been
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demonstrated to date, should force us to reassess what we

understand about brain tumour immunology, rather than

just brain tumour immunotherapy. It is from this perspec-

tive that we will discuss the issues pertinent to the problem

by drawing from both clinical and experimental situations.

THE CLINICAL PROBLEM

Both primary brain tumours and intracranial metastases

pose a serious clinical problem, although their involvement

with the host immune system will presumably have followed

a different evolution. Concerning primary brain neoplasms,

those derived from astrocytes are the most frequent, and the

anaplastic astrocytomas and glioblastomas (grade III and

IV astrocytomas, according to the WHO designation) are

the most lethal. Indeed, despite some advances in surgical

resection, radiotherapy and chemotherapy,10 it is unlikely

that long-term survival rates can be significantly extended

beyond the current median survival of less than 12 months

for glioblastomas.11 Furthermore, although for low-grade

astrocytomas the outlook is more favourable, not all can

be adequately treated and they may progress to malignant

lesions.1 Malignant astrocytomas infiltrate normal tissue,

which renders total surgical resection virtually impossible

without extensive neurological damage. It is thus essential

to consider novel treatments such as immunotherapy in the

hope of attacking the residual radioresistant and chemo-

resistant tumour cells. Other tumours metastasizing to the

brain, such as melanoma, pose similar problems,12 and

for these tumours it would also be useful to propose a

therapeutic option that is applicable to the CNS.

THE PARTICULAR REQUIREMENTS FOR

IMMUNE RESPONSES AGAINST TUMOURS IN

THE CNS – A SITE OF IMMUNE PRIVILEGE

Whilst certain criteria for acceptable anti-tumour responses

are applicable to all tumours, there are other requirements

that are more stringent for cerebral malignancies. Indeed,

the categorization of the CNS as an immune privileged site

has perhaps retarded the development of immunotherapies

for brain tumours, with the temptation to anticipate

ineffective immune function in the brain. However, this

prejudgement of the domain has arisen from a degree of

misunderstanding of immune privilege. The term originally

arose to describe the results of transplantation experiments

in which there was extended survival of tissues transplanted

to the CNS, compared with their survival in other sites.13,14

Features of the CNS were identified (certain of which

are discussed individually in the sections below) that were

proposed to explain this apparent lack of immune reactivity.

These included the presence of the blood–brain barrier

(BBB), low major histocompatibility complex (MHC)

expression in the brain parenchyma, the absence of

organized lymphatic drainage and a lack of dendritic cells

in the normal brain parenchyma. Nevertheless, it is now

apparent that immune reactions can and do occur in

the CNS: autoimmune diseases of the CNS;15 immune

responses to neurotropic viruses16 and parasites;17 and, as

will be discussed herein, anti-tumour responses. Immune

privilege is thus a term that requires an updated definition:

it should remind us that although immune responses in

the brain are often qualitatively and quantitatively different

to those found in other sites, they are not absent. As

elegantly phrased by Fabry et al.,18 we have to consider

immune responses in the CNS as having a certain ‘dialect’.

Those aspects of immune privilege that impinge on

afferent immune responses are clearly of fundamental

interest, but may be less critical for brain tumour immuno-

therapy. For most vaccine strategies, immune responses

will be induced at sites remote from the tumour, with the

aim that effector cells can then recirculate to mediate

their anti-tumour effects in the brain. The discussions that

follow will therefore concentrate on those particularities

of the CNS that influence the efferent arm of anti-tumour

immune responses (Fig. 1), with a bias towards those that

are presumed to be T-cell-mediated.

Effector T cells must penetrate the brain parenchyma

before they can reach the tumour bed

The first requirement for an effector T cell is that it must

reach its target, the tumour. The problem of adequate

tumour infiltration is applicable to all solid cancers.19,20 but

when the tumour is located in the brain parenchyma, the

T cell must also penetrate the tight junctions between

the endothelial cells of the cerebral vasculature constituting

the BBB.21,22 The integrity of this barrier is maintained

by cells in intimate contact with the abluminal surface of

the endothelium. Pericytes, perivascular cells and particu-

larly astrocytes are implicated, the latter cells almost totally

surrounding the vessel with their foot processes.23 Whilst

the brain microvessels constituting the BBB appear

impermeable compared with other microvessels, the bar-

rier is conditional and selective. There is molecular and

cellular traffic in both directions, but this is tightly

regulated. Activated T cells can extravasate, but their

trafficking may be more limited than for other sites. For

example, the relative number of activated T cells found in

the brain parenchyma after intravenous adoptive transfer

of labelled T cells in rats was six times less than in muscle

and more than 140 times less than that found in liver, for

the same weight of tissue.24 For CD4+ T cells, migration

away from the perivascular space into the parenchyma is

inhibited in mice depleted of macrophages, suggesting that

there are essential interactions with a perivascular cell after

extravasation.25 The crux of the issue for tumour rejection

is whether sufficient T cells reach their target to exert their

anti-tumour effect. It is very difficult to quantify this for any

tumour, nevertheless, under optimized conditions in dif-

ferent animal models, CD8+ T-cell-dependent immune

responses are able to mediate anti-tumour effects in the

brain.6,9,26–33 For spontaneous malignant astrocytoma in

humans, the integrity of the BBB is locally compromised,

and tumour-induced angiogenesis will not incorporate BBB

characteristics. T-cell infiltration frequently occurs,34–36

but has only occasionally been correlated with a favourable

prognosis.37 However, to date, the specificity and function
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of astrocytoma-infiltrating lymphocytes remains to be

defined.

Target antigens must permit adequate discrimination of

normal and malignant tissue

If we consider the CD8+ cytotoxic T lymphocyte (CTL)

as the prime effector T cell for tumour rejection, its fine

specificity is of critical importance for the brain. A degree

of collateral damage is considered acceptable for tumours

in certain extracerebral locations38 and many defined

experimental vaccines aim to induce CTLs that recognize

differentiation antigens, such as Melan-A, expressed in

melanoma cells and normal melanocytes.39 Nevertheless,

the severity of the autoimmune component of experimental

melanoma vaccines, compared with their anti-tumour

efficacy is being closely monitored.40,41 For the CNS,

autoimmune reactions in the brain can be very serious,

because most tissue is indispensable and has limited capac-

ity for self-renewal. Indeed, early tumour immunology

studies noted that lethal allergic encephalomyelitis was

induced in different species by immunization with human

glioma tissue.42 It is clear that a better defined tumour

vaccine will have a greater chance of avoiding such

unacceptable results. However, this necessitates identifying

antigens for T cells expressed by brain tumours.

For malignant astrocytomas, identification of antigens

recognized by T cells is far less advanced than for

melanomas. However, certain antigenic similarities may

be expected between melanomas and astrocytomas because

their normal tissue counterparts derive from the neuro-

ectoderm. Most studies addressing this possibility have

analysed antigen expression at the mRNA level by reverse

transcription–polymerase chain reaction. An initial study

detected a proportion of tumours expressing one of several

melanoma-associated antigens including MAGE family

members, tyrosinase, TRP-1, TRP-2, gp100 and p97.43

However, subsequent publications found a much lower

proportion of tumours expressing MAGE antigens,

although occasional expression of other cancer-testis anti-

gens was noted (SSX-1, SSX-2, SSX-4, SCP-1, TS85, and

MAGE and GAGE family members).44,45 Although these

results underline the potential antigenicity of certain brain

tumours, some of the antigens that have a relatively high

frequency of expression in malignant astrocytomas may be

less useful as targets for immunotherapy because of their

high homology to self-antigens (e.g. tumour-expressed

GAGE-3 to GAGE-6 and GAGE-8 that are homologous

to normal-brain-expressed GAGE-2 and GAGE-7).45

Microglia

Astrocytes
Brain tumour

Disrupted BBBIntact BBB

Blood vessel

Brain parenchyma

Tumour-specific
T cells

5

4
Active immunosuppression

TGF- ? FasL? PGE2?

Passive immune escape
? MHC expression, 

? antigen presentation

3
Endogenous 

immunosuppressive
 factors

TGF- ? Gangliosides?

2
Regulatory resident cells

Antigen presentation
Cytokine secretion

1
Selective/limited

extravasation

�

�

Figure 1. Overview of the obstacles encountered by effector T cells primed in the periphery as they migrate towards a tumour

situated in the brain parenchyma. After extravasation through the intact or locally compromised blood–brain barrier (BBB)

(1),1 primed T cells encounter CNS-resident cells such as microglia and astrocytes (2), capable of antigen presentation,

tolerance induction, or cytokine-mediated immunomodulation. Constitutive immunosuppressive factors present in the brain

parenchyma (3) may also impede full differentiation or expression of effector molecules. As infiltrating T cells reach the tumour

bed, they will be exposed to high concentrations of tumour-secreted factors that may synergize with tumour cell surface

molecules to down-regulate effector function (4). Finally, efficient immune recognition of the tumour cell may be compromised

by passive mechanisms of immune escape, such as low or absent MHC molecule expression and inefficient processing and

presentation of tumour-associated antigens (5). Further details and references for these mechanisms are in the text.
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Furthermore, the only confirmation that epitopes from any

of these antigens are presented at the cell surface for

recognition by T cells comes from the study of certain

astrocytoma cell lines that can be recognized by MAGE-

specific CTL.46 However, this result reflects MAGE-1

antigen expression in cultured cells, whereas in vivo,

astrocytomas are generally found to be negative for the

MAGE-1 protein.45,47 This can probably be explained by a

different level of DNA methylation induced by culture,

because this regulates MAGE expression.48

A further candidate astrocytoma antigen that warrants

further investigation is SART1259, originally identified in

epithelial cancer cells and now shown to be expressed in

various brain tumour lines and biopsies, including malig-

nant astrocytoma.49 Astrocytoma cell lines expressing high

levels of HLA-A24 and SART1259 could be recognized and

killed by specific CTL derived from an oesophageal cancer

patient, although no evidence of autologous responses

was presented. Another possibility for an astrocytoma-

associated antigen expression may be from neoepitopes

present in epidermal growth factor receptor variant III

(EGFR-vIII), expressed in a large proportion of malignant

brain tumours.50 This antigen has until recently been

explored as a target for monoclonal antibodies (initially

for diagnostic purposes, but more recently for therapeutic

application in preclinical mouse models.51 However, the

possibility that EGFR-vIII-encoded T-cell epitopes may

contribute to the anti-tumour response has been investi-

gated in mouse models.52,53 and a vaccine incorporating a

peptide from EGFR-vIII is currently under clinical trial.

There must be sufficient MHC molecule expression by

tumour cells for direct CTL attack

For most primary brain tumours, the issue of MHC

expression is rather different to that in tumours derived

from tissues of non-CNS origin, because the normal tissue

counterparts of astrocytes and oligodendrocytes are essen-

tially MHC negative or low.54,55 It is thus essential that

MHC molecules are induced either during tumorigenesis

or during immunotherapy-induced anti-tumour responses

if classical CTL-mediated cytotoxicity is to be operational.

For tumour cells of astrocytic origin, these uniformly

express MHC class I molecules after in vitro culture, and

can be induced to express MHC class II after interferon-c

(IFN-c) treatment (refs 46, 56–58 and our own unpublished

observations). The situation in vivo is far from clear, with

contradictory reports in the literature.54,55,59,60 This may

be because of differences in the immunohistochemistry

protocols employed60 and difficulties in obtaining optimal

staining for tumours such as high-grade astrocytomas that

are characterized by zones of necrosis.

The generally low MHC expression by normal tissue

may actually be an advantage during immunotherapy in that

it may spare normal tissue from immune attack. However,

normal astrocytes show inducible MHC expression, partic-

ularly after incubation with IFN-c in vitro.56,61–65 In vivo,

as for neoplastic cells, the situation is more complicated.

Based on data from mouse models, some studies have

demonstrated that astrocytes can be induced to express

MHC class I molecules after viral infection or exposure

to IFN-c.66–68 However, other authors have suggested that

in the absence of degenerated neurones, the oligodendrocyte

and the microglial cell are the principal MHC-expressing

cells of the non-malignant brain.69,70 It is clear that this issue

of MHC expression of both normal and neoplastic tissue,

before and at various stages during treatment, will be

important in attempts to measure both positive and any

adverse effects for assessment of therapies.

Brain inflammation must be regulated

Uncontrolled inflammation in the CNS rapidly leads to

a severe augmentation of intracranial pressure because

of the volume limitations within the confines of the skull.

This may augment and exacerbate the cerebral oedema

caused by the presence of intracerebral tumour mass,

compromising neurological function and causing loss of

critical cells for which renewal cannot be assured.

Furthermore, chronic neuroinflammation may release

sequestered autoantigens and contribute to the initiation

or perpetuation of autoimmune reactions. Indeed, in a

recent rodent gene therapy model for glioblastoma, there

was evidence that intracerebral immune responses may have

directly or indirectly promoted neuroinflammation and

demyelination.71

Unfortunately, inflammation is often the accompani-

ment to vigorous immune responses induced by successful

tumour vaccines, with some evidence that this may be

occurring (although without mortality) in a mouse model

in which there is rapid rejection of an immunogenic tumour

implanted intracerebrally.32 In patients, inflammation is

often controlled by administration of steroids, a treatment

incompatible with efficacious induction of immune

responses. However, there may be a brief and precious

window of opportunity for immunotherapy immediately

postoperatively whilst tumour burden is minimal and when

steroids are not required. Ideally, future immunotherapies

will be tailored for the CNS to incorporate limited pro-

inflammatory elements. To date, eradication of pre-

established, poorly immunogenic intracerebral tumours is

still such a major challenge, even in animal models, that

there has been little attention paid to ways of minimizing

the inflammatory component of the response. Recent

advances in understanding how brain-resident cells can

contribute to CNS inflammation suggest that successful

future immunotherapies will take these local factors into

account. For example, based on in vitro data, astrocytes

are proposed to stimulate more efficiently T helper type 2

(Th2) T cells whereas activated microglial cells, the

specialized macrophages of the brain, stimulate a pro-

inflammatory Th1 response.65,72,73 It remains to be

determined whether brain-infiltrating lymphocytes in vivo

are susceptible to Th subset deviation after contact with

astrocytes or microglial cells, even if they were primed in

secondary lymphoid organs by other antigen-presenting

cells (APCs). The wide functional plasticity of reactive

(activated) astrocytes is such that various roles are possible,

31Brain tumour immunology

# 2002 Blackwell Science Ltd, Immunology, 107, 28–38



including a fine tuning of brain inflammation. Thus,

depending upon the presence of microenvironmental factors

such as IFN-c or tumour necrosis factor (TNF) and TNF-

receptor family members, astrocytes can migrate, release

pro-inflammatory cytokines such as interleukin-6 (IL-6)

and IL-8, or undergo apoptosis.74 –77 Which of these roles

predominates in vivo remains to be determined. However,

interesting data are emerging from transgenic mouse models

in which the glial fibrillary acidic protein (GFAP)-promoter

targets expression of various cytokines (IL-3, IL-6, IL-12,

IFN-a and TNF) to astrocytes (reviewed in ref. 78).

Although such transgenic expression may appear extreme,

the levels of transgene-encoded cytokine were similar to

those detected in inflamed or infected brains. With age, these

mice developed inflammation and degenerative neurological

disease.

Anti-tumour effector function must be retained as T cells

migrate through the brain parenchyma and encounter

resident cells

Although we have described that T cells are able to infiltrate

the brain, can effector T cells retain their function as they

penetrate the brain parenchyma and approach the tumour

mass? Evidence from different models suggests that this will

depend upon several factors, such as the magnitude of the

induced immune response, the presence of other cell types

and the particular subset of the effector cell.

For brain infiltrating T cells, even certain components

of normal brain have been suggested to inhibit CTL

effector function. For example, T cells otherwise capable of

mediating neuropathology were inhibited by brain-derived

gangliosides,79 although this was strain-specific in the

mouse, and has not been confirmed in humans. For anti-

tumour effector T cells, in the intracerebral P511 masto-

cytoma tumour model, CD8+ T cells were unable to

differentiate into effector cells in the brain microenviron-

ment,80 a finding that was subsequently attributed to a

sensitivity to transforming growth factor-b (TGF-b) present
in the cerebrospinal fluid and the interstitial tissue fluid.81

However, these results were in contrast to those obtained

with the similar P815 mastocytoma, which had been

transfected with a model antigen, CW3 (P815-CW3):

brain-infiltrating lymphocytes tested ex vivo from these

mice showed full cytotoxic effector function.32 One dif-

ference between these systems was that in the P815-CW3

model, this was a syngeneic response to a defined peptide

antigen, whereas in the P511 model most of the experiments

were performed in outbred or non-syngeneic mice.

Before the final contact with the tumour cell, the

infiltrating T cell may have other encounters with putative

APCs of the brain. This has been most clearly defined for

MHC class II-restricted CD4+ T cells, although not as yet

for cells with specificity for a tumour-expressed antigen.

The microglial cell is one of the few MHC class II+ cells

that are resident in the brain and is thus a prime

candidate brain APC. As already mentioned, CD4+ T cells

require contact with a macrophage-like perivascular cell to

advance into the brain parenchyma,25 however, contact

with parenchymally localized microglial cells has been sug-

gested to lead to tolerance induction or the termination of

immune responses.82–85 Such effects were particularly asso-

ciated with the activation state of the microglial cell.83

Whether microglial cells are implicated in antigen presenta-

tion to CD8+ T cells is not known, however, they may

indirectly influence CD8+ T-cell function through their

influence on CD4+ T cells. Defined antigen-specific CTL

responses in the CNS have principally been studied in

antiviral responses that are often strictly CD4+ T-cell-

dependent, with loss of cytotoxic function and/or viability

in the absence of Th cells.86,87 However, for anti-tumour

immune responses, independence from CD4+ T cells has

been demonstrated in several different models.6,30,32

although it is difficult to generalize because so few studies

have looked at this aspect in systems that permit the analysis

of specific CTL responses.

The last frontier: retention of effector cell function during

the encounter with the tumour cell

The last hurdle to overcome for an anti-tumour effector

cell is to function when in intimate contact with the

tumour cell. It is at this stage that active mechanisms of

tumour immune escape will be most potent: the con-

centration of soluble immunosuppressive molecules is

maximal and may synergize with potential cell-mediated

immunosuppressive effects.

There has been a wealth of publications over the past

three decades describing immunological defects in astro-

cytoma patients. These include abnormal delayed hyper-

sensitivity responses, low numbers of circulating T cells,

depressed mitogen responsiveness, decreased antibody

responses (probably as a result of defective CD4 T helper

cell activity) and impaired T-cell cytotoxicity (reviewed by

Dix et al.88). It is reasonable to assume that these defects

will be at their most extreme in the vicinity of the tumour,

and that they can explain why tumour-infiltrating lympho-

cytes (TILs) are apparently inefficacious. However, until

it can be confirmed that the TILs are really specific for a

tumour-expressed antigen, the link remains speculative.

Nevertheless, many advances have been made in dissecting

the underlying causes for this apparent hyporesponsiveness.

It appears that T cells from astrocytoma patients, par-

ticularly TILs, express a defective high-affinity IL-2

receptor, or have severe defects in their signalling pathway

of activation.89 Similar findings were also noted in a rat

glioma model.90 This may explain, at least in part, the

poor in vitro proliferative abilities of T lymphocytes infil-

trating malignant astrocytoma, despite the addition of

recombinant IL-2,91 their low IL-2 production after

mitogen stimulation,92 and the difficulty in generating

T-cell clones with MHC-restricted cytotoxicity against

tumour cells.93

Immunosuppression by soluble factors

Soluble factors produced within the tumour microenviron-

ment have long been suspected to be behind many of the

above mentioned immune defects. Indeed, T lymphocytes
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from normal individuals exhibit similar immunological

abnormalities when cultured in the presence of astrocytoma

supernatant.94 The most extensively studied soluble factor

is TGF-b2, originally called glioblastoma cell-derived

T-cell suppressor factor, which was first identified in the

supernatant of a human glioblastoma cell line that

suppressed T-cell growth.95–97 TGF-b2 exerts multiple and

complex immunosuppressive effects, such as the inhibition

of maturation and antigen presentation by dendritic cells or

other APCs, inhibition of T-cell activation and differentia-

tion towards effector cells (either cytotoxic cells expressing

perforin or Th1 or Th2 cells).98–100 The role of TGF-b2 in

inducing immunosuppression was further demonstrated

in experiments in which anti-sense TGF-b2 phospho-

rothioate oligonucleotides inhibited TGF-b2 secretion by

glioblastoma cell lines, restoring the proliferative and

cytotoxic functions of autologous lymphocytes.101 These

in vitro data naturally encouraged attempts to inhibit TGF-

b2-mediated immunosuppression in vivo, which has pro-

duced mixed results, probably because TGF-b2 not only

influences immune reactivity, but also acts on the tumour

cell directly.102,103 Other studies, using decorin, a natural

inhibitor of TGF-b, suppressed the growth of C6 rat

astrocytoma in vivo,104 but these experiments are also

complex to interpret because decorin may also be immuno-

stimulatory in a TGF-b2 independent fashion.105 Overall,

the immunoregulatory functions of TGF-b2 warrant the

attention it has received, but whether it will be feasible or

advisable to inhibit this cytokine in brain tumour patients

still remains uncertain.

The immunosuppressive properties of malignant astro-

cytoma-derived supernatants demonstrated in vitro cannot

be totally accounted for by TGF-b2. A non-exhaustive list

of potentially immunosuppressive molecules detected in

astrocytomas or astrocytoma lines includes prostaglandin

E2,
88,96,106,107 gangliosides108 and IL-10,109–111 all of which

can demonstrate certain immunosuppressive functions

in vitro. However, whether these factors are playing a

major role in inhibiting anti-tumour immune responses

in vivo is far less certain, either because of doubts that

sufficient bioactive factor is released by tumour cells in vivo

(discussed in ref. 88), or, particularly for IL-10, because

in vivo function is not necessarily immunosuppressive, but

may actually enhance anti-tumour responses.112,113

Immunosuppression by cell-mediated interactions

Intercellular contacts through transmembrane molecules

such as Fas ligand (FasL) are also proposed to contribute

to tumour immune escape. FasL belongs to the TNF family

and is implicated in several biological functions through

its interaction with Fas, a member of the TNF receptor/

nerve growth factor receptor family. FasL–Fas interaction

induces the trimerization of Fas and a subsequent com-

plex cascade of intracellular events, potentially leading

to apoptosis of Fas-positive cells, a mechanism central to

immune homeostasis.114,115 Although FasL was initially

thought to be mainly expressed by cells of haematopoietic

origin, it was subsequently shown to be expressed by

other normal and neoplastic tissues, including malignant

astrocytomas that we have analysed in our laboratory.116

Expression of FasL in a series of human astrocytoma lines

and biopsies was tested, as well as in the rat C6 and mouse

MT539MG glioma lines, using a variety of techniques

(immunoblot, flow cytometry and reverse transcription–

polymerase chain reaction): the majority were positive.

Functional data demonstrated that FasL+ astrocytoma

cells (cell lines and also astrocytoma cells tested ex vivo) can

specifically and efficiently kill Fas-transfected P815 target

cells. Moreover, an early passage human astrocytoma cell

line was able to induce FasL/Fas-mediated apoptosis in

CD4+ and CD8+ T cell lines derived from the autologous

tumour.117 It has been suggested that the use of T-cell

targets is inappropriate to detect FasL-mediated function

by tumour cells, because T cells can also express FasL.118

However, the kinetics of sensitivity of our T cells to FasL-

mediated death are inversely correlated to their endogenous

FasL expression; this peaks within the first day after re-

stimulation, then rapidly diminishes and is undetectable

at the time-points when T cells were tested for Fas sen-

sitivity. Overall these data suggest that astrocytoma cells

express functional FasL that can induce apoptosis in Fas+

targets and that TILs, whilst capable of undergoing

apoptosis through fratricide or autocrine suicide, can also

be susceptible (at least in vitro), of receiving a death signal

from FasL-expressing astrocytoma cells. Other groups have

independently confirmed expression of FasL by astro-

cytoma119–121 and, moreover, apoptotic T cells were

observed in the proximity of FasL-expressing astrocytoma

cells.122 However, the real in vivo importance of this

molecule for astrocytoma, and tumours in general, remains

unclear. Indeed, tumour expression of FasL in murine

models has been correlated either with enhanced tumour

growth123,124 or with enhanced tumour rejection,125–127

probably via augmented neutrophil recruitment. Micro-

environmental factors clearly influence the consequences

of FasL expression by tumour cells, for example, we

hypothesized that tumours expressing both FasL and

TGF-b may be particularly well adapted to combat CTL

effector mechanisms,117 this principle was subsequently

confirmed in an in vivo model in which a FasL-positive

colon carcinoma could escape rejection if TGF-b was

also present.128 These data help to explain the role of FasL

in this particular model (with possible analogy to the situ-

ation in the brain), but it is likely that individual com-

binations of factors relevant to different tumours or

models are responsible for the diverse interpretations of

these issues in the literature.117,118,129,130

Recent additions to the list of astrocytoma-expressed

molecules with immunosuppressive potential are HLA-G131

and CD70,132,133 although the in vivo validation of their

function has yet to be reported. HLA-G is a non-classical

MHC class I molecule expressed by a limited range of

tissues, particularly the placenta, but also certain cancers.

Roles in suppressing natural killer and T-cell immune

responses have been proposed, but they are controver-

sial.134,135 Regarding brain tumours, a proportion of

astrocytoma cell lines and tumour biopsies expressed

HLA-G protein. Functional data showed inhibition of
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CD4+ and CD8+ T-cell responses in vitro, but this was

only tested after incubation of cell lines with high con-

centrations of IFN-c (500 U/ml), or after gene transfer of

HLA-G into glioma lines. For the transmembrane glyco-

protein CD70, previous studies have described expression

of this molecule on activated T and B cells, with roles in

regulating immune responses via interaction with CD27,

expressed on lymphoid cells.136 Two independent studies

have now described expression of CD70 by human glioma

cell lines, as well as in vivo.132,133 In vitro functional tests

suggested a pro-apoptotic role of CD70 when tested on

peripheral blood mononuclear cells targets; this was

augmented (correlating with expression levels of CD70)

when tumour cells were irradiated.132 However, under

certain conditions, T cells shed CD27 after stimulation

by CD70+ tumour cells, indicating a possible protection

mechanism.

CONCLUDING REMARKS

Will the CNS present an impossible obstacle course for

immune effector cells induced during any future brain

tumour immunotherapy? There are sufficient encouraging

results from certain models to suggest that this will not

be the case, because it may not be necessary to overcome

all of the mechanisms of immune escape or restrictions

imposed by the CNS to achieve some clinical benefit.

However, with a better understanding of immune responses

in the brain, we can make rational proposals to identify key

areas in which to attempt immunomodulation for future

brain tumour therapies.

The fundamental importance of understanding immune

relations of the brain in health and disease cannot be

overstated. It can be assumed that the special features of

CNS immune responses, whilst apparently an impediment

to the cancer immunotherapist, have evolved to protect this

most critical organ of the body. We modify the neuro-

immunological balance at our peril. However, the optimal

balance that has evolved for a species may not be optimal

for an individual. We should therefore not be deterred

from shifting the balance towards a protective immune

response in patients, as long as the neuropathological risks

are understood and monitored.
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